
MANAGEMENT SCIENCE
Articles in Advance, pp. 1–21
ISSN 0025-1909 (print) � ISSN 1526-5501 (online) http://dx.doi.org/10.1287/mnsc.1120.1582

© 2012 INFORMS

Industry or Academia, Basic or Applied? Career
Choices and Earnings Trajectories of Scientists

Rajshree Agarwal
R. H. Smith School of Business, University of Maryland, College Park, Maryland 20742, rajshree@umd.edu

Atsushi Ohyama
Graduate School of Economics and Business Administration, Hokkaido University,

Sapporo, Hokkaido 060-0809, Japan, ohyama@econ.hokudai.ac.jp

We extend life cycle models of human capital investments by incorporating matching theory to examine
the sorting pattern of heterogeneous scientists into different career trajectories. We link differences in

physical capital investments and complementarities between basic and applied scientists across industry and
academic settings to individual differences in scientist ability and preferences to predict an equilibrium matching
of scientists to careers and to their earnings evolution. Our empirical analysis, using the National Science
Foundation’s Scientists and Engineers Statistical Data System database, is consistent with theoretical predictions
of (i) sorting by ability into basic versus applied science among academic scientists, but not among industry
scientists; and (ii) sorting by higher taste for nonmonetary returns into academia over industry. The evolution
of an earnings profile is consistent with these sorting patterns: the earnings trajectories of basic and applied
scientists are distinct from each other in academia but are similar in industry.
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1. Introduction
The dynamism of the U.S. economy has been
attributed to advances made in academic and indus-
try settings in both basic and applied domains. The
underlying scientific labor markets can be charac-
terized by two-sided matching: Hiring institutions
choose among scientists who differ in their abil-
ity and preferences, and scientists—particularly as
they embark on their careers—choose among career
options regarding what to do—basic or applied
science—and where to do it—academia or industry.
The match of job and scientist characteristics may also
have path-dependent outcomes and lasting implica-
tions on their earnings trajectories.

However, a systematic study that accounts for sort-
ing of scientists across each of the four career options
simultaneously is lacking. Although the basic ver-
sus applied nature of research is recognized as an
important characteristic in both academia and indus-
try (Sauermann and Stephan 2012), scholars have
largely examined these career options two at a time.
For example, studies have focused on the choice
between basic and applied research in academic set-
tings (Levin and Stephan 1991, Stuart and Ding 2006,
Thursby and Thursby 2002) or in industry settings
(Cohen and Levinthal 1990, Rosenberg 1990, Stern
2004), or the choice between industry and academia

(Roach and Sauermann 2010). For the underlying
theoretical mechanisms, scholars have relied on life
cycle models of human capital investments (Levin
and Stephan 1991, Thursby et al. 2007) or on differ-
ences in taste for science and nonpecuniary returns
(Stern 2004, Roach and Sauermann 2010). These stud-
ies have provided valuable insights and generated
many empirical findings regarding outcomes of sci-
entific labor markets; nonetheless, we do not have a
unified theoretical model that examines the following
research question: How do (demand-side) differences
in complementarities between basic and applied sci-
ence across industry and academic settings interact
with (supply-side) differences in ability and prefer-
ences among scientists to impact their career choices
and their resultant earnings evolution?

Our study answers the above research question
by investigating sorting patterns of scientists into
alternative careers and the earnings trajectories asso-
ciated with each career option. Our model builds
on the premises that (i) academic and industry set-
tings provide different access to physical capital for
basic and applied scientists and differ in the comple-
mentarity between basic and applied scientists, and
(ii) scientists differ in their ability and preferences
for nonmonetary “taste for science.” We show that
competition among institutions and among scientists
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for the most desirable partners results in a positive
assortative matching: more able scientists are matched
with institutions that provide them more physical
capital investments, and, when applicable, more able
basic scientists are matched with more able applied
scientists. Further, the taste for nonmonetary returns
separates industrial and academic scientists in equi-
librium. For earnings evolution, our model predicts
that complementarities between basic and applied sci-
entists in industry relative to academia results in a
positive assortative matching between them, imply-
ing similar earnings for basic and applied indus-
trial scientists. Academic scientists’ earnings are offset
because of their taste for nonmonetary returns, and
the relative absence of complementarities between
basic and applied scientists and differences in access
to physical capital result in a divergence in their
earnings. We find support for the model implica-
tions using the longitudinal Scientists and Engineers
Statistical Data System (SESTAT) developed by the
National Science Foundation (NSF) for the 1995–2006
period.

We contribute to Stephan’s (1996) call for better
modeling of the labor markets in science by incor-
porating matching theory (Becker 1973) into tradi-
tional life cycle models of human capital investments
(Becker 1962). In doing so, our study provides use-
ful guidance on how possible self- or sample-selection
issues in life cycle models may impact empirical
findings. Our model builds from the differences in
the scientific production functions in academia and
industry: basic scientists may work independently
of applied scientists in academia, but have to work
closely with applied scientists in industry. Because
academic institutions make higher per capita invest-
ments in basic research relative to applied, our model
generates some novel implications that are backed
by the empirical analysis: in academia, scientists of
higher ability sort into basic rather than applied
research, and initial earnings of basic scientists are
lower but the slope of their earnings is higher relative
to applied scientists. In industry, by contrast, there is
no such ability sorting, and the earnings trajectories
of basic and applied scientists are similar.

Additionally, by examining all four career options
in tandem rather than any two in isolation, our model
is able to generate other implications that extend the
findings from earlier studies. In particular, we con-
tribute to the nascent literature that examines early
career selection of scientists because of ability and
preferences (Roach and Sauermann 2010, Stern 2004)
by adding the life cycle component. We highlight
the fact that observed earnings differentials across
the four career options may stem from differences in
human and physical capital investments and may not
entirely be a result of a taste for science. For example,

consistent with Roach and Sauermann (2010), we
find that scientists with a higher nonmonetary “taste
for science” are more likely to choose academia
than industry, thus foregoing higher earnings. How-
ever, even within academia, taking productivity and
returns from human capital investments into account,
we find that earnings of academic basic scientists at
later life stages “catch up” with industry earnings.
In his cross-sectional study examining industry job
offers of postdoctoral biologists at top-tier research
institutions, Stern (2004) found that the “preference
effect” overshadowed the “productivity effect,” so
that scientists seeking jobs in industry are willing to
accept lower wage offers to engage in basic research.
Our longitudinal study shows that although this may
be true for the very initial years (see Figure 2 in §4.2),
basic scientists in industry enjoy the same earnings
as their applied counterparts for most of their life-
time. We attribute this to the enhanced productivity of
industry basic scientists since an assortative matching
allows them to access higher levels of complementary
physical and human capital. Importantly, by examin-
ing the consequences of differences in complementar-
ity of basic and applied scientists across institutional
settings, our study also has numerous managerial
and policy implications. Chief among them is the
need, within universities that train young scientists,
to accommodate the requirements for success of the
various career paths that they may choose.

2. Theoretical Analysis
2.1. Labor Markets for Science: Received

Literature and Stylized Features

2.1.1. Demand for Scientists Across Institutional
Settings. In her influential literature review, Stephan
(1996) describes salient aspects of the demand for
scientists, which stems largely from institutions of
higher education (academia) and for-profit businesses
(industry), with government and nonprofit organiza-
tions being a distinct minority. The two institutional
settings—academia and industry—seek scientists for
different reasons, are governed by different norms
and incentive structures, and—importantly—differ
in the relative emphasis on basic and applied sci-
ence. Consider, for instance, the statistics reported
in Table 1 on U.S. 2003 research expenditures and
employment of scientists. The total research expen-
ditures in academia and industry are the same,
but the proportions spent on basic and applied
research are vastly different. Basic research accounts
for 74% of academic research expenditures but only
17% of industry expenditures. In contrast, applied
research is only 26% of academic research expen-
ditures but 83% in industry. The employment and

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Agarwal and Ohyama: Career Choices and Earnings Trajectories of Scientists
Management Science, Articles in Advance, pp. 1–21, © 2012 INFORMS 3

Table 1 Research Expenditures, Number of Scientists, and Research
Expenditure per Scientist

Academia Industry

Basic Applied Basic Applied

Research expenditure 27,956 9,721 6,526 30,883
(millions dollars)

Number of scientists 204,542 167,865 104,393 310,569
Research expenditure 0.14 0.06 0.06 0.10

per scientist
(millions dollars)

Sources. National Science Board (2010) (research expenditures data from
Appendix Tables 4-4, 4-5, 5-1, and 5-2) and SESTAT 2003 (labor force data,
estimated using sample weights).
Note. Numbers are for the year 2003 and expressed as 2000 constant dollars.

research expenditures per scientist also mirror the dif-
ferential focus within each institutional setting: the
academic sector employs more and has higher expen-
ditures per scientist in basic versus applied science,
whereas the reverse is true for industry. Nonethe-
less, more than one-third of the scientists pursue “off-
diagonal” careers of applied research in academia and
basic research in industry.

Within academia, the primary focus on basic sci-
ence is fueled by social norms and reward structures
that promote nonpecuniary motives such as priority
of discovery, recognition of merit awards, and rep-
utation (Merton 1973). Also, although applied sci-
ence is rooted in the land grant mission of many
public universities, the influential Bush (1945) report
to President Roosevelt resulted in a shift in focus
toward basic science through increased funding and
creation of government agencies such as the NSF.
Together, these forces resulted in universities plac-
ing more emphasis on discoveries of scientific fun-
damentals than applications of scientific discoveries
(Argyres and Liebskind 1998, Goldfarb 2008, Murray
and Stern 2007). Recently and after the Bayh-Dohl act,
Etzkowitz (1998) highlights the “second revolution”
in academia and the increased attention to the com-
mercialization of science. However, the connectivity
between basic and applied research or research rel-
evant to Pasteur’s quadrant (Stokes 1997) is largely
realized only for certain areas of specialization
(e.g., biotechnology) and/or follows a “science-push”
model, where basic research is conducted prior to the
pursuit of potential applications through subsequent
technology transfer or entrepreneurship (Aghion et al.
2008, Bercovitz and Feldman 2008, Stuart and Ding
2006, Thursby and Thursby 2002). Tenure norms
imply that in the early career years, there are fewer
incentives to engage simultaneously in basic and
applied research or for basic and applied scien-
tists to work together (Boardman and Ponomariov
2007, Boardman and Bozeman 2007, Braxton et al.

2002, Geisler 1989). Boardman and Ponomariov (2007)
and Boardman and Bozeman (2007) report that early
career basic and applied scientists tend to work in iso-
lation of each other, not only in traditional academic
departments, but even in “multidisciplinary, multi-
purpose” or “cooperative” university research centers
whose primary responsibilities include applications of
scientific knowledge. They provide quantitative and
qualitative evidence that center-affiliated basic scien-
tists in early career stages (pretenure) are reluctant to
invest an effort in working with their applied counter-
parts and note significant “role strain” and “shirking
of responsibilities” in areas where they need to con-
sult with applied and industry partners.

Within industry, the demand for scientists stems
from the need to innovate (Stephan 1996), with the
goal of transforming scientific knowledge into com-
mercially valuable outputs and appropriating eco-
nomic value in the form of profits (e.g., Gittelman and
Kogut 2003, Aghion et al. 2008). Thus, the demand
for applied research is greater, and if firms engage
in basic research, it is as a byproduct or coproduct
of their applied endeavors (Rosenberg 1990). Fun-
damental breakthroughs in basic science may occur
in industrial labs, given their need as a founda-
tion for applied work (Hounshell and Smith 1988,
Rosenberg 1990, Stokes 1997); alternatively, firms may
engage in basic science to create absorptive capac-
ity (Cohen and Levinthal 1990) and enhance the pro-
ductivity of their R&D efforts (Griliches 1986). Anec-
dotally, Hounshell and Smith (1988) highlight how
basic science at DuPont served to search for new
fields of chemistry, provided foundations for scientific
investigation of DuPont’s existing technology, and
showcased the company’s technical competence and
capabilities. Importantly, these authors underscore
the need for basic and applied scientists working
together, best exemplified by the following state-
ment by DuPont’s basic research department direc-
tor Charles Stine: “Perhaps the most important idea
which I have attempted to keep before my assistants
in this work is the necessity for continuous intimate
contact with the various departments and subsidiaries
which we have been attempting to serve” (Hounshell
and Smith 1988, p. 137). Thus, relative to academia,
where basic and applied scientists can work in paral-
lel or independently of each other, sequencing these
activities over time, or for different purposes, there is
a more direct link and greater synergies between basic
and applied scientists in industry.1

1 These distinctions in industry/academia highlight the extreme dif-
ferences that are salient at the time a scientist embarks on her
career. Of course, a continuum of possibilities may occur, particu-
larly in later career stages. As Stephan (1996) notes, academic sci-
entists often engage in privatization of knowledge, and industrial
scientists often disclose their knowledge voluntarily.
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2.1.2. Supply of Scientists and Heterogeneity
of Ability and Preferences. On the supply side,
research ability and preferences have been high-
lighted as distinctive characteristics of scientists that
affect occupational and activity choices and compen-
sation structure (Dasgupta and David 1994, Stephan
1996, Stern 2004). People differ in their abilities to
learn extant knowledge and develop new innova-
tions, either because of innate differences in intelli-
gence or prior investments in knowledge. Also, scien-
tists purposefully raise the level of their human cap-
ital and therefore their earnings capacity over time
by conducting scientific research (Becker 1962, Ben-
Porath 1967, Levin and Stephan 1991, Thursby et al.
2007). The supply-side dynamics of labor markets in
science accordingly are often modeled in a life cycle
framework wherein human capital investments are
undertaken to maximize lifetime utility that includes
both monetary and nonmonetary benefits (Levin and
Stephan 1991). The inclusion of nonmonetary bene-
fits is consistent with the characterization of the sci-
entist’s preferences or “taste for science” indepen-
dent of ability, which may vary based on the quest
for basic research and the desire to apply scientific
principles for economic and technological develop-
ment (Levin and Stephan 1991, Roach and Sauer-
mann 2010, Stephan 1996, Stern 2004). Such prefer-
ences reflect attitudes toward open science, freedom
of research topics, and intellectual challenge and are
informed in the socialization process when receiving
scientific education (Stephan 1996). Roach and Sauer-
mann (2010) show that scientists with a higher taste
for science prefer careers in academia over industry.
Stern (2004) discusses the strong positive correlation
between ability and preferences observed among sci-
entists. Although higher-ability scientists command
higher compensation, they may also have a greater
taste for science, resulting in their willingness to
accept a lower wage as a compensating differential.

2.1.3. Implications for Modeling Early Career
Choices. In concluding her literature review, Stephan
(1996) noted that extant human capital and life cycle
models do not capture the complexities of the pro-
duction of scientific knowledge. In part, this may be
because most models do not study the supply and
demand side simultaneously. Extending human capi-
tal and life cycle models with matching models may
result in a more appropriate characterization of scien-
tific labor markets and shed light on factors that influ-
ence early career choices. Matching models (Becker
1973, Roth and Sotomayor 1992, Sattinger 1993) are
particularly suitable for the study of scientific labor
markets because they are better able to accommodate
market outcomes in exchanges of heterogeneous and
indivisible “goods” (Mindruta 2012).

In developing a model of scientists’ early career
choices, we incorporate the above salient demand

and supply characteristics of scientific labor markets.
On the supply side, we assume heterogeneity among
scientists in ability and preferences for nonpecuniary
returns. On the demand side, the career options rep-
resent differences in the physical and human capital
that complement a scientist’s human capital. Within
a multifactor scientific production function context,
we define “complementarity” as the positive effect on
one input’s marginal productivity due to a marginal
increase in the other factor. We focus on two types
of complementarities. The first is between a scien-
tist and the physical capital provided by the institu-
tion to her. We assume, based on Table 1, that the
basic scientist has greater access to physical capital
than the applied scientist within academia, and the
reverse holds in industry. The second type of com-
plementarity is between basic and applied scientists.
We employ a simplifying assumption that the focal
scientist is either a basic or an applied scientist but not
both, thus ruling out the potential that an individual
scientist may undertake basic and applied scientific
tasks simultaneously (Mansfield 1995). This assump-
tion is consistent with early career realities that sci-
entists have to focus on one primary activity initially.
We later discuss how the model implications may
change when allowing for career switches or tran-
sitions to Pasteur’s quadrant (Stokes 1997) by more
senior scientists. At least in the initial (pretenure)
years of their career, basic academic scientists are
less likely to work with their applied counterparts
(Boardman and Ponomariov 2007, Boardman and
Bozeman 2007). Within industry, firms that engage
in basic research expect basic and applied scientists
to work with each other on issues that have poten-
tial applications of knowledge for the firm (Hounshell
and Smith 1988, Cohen and Levinthal 1990). Accord-
ingly, we assume that basic and applied scientists
complement each other in industry knowledge pro-
duction functions, but not in academia.

2.2. A Brief, Nonmathematical
Overview of the Model

This section verbally describes the formal model
and propositions in §§2.3 and 2.4 to explicate the
underlying logic and intuition. The building blocks,
mechanisms, and resultant propositions are also sum-
marized in Figure 1. A scientist’s career is defined
by a combination of the type of research she con-
ducts (basic or applied) and the type of institution
she works in (academia or industry), resulting in
four career options: (i) basic scientist in academia,
(ii) applied scientist in academia, (iii) basic scientist in
industry, and (iv) applied scientist in industry. A sci-
entist supplies her human capital, and the institution
she works for supplies the complementary physical
and other human capital necessary to conduct scien-
tific research.
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Figure 1 Verbal Description of Model Assumptions, Mechanisms, and Predictions

Underlying Assumptions Mechanisms/Forces in Model Model Implications/Predictions

Main individual
characteristics

C1: Scientists differ in ability

C2: Scientists differ in their
taste for nonpecuniary
returns

Main institution
characteristics

C3: Strong complementarity
between basic and applied
scientists in industry but not
in academia

C4: Basic scientists have
greater access to physical
capital relative to applied
scientists in academia;
the opposite holds in
industry

Main forces affecting career
choices and earnings

trajectories

F1: Superior access to physical
capital attracts more able
scientists

F2: Complementarity between
basic and applied scientists in
industry makes the effective
access to physical capital
the same for each type of
scientists

F3: Complementarity and positive
assortative matching between
basic and applied scientists in
industry results in synergy effects
on earnings in equilibrium

F4: Academic research
environments offer nonmonetary
returns

F5: Superior access to physical
capital makes human capital
investments more productive

Empirical predictions related to career choices

Proposition 1 for academia: Given C1, C3, and C4, F1 implies

In academia, the average research ability of basic scientists is higher
than that of applied scientists.

Proposition 1 for industry: Given C1, C3, and C4, F2 implies

In industry, the average research ability does not depend on whether
research type is basic or applied.

Proposition 2: Given C2 and C3, F3 and F4 imply

If nonpecuniary returns are sufficiently large and physical capital
availability is relatively modest, those scientists who value
nonpecuniary returns are more likely to choose academia
over industry.

Empirical predictions related to earnings trajectories

Proposition 3: Given C2 and C3, F3 and F4 imply

The average earnings profile of academic scientists is located
below those of industrial scientists when the synergy effects
in industrial research are sufficiently large.

Proposition 4: Given C1, C3, and C4, F1 and F5 imply

The average initial salary of academic basic scientists is lower than
that of academic applied scientists.

Proposition 5 for academia: Given C1, C3, and C4, F1 and F5 imply

The expected value of the slope of the earnings profile is higher for
basic scientists than for applied scientists in academia.

Proposition 5 for industry: Given C1, C3, and C4, F2 implies

The expected value of the slope of the earnings profile is similar for
basic and applied scientists in industry.

Scientists choose a career option to maximize life-
time utility based on pecuniary and nonpecuniary
returns (Roach and Sauermann 2010, Stern 2004)
and purposefully invest to raise their human capi-
tal and thus earnings over time (Becker 1962, Levin
and Stephan 1991, Thursby et al. 2007). Similarly,
institutions choose scientists to maximize scientific
knowledge production, based on their productivity.
As in matching models (Becker 1973), the “match”
between a particular scientist and a particular insti-
tution is determined as scientists compete with each
other to obtain a position that maximizes lifetime util-
ity, and institutions compete with each other to attract
highly productive scientists. The sorting of scientists
is dependent on the identity of both the scientist and
the institution. Because the productivity of human
capital investments also depends on the complemen-
tary factors available through the institution, more
able scientists and institutional settings with access to
greater complementary human and physical capital
are matched.

Equilibrium outcomes are driven by differences in
complementarity across institutional settings and pos-
itive assortative matching. By a positive assortative
matching, we mean a positive association between
pairs of scientists or scientists and institutions with
respect to research ability and level of physical capi-
tal (Becker 1973). These institutional differences imply

that basic academic scientists have access to more
physical capital than applied academic scientists,
whereas the opposite is true in industry. However, in
industry, complementarity between basic and applied
scientists makes the effective access to physical capi-
tal the same for each scientist type. Further, academia
provides greater nonpecuniary returns than indus-
try. In academia, low complementarity between early
career basic and applied scientists, combined with
relatively lower levels of physical capital in applied
science, results in more able scientists sorting into
basic rather than applied science (Proposition 1 for
academia). In industry, complementarities encourage
basic and applied scientists with similar ability to
work for the same firm, resulting in a positive assor-
tative matching between basic and applied scientists
as well as between scientists and firms. Thus, there is
no sorting based on ability across basic and applied
domains in industry (Proposition 1 for industry).
Further, scientists with higher nonpecuniary prefer-
ences are matched to academia relative to industry
(Proposition 2).

The above sorting results in scientists’ earnings
evolution differently within each career option. Dif-
ferences in research ability and preferences for
nonpecuniary returns are associated with the evo-
lution of average earnings for each career path.
Given sorting based on nonpecuniary returns and
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complementarity among basic and applied scientists
in industry, which generates additional monetary
gains from synergies realized from positive assorta-
tive matching, the earnings profile of academic scien-
tists is lower than industrial scientists (Proposition 3).
Further, within academia, basic scientists invest more
time initially in building up their human capital than
do applied scientists, because access to higher lev-
els of physical capital makes their marginal benefit
from human capital investments higher. As a result,
initial earnings of basic academic scientists are lower
than those of applied academic scientists (Proposi-
tion 4). Finally, positive assortative matching among
basic and applied industrial scientists results in a sim-
ilar evolution of their earnings profiles. In contrast,
the relative lack of complementarity leads to diver-
gent paths of earnings for basic and applied scientists
in academia, with a steeper slope for basic than for
applied academic scientists (Proposition 5).

2.3. Formal Theoretical Development

2.3.1. Key Assumptions. The formal model is
underpinned by the following assumptions: (i) scien-
tists are perfectly rational; (ii) there is no asymmetric
information and no uncertainty; (iii) scientists do not
change their career over their life cycle; (iv) within
academia, basic scientists have greater access to phys-
ical capital than applied scientists; (v) within indus-
try, there are two types of firms—type A firms hire
applied scientists only and type B firms hire both
applied and basic scientists; (vi) a taste for nonmone-
tary returns enters the utility function additively and
exogenously; and (vii) academia offers nonpecuniary
benefits, but industry does not. Some model impli-
cations hinge on these assumptions for simplification
and tractability of the theoretical analysis. In §5, we
discuss how the implications change when certain
assumptions are relaxed.

2.3.2. Key Properties of Scientific Knowledge
Production Function. We characterize the scientist’s
research activities to set the stage for analyzing the
interaction of market forces and scientists’ prefer-
ences leading to an equilibrium allocation of scientists
into the alternative career paths. Consider a model
in which scientists make a human capital investment
to increase their knowledge base, and their accu-
mulated knowledge is used as an input to produce
final research output. Formally, scientist i’s knowl-
edge base evolves as

Hit+1 =Hit +Rit1 (1)

where Hit is the level of scientist i’s knowledge base
at time t, and Rit is knowledge added to the stock of
her knowledge base. To keep our exposition simple,
we assume no depreciation of knowledge base.

Scientist i’s knowledge production function, Rit , in
Equation (1) depends not only on how much time
she devotes to human capital investments, but also on
where she works (i.e., academia or industry) and what
type of research she conducts (i.e., basic or applied).
Formally, it takes the form of

Rit = �k6�i4litHit5
�7�1 6�j4ljtC jt

5�7�21 (2)

where �i is the ability parameter of scientist i, and lit is
i’s time spent on building human capital. For scientist
i in basic (applied) research, Cjt is the complemen-
tary human capital provided by scientist j in applied
(basic) research. Parameters �1 and �2 are either 0 or
1 and control the degree of complementarity between
basic and applied scientists. Parameter � is exoge-
nously given and takes some value between 0 and
1/2. The amount of physical capital available to the
scientist is denoted by �k, which is explained in detail
below.

To model the knowledge production function in
academia, we set �1 equal to 1 and �2 to 0 for an
academic setting, which allows for the lack of comple-
mentarity between basic and applied scientists. Thus,
for scientist i conducting type k research in an aca-
demic setting, the knowledge production function is

Rit = �k�i4litHit5
�0 (3)

For industry, we model two types of firms: Type A
firms conduct only applied research and have the
knowledge production function as given by (3).
Type B firms conduct both applied and basic research.
For scientist i conducting type k research in type B
firms, the knowledge production function is

Rit = �k�i4litHit5
��j4ljtC jt

5�0 (4)

Implications of relaxing the above assumptions,
which allow us to understand essential forces leading
to an equilibrium-matching pattern but at the cost of
some loss of generality, are discussed in §2.4.

Scientists are differentiated by ability � and a taste
for nonpecuniary returns �. We assume that � is dis-
tributed according to a Pareto distribution with a den-
sity function

f 4�5= a�−4a+15 for � > 11 (5)

where a≥ 2 to ensure existence of at least the second
moment. The variable � takes either 0 or 1, indicating
that a scientist has a taste for nonpecuniary returns if
� equals 1. Because the taste for nonmonetary returns
is better accommodated in academia rather than in
industry (Sauermann and Stephan 2012), we incor-
porate this factor in the model by assuming that
scientists with a taste for nonpecuniary returns gain
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additional nonmonetary benefits x when they work
in academia. The variables � and � are independently
distributed.

In addition to human capital, physical capital is
an important input of research production. Because
academia places relatively more emphasis on basic
than on applied science and the investments in phys-
ical capital are commensurate with these differences
(see Table 1), we incorporate this in our model by
using the concept of the first-order stochastic domi-
nance. Physical capital per scientist, �k, is assumed to
be Pareto distributed with a density function

g4�k5= bcbk�
−4b+15
k for �k > ck (6)

with

b ≥ 21 cBA > cAA > 0 and cAI ≥ cBI > 01 (7)

where subscripts BA, AA, BI, and AI indicate
“basic research in academia,” “applied research in
academia,” “basic research in industry,” and “applied
research in industry,” respectively. An essential prop-
erty of the specification by (6) and (7) is the first-order
stochastic dominance relation. Under this specifica-
tion, which makes the model analytically tractable,
the fraction of basic academic scientists who enjoy
access to large amounts of physical capital is greater
than the fraction of applied academic scientists.

2.3.3. Scientists’ Predilections over Career Paths.
We first derive a scientist’s optimal path of human
capital investment for each career choice and resul-
tant lifetime earnings. Scientists seek to maximize the
discounted present value of their lifetime earnings
by allocating their time between building up human
capital, lit , and converting accumulated human capi-
tal into observable knowledge outputs (e.g., patents,
publications, new products and processes, etc.) for
earnings, 1 − lit . We assume that scientists are not
directly compensated for the time invested in build-
ing human capital but are paid for the conversion of
human capital into new knowledge (Ben-Porath 1967,
Levin and Stephan 1991, Thursby et al. 2007). Because
scientists are paid according to the current level of
their human capital (Thursby et al. 2007), their current
earnings, Yit , are

Yit =wk41 − lit5Hit1 (8)

where wk is the rental rate of human capital when
scientist i chooses career path k.2

2 Scientists’ pay is assumed to be linear to the stock of human cap-
ital to avoid computational complexity, but nonlinear forms can
be incorporated to reflect that human capital is an input for final
research outcomes.

Time flows discretely and T is the terminal period.
In her dynamic optimization problem, a scientist opti-
mally divides her time between building human cap-
ital, lt , and converting human capital to earn, 1 − lit ,
so as to maximize her lifetime earnings,

∑T
t=0 �

tYit ,
where � is a discount factor. The Bellman equation
for this maximization problem is given by

Vt4Hit5= max
lit

6wk41 − lit5Hit +�Vt+14Hit+157 (9)

subject to (1) and (3) if a scientist works in academia
or in a type A firm and to (1) and (4) if she works
in a type B firm. By using the terminal condition
VT+14HT+15 = 0 and solving (9) recursively, we obtain
the optimal path of lit . All the details of the deriva-
tion in this section are placed in the online appendix,
which is available from the authors upon request.
Given the evolution of the complementary human
capital, the evolution of scientist i’s human capi-
tal and earnings are pinned down by Equations (1)
and (8), respectively. These are given by

Yt4Hit5

=wk

[

Hit − 4�k�i�Ajt5
1/41−�5

(

�−�T−t+1

1 −�

)1/41−�5]

(10)

and

Hit+1 =Hit+4�k�iAjt5
1/41−�5��/41−�5

(

�−�T−t+1

1−�

)�/41−�5

1

(11)
where Ajt = �j4ljtC jt

5� if she works in a type B firm
and Ajt = 1 otherwise.

Scientists are assumed to be risk neutral and their
lifetime utility depends on both monetary and non-
monetary rewards. Formally, for academic and type A
firm scientist i conducting type k research, this is

U4�i1�k5=wk64�i�k5
1/41−�5�A +�7+ �ixi1 (12)

where �A ≡ �1/41−�5441 −�5/�5
∑T−1

s=1 44�−�T−s+15/
41 − �551/41−�5 and � ≡ 441 −�T 5/41 −�55Hi1. For
industrial scientists in type A firms, �i is set to zero.
The first term in (12) is the optimal lifetime earnings
of scientist i when she conducts type k research in
academia. If scientist i conducts type k research in
type B firms, her lifetime utility is

U4�i1�k5=wk64�i�k5
1/41−�5�I 4�j5+�71 (13)

where �I 4�j5≡�1/41−�5441−�5/�5
∑T−1

s=1 Ajs44�−�T−s+15/
41 −�551/41−�5.

Scientists have perfect foresight regarding their
stream of future earnings when they choose a career
path because there is no uncertainty about human
capital investment. Therefore, scientists use optimal
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lifetime earnings to anticipate monetary rewards gen-
erated from each career choice, and Equations (12)
and (13) completely characterize scientist i’s predilec-
tions over the four alternative careers. Furthermore,
the absence of uncertainty implies that scientists do
not change their career path in the middle of their
career (We discuss relaxation of this assumption §5.1).
Scientist i’s predilections over the four alternative
career paths depend on her ability, �i, a taste for non-
pecuniary returns, �i as well as on what type research
she conducts and where, �k. Most importantly, other
things being equal, a scientist’s predilection increases
with parameter �k of research productivity associated
with where she works and what type of research she
is conducting.

2.3.4. Institutions’ Predilections over Scientists.
We now describe predilections of institutions (univer-
sity in academia and firm in industry) when they hire
scientists. An institution’s net gain at time t from hir-
ing scientist i in terms of monetary value is given by

�t = p641 − lit5Hit7
�

−wk41 − lit5Hit0

To ease the computational burden, we assume that
� = 1 so that cumulative research outputs are trans-
formed linearly into commercially or academically
valuable outputs. Under this assumption, a net gain
for a university or a type A firm from hiring scientist
i throughout her entire career is

ç=

T
∑

t=1

�t−1�t = 4p−wk564�i�k5
1/41−�5�A +�7 (14)

and the corresponding gain for a type B firm is

ç= 4p−wk564�i�k5
1/41−�5�I 4�j5+�70 (15)

Thus, given that a firm or university hires scientists
to maximize scientific knowledge output, both types
of employers have a predilection for hiring scientists
with high ability �.

2.4. Implications of the Theoretical Model

2.4.1. An Equilibrium Sorting Pattern. Based on
stable matching (Becker 1973, Roth and Sotomayor
1992, Sattinger 1993), we examine an equilibrium sort-
ing pattern of scientists. Given limited availability of
specific positions, scientists compete with each other
for a desirable career option. Similarly, the scarcity
of able scientists leads research institutions to com-
pete with each other to attract desirable scientists. For
the sake of simplicity, we assume that a firm and a
university both hire a pair of scientists. A matching
outcome is a set of disjoint triplets (scientist i, insti-
tution j , type of research k5 that indicates that sci-
entist i conducts research type k (applied or basic)

in institution j (academia or industry). A match is
stable if there is no other triplet that makes both
a scientist and an institution better off (Roth and
Sotomayor 1992). In the preceding section, we showed
that predilections of both scientists and research insti-
tutions strictly increase with research productivity.
In particular, the complementarity in knowledge pro-
duction function (3) or (4) results in scientists’ and
research institutions’ predilections (12)–(15). Standard
matching theory thus implies that a stable match is
a positive sorting with respect to these characteris-
tics. In both academia and industry, complementarity
between a scientist’s ability � and a university’s or
firm’s physical capital � encourages highly able sci-
entists to be matched with institutions that provide
them greater access to physical capital.

Lemma 1. In both academia and industry, a positive
sorting with respect to a scientist’s ability � and an insti-
tution’s physical capital � takes place in equilibrium.

All the formal proofs of the lemma and propo-
sitions in this section are in the online appendix.
Lemma 1 has implications for differences in the aver-
age quality of scientists across different career cate-
gories. To see this, Lemma 1 implies that demand and
supply of scientific ability in academia satisfy

cbAA

∫ �

�
bx−4b+15 dx+ cbBA

�
∫

�

bx−4b+15 dx = 2
∫ �

�
ax−4a+15 dx1

which can be simplified to

�4�5= dA�
b/a1 (16)

where dA ≡ 42/4cAA + cBA55
1/a < 1.

In conjunction with (6) and (7), which state first-
order stochastic dominance of the distribution of
physical capital available to basic scientists relative to
applied scientists in academia, (16) implies that the
average value of � for academic basic scientists is
higher than that for academic applied scientists: more
able scientists choose basic science given complemen-
tarity between human and physical capital.

In addition to the complementarity between sci-
entists and physical capital, there is complementar-
ity between basic and applied scientists in type B
firms. Our model allows scientists to choose a side
of the match between basic and applied scientists.
As Kremer and Maskin (1996) extensively analyze,
complementarity does not suffice for a positive assor-
tative matching between agents when agents can
choose a side. In particular, they point out that a pos-
itive assortative matching between agents may not
occur when the amount of outputs from joint produc-
tion depends on who in a matched pair does which
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task. Although complementarity encourages the for-
mation of a match of the same traits, this asymmet-
ric force discourages it and creates a gap in traits of
matched individuals. In our knowledge production
function (4), agents’ productivities �i and �j enter in
a perfectly symmetric way so that, for a given level
of physical capital, the asymmetric force is totally
absent. In other words, we assume that the total
amount of knowledge created is unchanged if roles of
basic and applied scientists are exchanged. Further-
more, a scientist has access to her partner’s physical
capital indirectly through a matching in equilibrium.
This implies that effective access to physical capital
does not depend on whether she conducts basic or
applied research. Therefore, a basic (applied) scientist
with a given level of research ability is matched with
an applied (basic) scientist with that same level of
research ability. Under this assumption, the following
proposition holds:

Proposition 1. The average research ability of basic
scientists in academia is higher than that of applied scien-
tists in academia. In industry, the average research ability
does not depend on whether the research type is basic or
applied.

A scientist’s choice between academia and indus-
try depends on nonmonetary returns, x, as well as
gains from the complementarity. Because of Lemma 1,
the difference in lifetime utility between working in
industry and academia is given by

ã= 4�− 15wz�4a+b5/4a41−�55
− �x1 (17)

where � ≡ 41/254a�−41−2�541−�55/4a41−2�541−�55��/441−2�541−�55 ·

�4b+a�5/4a41−2�541−�5544cBI + cAI 5/4cBA + cAA55
1/41−�5, z ≡

d
1/41−�5
A �A and wk =w for any k.
The first term is the monetary gain from the com-

plementarity from working for type B firms; the sec-
ond term is the nonmonetary return to working in
academia. For some scientists, � can be less than 1,
but � increases with �k. In other words, the synergy
from positive assortative matching between basic and
applied research in type B firms is realized for pairs
of highly able scientists and institutions, but such a
synergy is negligible or absent if the level of human
capital of scientists and of physical capital of an insti-
tution is low. In our model, in addition to the effect
of taste for science, complementarities between basic
and applied scientists also create lifetime earnings dif-
ferentials between academic and industrial scientists.

Proposition 2. If nonpecuniary returns are suffi-
ciently large and physical capital availability is relatively
modest, those scientists who value nonpecuniary returns
are more likely to choose academia over industry.

2.4.2. Earnings Evolution. This section character-
izes the evolution of the earnings profile along with
an equilibrium path. Equations (10) and (16) imply

that the earnings profile of scientists in academia and
type A industrial firms evolves in equilibrium accord-
ing to

Yt =wk6Ht −�
b/4a41−�55
k d

1/41−�5
A �t71 (18)

and the earnings profile of industrial scientists in
type B firms evolves in equilibrium according to

Yt =wk6Ht −��
b/4a41−�55
k d

1/41−�5
A �t71 (19)

where �t = ��/41−�544�−�T−t+15/41 −�55
�/41−�5.

The above two equations, coupled with (17), sug-
gest several implications for differences in earn-
ings profiles among the four career options. First,
we examine differentials across institutional settings.
As can be seen from (17), beyond the sorting of scien-
tists based on nonpecuniary returns, the model pre-
dicts that the synergy effect in industry shifts the
earnings profile of industrial scientists up. The mag-
nitude of the synergy effects is positively correlated
with the quality of the pool of scientists. In other
words, the synergy effect is more likely to gener-
ate monetary gains when the distribution of abil-
ity has a fatter right tail. Sufficiently large synergy
effects relative to nonpecuniary returns create a posi-
tive earnings differential between industrial and aca-
demic scientists at any given point in time.

Proposition 3. The average earnings profile of aca-
demic scientists is located below those of industrial scien-
tists when the synergy effects in industrial research are
sufficiently large.

Next we turn to expected differentials between
basic and applied scientists within each institutional
setting. Within academia, basic scientists invest more
in building up their human capital than do applied
scientists, because access to a higher level of physi-
cal capital makes their marginal benefit from human
capital investments higher. Because the initial level of
human capital is assumed to be the same for all sci-
entists, the average initial earnings of academic basic
scientists are lower than those of academic applied
scientists.

Proposition 4. The average initial salary of academic
basic scientists is lower than that of academic applied
scientists.

The positive sorting also affects the earnings
growth of academic scientists. Under positive sorting,
more able scientists are on average drawn to basic sci-
ence within academia. For a given level of physical
capital, therefore, basic scientists are more productive
in human capital investment than applied scientists.
Additionally, on average, basic scientists have access
to a higher level of physical capital than applied sci-
entists. Both factors lead basic scientists in academia
to invest more in human capital at early stages of their
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life cycle, making the earnings profile of basic scien-
tists in academia steeper than that of applied scientists
in academia.

In contrast, a different mechanism is at work in
industry. For type B firms, basic and applied scien-
tists are paired in research activities to exploit possible
synergy effects (see Equation (17)). Thus, the synergy
effect shifts up the earnings profile of industrial scien-
tists in type B firms, relative to the earnings profile of
applied scientists in type A firms. This force works to
direct more able scientists toward type B firms. How-
ever, inequality (7) implies that applied scientists in
type A firms have more favorable access to physical
capital. This is because the effective physical capital
for a scientist in type B firms is the average of physi-
cal capital associated with a pair of basic and applied
scientists. This force shifts up the average earnings
profiles of type A industrial scientists. In equilibrium,
these two opposite forces cancel out to make scien-
tists with a given ability indifferent between choos-
ing these two types of firms. The earnings profile of
basic scientists in type B firms coincides with that
of applied scientists in type B firms, but may be
different from the earnings profile of applied scien-
tists in type A firms. The average earnings profile of
industrial applied scientists is a weighted average of
the earnings profiles of applied scientists in types A
and B firms and is pinned down by the distribution
of types A and B firms. The average earnings pro-
files of basic and applied scientists in industry can
differ from one another, but the difference is smaller
than the corresponding difference in academia. In an
extreme case where there are no type A firms, the
earnings profile of basic scientists is the same as that
of applied scientists in industry. Accordingly,

Proposition 5. The expected value of the slope of the
earnings profile is (a) higher for basic scientists than for
applied scientists in academia and (b) similar for basic and
applied scientists in industry.

3. Data and Methodology
The empirical analysis uses the NSF restricted files
of the Survey of Doctorate Recipients (SDR) for the
years 1995, 1997, 1999, 2001, 2003, and 2006. SDR,
a part of SESTAT, contains information about the
employment, education, and demographic character-
istics of scientists and engineers in the United States.3

In using the SDR database, we focus on doctorate
degree recipients from U.S. institutions, given that a
doctorate is usually a necessary qualification for both
basic and academic research occupations in science
and engineering fields. Further, the complementary

3 For the details of SESTAT, see http://www.nsf.gov/statistics/
sestat/.

relationship in knowledge production between basic
and applied scientists in industry is much more likely
to exist for highly specialized scientists such as doc-
toral degree holders than for graduates who hold
only a bachelor’s or master’s degree. The inclusion of
bachelor’s and master’s degree holders from the inte-
grated SESTAT database does not change our empir-
ical results significantly, but it blurs the main points
of our analyses. Unless otherwise noted, we focus our
empirical analysis on scientists and engineers who
are employed in the four career options of interest,
are aged 65 or younger, report nonzero annualized
basic salary, and work full time (working weekly for
at least 30 hours and annually for at least 48 weeks).4

Postdocs are included in our empirical analysis, but
doctoral recipients working in teaching and consult-
ing positions are excluded. See Table I in the online
appendix for a description of criteria based on which
individuals are included/excluded from the sample.
As seen in Table 2, the total number of individuals in
the sample from 1995 to 2006 is 33,776. These longitu-
dinal data are the main data for our empirical exam-
inations, but repeated cross-sectional and panel data
are also used to ensure that our results are robust to
cohort effects.

3.1. Variable Definitions and Descriptive Statistics

3.1.1. Career Options. Our career choice variable
is obtained using the responses on two questions in
the SDRs. The first question relates to the type of prin-
cipal employment, and the second relates to the type
of job activity on which the majority of time is spent.
For the first question, respondents who reported that
their employer was a four-year college or university,
medical school, or university-affiliated research insti-
tute are identified as working in academia, whereas
respondents who reported that their employer was
private for profit are identified as working in industry.
For the second question, respondents who reported
basic (applied) research as their primary job activity
are identified as such. Combining these two pieces
of information permits the sorting of scientists in the
data into each of the four career options. We recognize
the lack of consensus on the definition and measure-
ment of the “basic” or “applied” nature of research
across various prior studies (Murray and Stern 2007,
Sauermann and Stephan 2012) and that research may
be within a continuum. The reliance on questions that

4 Academic contracts may consist of either 12-month appointments
or nine-month appended with summer contracts ranging from one
to three months. Seventy percent of all academics in the database
report working at least 48 weeks (approximately 11 months). The
results are robust to analysis where we included the additional 20%
of academic scientists that work between 36 and 47 weeks (corre-
sponding to a minimum of a nine-month contract).
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Table 2 Descriptive Statistics

Academia Industry

Basic Applied Basic Applied All

Demographics
Age 41044 43019 40052 42005 42004
Gender (male) 0067 0067 0075 0080 0072
White 0052 0052 0050 0051 0051
Married 0075 0076 0074 0080 0077
U.S. citizen 0085 0086 0080 0085 0085

Earnings
Real annual earnings 55,285 59,236 74,365 78,632 65,288

Scientist ability
Years to bachelor degree 4007 4040 4035 4011 4017
School ranking 3035 3012 3037 3021 3025
Grant recipient 0059 0042 0045 0041 0047
Father’s education— 0053 0044 0053 0045 0048
4-year college or higher
Mother’s education— 0037 0029 0034 0028 0031
4-year college or higher

Job importance
Salary 3039 3038 3050 3045 3043
Benefits 3052 3049 3050 3050 3050
Job security 3051 3051 3040 3042 3046
Job location 3047 3043 3040 3040 3043
Opportunity for 3050 3050 3043 3041 3047
advancement
Intellectual challenge 3086 3087 3080 3077 3083
Level of responsibility 3044 3045 3040 3038 3042
Degree of independence 3076 3075 3063 3060 3070
Contribution to society 3056 3053 3031 3032 3045

Number of observations 12,370 8,084 1,194 12,128 33,776

Source. Authors’ estimation using restricted use SDR data for 1995–2006.
Notes. A subsample from 1995, 1997, and 1999 SDRs is used for statistics
on scientist ability. For job importance, 2001 and 2003 SDRs are used to
produce descriptive statistics.

ask scientists to self-report their primary job activity
as one still permits them to have aspects of the other
while nonetheless categorizing themselves in a pri-
mary activity, and alleviates some of the problems of
the other measures, as described by Sauermann and
Stephan (2012).

3.1.2. Earnings Profile. Survey respondents re-
port their annualized salary, excluding bonuses, over-
time or other additional compensation. We deflate
these annualized earnings by the consumer price
index (base year is 1995). As seen in Table 2, aver-
age earnings (averaged over individuals and time) of
applied scientists in industry are the highest among
the four groups, and the average earnings of basic sci-
entists in academia are the lowest.5 Notably, there is
an approximately $23,000 annual earnings differential
between these two groups.

5 Given the 48 weeks threshold for full-time workers noted above,
these salary figures include at least two months of “summer” com-
pensation for academics on nine-month contracts.

3.1.3. Scientist Characteristics. For characteristics
of scientists, key variables in our theoretical model
relate to their research ability �, a taste for nonpecu-
niary returns �, and accumulation of human capital
over time. Because there are no universal empirical
measures for these unobservables, we utilize several
pieces of information from the survey to proxy for
these variables. To proxy for differences in research
ability (time invariant �), we rely on information
related to (i) time to complete first baccalaureate
degree, (ii) Ph.D. program ranking by field of science,
(iii) whether a scientist received a grant during her
doctoral program, and (iv) parental educational lev-
els.6 We obtain data on Ph.D. program ranking from
the National Research Council’s evaluation of Ph.D.
program quality (Golderberger et al. 1995), and other
ability measures are within SDR. These variables rep-
resent variations in quality and capture the scientist’s
ability prior to entering in the labor market; thus,
they should correlate highly with their research abil-
ity. To gauge preferences and determine proxies for
a taste for nonpecuniary returns �, we utilize sur-
vey responses to questions asking scientists to rate
the relative importance they placed on the following
job characteristics: (i) opportunity for advancement,
(ii) benefits, (iii) intellectual challenge, (iv) indepen-
dence, (v) location, (vi) responsibility, (vii) salary, (viii)
security, and (ix) contribution to society. The answers
were coded on a four-point scale, one being not
important at all to four being very important.

We use a variable for labor market experience
to estimate how the earnings profile in each career
evolves over time (Propositions 3–5). This variable
is measured as age minus years of schooling minus
six years, and we include both linear and quadratic
terms in the earnings equation. Instead of labor expe-
rience, age is included as a control in the cross-
sectional regressions testing scientists’ career choices
(Propositions 1 and 2). Additionally, we use several
demographic control variables such as dummies for
gender, race, marital status, and U.S. citizenship, with
one denoting male, white, married, and U.S. citizen,
respectively. Table 2 provides descriptive statistics for
the data used in the analysis.

3.2. Methodology
Propositions 1 and 2 (career choices) are tested using
a probit model and are robust to logit, multino-
mial logit, or linear probability specifications. For

6 The relationship between parents’ and children’s ability, partic-
ularly as measured by educational levels, has been well docu-
mented in prior studies (cf. review by Haveman and Wolfe 1995),
and attributed to both biological (i.e., genetic) and environmental
(e.g., home investments) factors (Leibowitz 1974, Sacerdote 2000).

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Agarwal and Ohyama: Career Choices and Earnings Trajectories of Scientists
12 Management Science, Articles in Advance, pp. 1–21, © 2012 INFORMS

Proposition 1, the following model is tested separately
for academia/industry:

Pr4Dji =15=ê4�0j +�1j abilitymeasuresji+�2jXji51 (20)

where the dummy dependent variable takes the value
of 1 if a scientist i conducts basic research and 0 if
applied research within each institutional setting j .
We use information from the 1995, 1997, and 1999
SDR files, given lack of relevant information for the
other years. In addition to the reported empirical mea-
sures of an individual’s research ability, we included
the demographic variables listed above and the sci-
entist’s educational field as controls, although these
coefficients are not reported. For Proposition 2, we
use the 2001 and 2003 SDR files, because the job
importance questions were only asked in these two
survey years. The dependent variable in (20) is modi-
fied to indicate whether a scientist works in academia
or industry, and ability measures are replaced by
job importance variables. The analysis reported in
Tables 3 and 4 for Proposition 1 and 2 is conducted
by pooling the cross-section data across the relevant
survey years, with one observation per individual to
ensure independence of observations.

Propositions 3, 4, and 5 related to earnings profile
of scientists are tested using all SDR files and several

Table 3 Test for Proposition 1 (Choice of Basic/Applied Research
Within Each Institutional Setting)

Academia Industry

Years to completion of first bachelor 00009∗ −00006∗∗

4000055 4000035
Grant 0013∗∗∗ 0001

400025 400015
Ph.D. program ranking 0005∗∗∗ 00009

400015 4000055
Father’s education—4-year college or higher 0005∗∗∗ 0002

400025 400015
Mother’s education—4-year college or higher 0003 0001

400025 400015
Number of observations 3,707 3,002
Pseudo R-squared 0012 0004
Log-likelihood −21218050 −804090

Source. Authors’ estimation using SDR samples of restricted SESTAT data
for 1995, 1997, and 1999.
Notes. The dependent variable is a dummy variable that takes 1 if a scientist
is a basic scientist and 0 if he or she is an applied scientist. Years to complete
first bachelor degree is defined as negative of years spent in completing first
bachelor degree (e.g., 4-year is coded as −4). A marginal increase in this
variable means less time of completion of 1st bachelor degree. A marginal
increase in the variable of Ph.D. program ranking means a higher ranking of a
Ph.D. program. Estimated marginal effects evaluated at sample mean values
are reported in the table. Numbers in the parentheses are standard errors.
Dummies of demographic characteristics and a field of study are included
in the regression, though these estimates are not reported.

∗∗∗, ∗∗ and ∗ indicate that coefficients are significant at the 1%, 5%, and
10% levels, respectively.

regression techniques. Specifically, we first use pooled
cross-sectional data to estimate

ln4ygi5 = �0g +�1gexperiencegi +�2g4experiencegi5
2

+�3gXgi + �gi1 (21)

where ygi is self-reported annualized salary for indi-
vidual i in career choice g. Here, experience relates
to labor market experience, and X is a vector of con-
trol variables described above. In Tables 5(a) and 5(b),
we report the analysis using the longitudinal data,
clustering standard errors for individuals who appear
multiple times to account for nonindependence of
observations.7 Further, given the potential of con-
founding of labor experience and cohort or period
effects (e.g., Glenn 2005), we need to ensure that
the results are not being driven by differences in
vintages of cohorts (Stephan 1996). Although labor
market experience and cohort effects cannot be com-
pletely separated out empirically with nonexperimen-
tal data, we can nonetheless examine the extent to
which cohort effects affect our main findings. In
Tables 6 and 7, we use panel data for the subsam-
ple of repeated observations of scientists. We define
seven cohorts of scientists and engineers based on
doctoral degree completion during a given five-year
period, starting from the 1970–1974 cohort and end-
ing with the 2000–2006 cohort. Further, we create
labor experience categories of five-year spans (start-
ing with less than 5 years and up to greater than
25 years). We then perform ordinary least squares
(OLS) regressions for each labor experience category,
with the dependent variable as the log of real annual-
ized salary and independent variables as cohort dum-
mies and demographic control variables used above.
We also estimate a slope of an earnings equation—the
effect of labor experience—separately for each cohort,
and report the analysis for the middle cohorts of
the 1985–1989 and 1990–1994 graduates. Labor mar-
ket experience in the former cohort varies 5–24 years
and in the latter cohort from 0 to 19 years. Although
they are not reported because of space constraints, we
obtained similar results for other cohorts.

4. Results
4.1. Propositions Related to Career

Choices of Scientists
The estimated marginal effects for Proposition 1 are
reported in Table 3. We test whether proxy variables
for research ability result in sorting of basic or applied
research among academic and industrial scientists,

7 The results are robust to specifications where we use only one
observation per individual.
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Table 4 Test for Proposition 2 (Choice of Academia vs. Industry Based on Pecuniary and Nonpecuniary Returns)

Panel (a) Panel (b) Panel (c)

(I) (II) (I) (II) (I) (II)

Salary −0012∗∗∗ −0009∗∗∗

400015 400015
Benefits 0001 0001

400015 400015
Job security 0008∗∗∗ 0006∗∗∗

400015 400015
Job location −00005 00001

400015 400015
Opportunity for advancement 0004∗∗∗ 0004∗∗∗

400015 400015
Intellectual challenge 0001 0004∗∗

400025 400025
Level of responsibility −0006∗∗∗ −0004∗∗∗

400015 400015
Degree of independence 0010∗∗∗ 0012∗∗∗

400015 400015
Contribution to society 0011∗∗∗ 0011∗∗∗

400015 400015
Nonpecuniary factors 0013∗∗∗ 0020∗∗∗ 0007∗∗∗ 0009∗∗∗

400025 400025 4000065 4000065
Pecuniary factors −0006∗∗∗ −0004∗∗∗ −0001∗ −00003

400015 400015 4000065 4000065
Real annual salary ($1,000) −00006∗∗∗ −00007∗∗∗ −00007∗∗∗

4<000015 4<000015 4<0000015
No. of observations 7,466 7,466 7,466 7,466 7,466 7,466
Pseudo R-squared 0006 0016 0003 0014 0003 0015
Log-likelihood −41769008 −41264031 −41932072 −41381060 −41903030 −41341052
Inclusion of real salary No Yes No Yes No Yes

Source. Authors’ estimation using restricted SDR data for 2001 and 2003.
Notes. The dependent variable is a dummy variable that takes 1 if a scientist is an academic scientist and 0 if he or she is an industrial scientist. In panel (a),
each variable of job importance is four-point scale, coded as 4 if very important, 3 if somewhat important, 2 if unimportant, and 1 if not important at all.
In panel (b), the variable of nonpecuniary factors is constructed from taking the average of the original variables of challenge, responsibility, and independence.
Similarly, the variable of pecuniary factors is constructed from taking average of the original variables of salary and benefit. In panel (c), the variables of
nonpecuniary and pecuniary factors are predicted values from the factor analysis by Bartlett scoring method. The nonpecuniary factor is highly correlated with
challenge, responsibility, and independence. Similarly, the pecuniary factor is highly correlated with salary and benefit. Estimated marginal effects evaluated
are reported in the table. Numbers in the parentheses are standard errors.

∗∗∗, ∗∗ and ∗ indicate that coefficients are significant at the 1%, 5%, and 10% levels, respectively.

respectively. Most demographic variables are not sta-
tistically significant. The estimated results show sup-
port for Proposition 1: for academic scientists, the
estimated marginal effects of grant reception, Ph.D.
program ranking, and father’s education are posi-
tive and statistically significant at the 1% significance
level, although this is not the case for industrial sci-
entists. For academia, the probability of being basic
over applied is likely to increase when scientists spent
less time to complete the first baccalaureate degree,
received a grant during doctoral study, and had higher
parental education levels. By contrast, in industry, esti-
mated effects of a grant reception and parents’ educa-
tion are statistically insignificant, and time to complete
a bachelor’s degree has an estimated negative impact
on the career option of a basic scientist.

To test Proposition 2 regarding importance of
nonpecuniary benefits, we use survey respondents’

evaluation of the importance of nine attributes of
their job. Because no universal way to classify a job
attribute to either pecuniary or nonpecuniary benefits
exists, we use three related measures to test Proposi-
tion 2. Table 4, panel (a) reports the marginal effects
on the likelihood of having an academic career (basic
or applied). First, we use all nine original variables
of job importance independently. According to model
(I) in panel (a) the probability of being an academic
rather than an industrial scientist decreases when
salary or responsibility is rated as an important job
aspect. In contrast, independence, job security, and
contribution to society have a positive effect (similar
in magnitude to salary) on the likelihood of choos-
ing academia. To address the concern that receiving
a high salary correlates with the likelihood of rat-
ing it as an important attribute, we add real annual
salary in model (II) of Table 4, panel (a) (and also
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Table 5(a) Tests for Propositions 3, 4, and 5 (Earnings Profile for
Each Career Option) OLS

Academia Industry

Basic Applied Basic Applied

Labor experience 0006∗∗∗ 0004∗∗∗ 0004∗∗∗ 0003∗∗∗

4000025 4000035 4000075 4000035
Labor experience −00001∗∗∗ −00001∗∗∗ −00001∗∗∗ −00001∗∗∗

squared 4<000015 4<000015 4<000015 4<000015
Gender dummy 0017∗∗∗ 0014∗∗∗ 0011∗∗∗ 0005∗∗∗

400015 400025 400055 400025
Marriage dummy 0008∗∗∗ 0009∗∗∗ 0002 0005∗∗∗

400015 400025 400045 400025
White dummy 0001 0005∗∗∗ −0003 0007∗∗∗

400015 400015 400035 400015
Citizenship dummy 0018∗∗∗ 0023∗∗∗ 0004 0005∗∗∗

400025 400025 400045 400025
Constant 9077∗∗∗ 9097∗∗∗ 10061∗∗∗ 10071∗∗∗

400025 400035 400065 400035
Number of 12,370 8,084 1,194 12,128

observations
R-squared 0031 0016 0010 0005

Source. Authors’ estimation using restricted SDR data for 1995–2006.
Notes. The dependent variable is logarithm of annualized earnings. All regres-
sions use pooled data of restricted SDR data for 1995, 1997, 1999, 2001,
2003, and 2006. Numbers in the parentheses are robust standard errors
clustered at individual level.

∗∗∗, ∗∗ and ∗ indicate that coefficients are significant at the 1%, 5%, and
10% levels, respectively.

Table 5(b) Tests for Propositions 3, 4, and 5 (Equality of Estimated
Coefficients in Table 5(a))

Within institution Between institution

Basic vs. Applied Academia vs. Industry

Academia Industry Basic Applied

(i) Constant <00001 0.15 <00001 <00001
(ii) Labor experience <00001 0.15 0002 00001
(iii) Labor experience 0035 0.35 0090 0024

squared
(ii) and (iii) <00001 0.14 <00001 <00001
(i), (ii), and (iii) <00001 0.17 <00001 <00001

Source. Authors’ estimation using restricted SDR data for 1995, 1997, 1999,
2001, 2003, and 2006.
Note. Numbers in the tables are p-values for testing the hypothesis that the
coefficients are equal across two comparison groups.

in Table 4, panels (b) and (c)). The results remain
largely unchanged and are strengthened by the find-
ing that actual salary received results in a lower like-
lihood of choosing an academic career. Second, we
use factor analysis of the nine attributes to cluster
and account for underlying factors that may systemat-
ically influence respondents’ answers to survey ques-
tions about job attributes. Using the customary 0.7 of
factor loading as a cutoff, the factor analysis suggests
that salary and benefits may be bundled; accordingly,
we use the average value of these two variables to

construct a new variable that captures the importance
of pecuniary benefits. Similarly, the factor analysis
suggests that intellectual challenge, responsibility, and
independence can be bundled together, and we inter-
pret the average value of these variables as indicating
the importance of nonpecuniary benefits. Regression
results using these new variables are reported in
Table 4, panel (b). Finally, we predict values of the
two factors by using the Bartlett scoring method and
report results from these variables in section of the
table. All models show that the more important non-
pecuniary benefits are relative to pecuniary returns,
the more likely scientists are to sort into academia
than into industry. We note also that our classification
of variables accords with extant literature. For exam-
ple, Heneman and Schwab (1985) classify “benefits”
as a pecuniary return. Our literature review also sug-
gests that “opportunity for advancement” is a gray
area: on one hand, promotions come with monetary
returns (Lazear and Rosen 1981); on the other hand,
advancement allows for nonpecuniary returns such as
greater control/authority (Rynes et al. 1983). In gen-
eral, “job security” is nonpecuniary (e.g., Hertzberg
et al. 1959). People are willing to sacrifice some mon-
etary returns to secure a job. Taking the literature
review and regression results into account, we con-
clude that scientists who value nonpecuniary benefits
highly are drawn to academic research. Thus, Propo-
sition 2 is supported by the data.

4.2. Propositions Related to Evolution of Earnings
Tests for Propositions 3–5 using longitudinal data are
reported in Tables 5(a) and 5(b). Table 5(a) provides
the OLS estimation results for earnings based on labor
market experience for each career option. Table 5(b)
provides the statistical tests for differences in coeffi-
cient values across career options for the estimated
earnings profile, with the null hypothesis that each
or a combination of estimated coefficients (constant,
labor experience, and labor experience squared) is the
same between any relevant two options. In Figure 2,
we provide the estimated earnings trajectories, based
on the coefficients of the linear and quadratic terms
of labor experience and at sample mean values of all
other independent variables.

The results of the control variables are consistent
with past labor economics studies: regardless of the
chosen career option, married, white, U.S. citizen, and
male scientists on average earn more than their coun-
terparts, and the estimated earnings profiles are con-
cave with respect to labor market experience (Stephan
1996). The earnings trajectories are consistent with
Proposition 3; the average earnings profile of both
basic and applied academic scientists are lower than
for industrial scientists (see Figure 2 and tests of
equality in Table 5(b)). Consistent with Proposition 4,
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Figure 2 Estimated Earnings Profiles for Each Career Option
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Source. Authors’ estimation using restricted SDR data for 1995, 1997, 1999, 2001, 2003, and 2006.
Note. Dotted lines represent 95% confidence intervals.

the initial earnings of academic basic scientists are
lower than the initial earnings of academic applied
scientists. Indeed, academic basic scientists make the
lowest initial earnings of all other scientists, as is evi-
dent from Figure 2, tests reported in Table 5(b), and
alternative analysis in the online appendix, limiting
the sample to observations for labor experience of
less than or equal to two years. However, consistent
with Proposition 5(a), academic basic scientists also
have the steepest slope, such that the earnings of aca-
demic basic scientists “catch up” to the earnings of
the industrial scientists toward the very end of the
career. The coefficient values for academic basic scien-
tists are significantly different from the coefficient val-
ues for academic applied scientists. Consistent with
Proposition 5(b), there is no such statistically signifi-
cant relationship among industrial scientists for basic
and applied research; the null hypotheses for equality
of coefficients cannot be rejected for any combination
of the constant, linear, and quadratic terms of labor
experience.

We also test the estimations of differences in career
options using longitudinal data, particularly to inves-
tigate whether the results are driven by cohort effects.
Given space constraints, we limit our analysis of
Proposition 5 to academia, because our theory pre-
dicts differences in basic and academic science only

for academic scientists, and not for industrial scien-
tists. Table 6 reports the OLS regressions for basic and
applied research, respectively. The dependent variable
is the log of real annualized salary within each labor
experience category, and the independent variables
include cohort dummies and demographic control
variables used for cross-sectional regression analyses.
The cohort effects in Table 6 are statistically insignifi-
cant at conventional significance levels in most experi-
ence categories, regardless of basic or applied research.
We also estimate the relationship between earnings
and labor experience separately for the 1985–1989 and
1990–1994 cohorts. Consistent with Proposition 5, in
both cohorts, the estimated slope of an earnings equa-
tion in Table 7 is steeper for academic basic scientists
than for academic applied scientists for the relevant
range of labor experience. Further, in both cohorts,
consistent with Propositions 3 and 4, the estimated
coefficient of the intercept term for industrial scientists
is higher than for academic scientists; within academia,
it is higher for applied than for basic scientists (statis-
tical tests available on request). Thus, taken together,
cohort effects reveal minimal impact on the observed
pattern of earnings evolution (Table 6); further, track-
ing specific cohorts (Table 7) yields a similar pattern to
the longitudinal analysis.
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Table 6 Tests for Cohort Effects in Academic Basic and Applied Research

Academic basic research Academic applied research

Labor experience categories Labor experience categories

< 5 years 5–9 years 10–14 years 15–19 years 20–24 years < 5 years 5–9 years 10–14 years 15–19 years 20–24 years

Cohort 1 Base Base
(1970–1974 graduates)

Cohort 2 Base −0004 Base −0006
(1975–1979 graduates) 400065 400075

Cohort 3 Base 00008 00013 Base −0001 −0020
(1980–1984 graduates) 400045 400075 400045 400205

Cohort 4 Base −0003 −00009 −0016 Base −0001 0008 0005
(1985–1989 graduates) 400045 400075 400175 400045 400055 400205

Cohort 5 Base −0008∗∗∗ −0005 −0003 Base −0016∗∗∗ −0002 −0015
(1990–1994 graduates) 400035 400055 400115 400045 400055 400115

Cohort 6 −00007 −0005 −0026∗∗ −0003 −0004 −0025
(1995–1999 graduates) 400035 400065 400115 400045 400055 400175

Cohort 7 0005 −0027∗∗ −0007 −0025
(2000–2006 graduates) 400035 400115 400085 400165

Constant 10022∗∗∗ 10049∗∗∗ 10078∗∗∗ 10060∗∗∗ 10044∗∗∗ 10024∗∗∗ 10075∗∗∗ 10074∗∗∗ 11002∗∗∗ 11026∗∗∗

400045 400055 400095 400175 400675 400065 400105 400105 400095 400215
No. of observations 1,567 1,135 910 793 600 693 581 449 418 322
p-value <00001 <00001 <00001 00001 0009 00005 <00001 <00001 <00001 0033
R-squared 0002 0006 0005 0003 0006 0002 0004 0005 0005 0003

Source. Authors’ estimation using restricted use SDR data for 1995–2006.
Notes. The dependent variable is logarithm of annualized earnings. Numbers in the parentheses are standard errors. The p-values are for a joint significance
test.

∗∗∗, ∗∗ and ∗ indicate that coefficients are significant at the 1%, 5%, and 10% levels, respectively.

5. Model Extensions, Alternative
Explanations, Robustness Checks,
and Limitations

5.1. Implications of Relaxation of Assumptions
and Limitations of the Theoretical Model

Several simplifying assumptions enabled us to focus
attention on the salient features of sorting of sci-
entists and the resultant earnings evolution. Chief
among them are the assumptions of no uncertainty
and no change across careers to make the model ana-
lytically tractable, which prevented us from studying
scientists’ sequential choices of careers. The transi-
tion matrices in the SDR database reveal that 97%
do not switch careers between industry and aca-
demic settings, and 86% do not switch between basic
and applied science (Agarwal and Sonka 2010). Fur-
ther, there is no significant difference in the fraction
of junior scientists in the sample (within two years
of graduation) doing applied versus basic research
within each institutional setting: 16.8% versus 18.5%
in academia and 11.1% versus 14.9% in industry.
Nonetheless, this simplifying assumption precludes
the possibility that the complementarity between
basic and applied scientists in academia increases as
they become more senior and that scientists make
career choices strategically to maximize their lifetime
utility (Dasgupta and David 1994). Relaxation of this

assumption leads to a revised model that predicts a
“cash out” story: basic academic scientists, particu-
larly those with higher ability, will switch to applied
science at later life cycle stages. In addition, the model
suggests that only able scientists can actually pursue
strategic career switches, because such options are of
limited availability and an assortative matching likely
prevails. This is consistent with the literature on star
scientists being more likely to engage in applications
of their scientific discoveries (e.g., Stuart and Ding
2006). Because our model does not allow scientists to
make such career changes, this results in underevalu-
ating the earnings evolution of able scientists.

Further, the assumptions that scientists work in
either basic or applied science but not both and that
taste for science is exogenous abstract away from
within-individual complementarity of the two activi-
ties (Mansfield 1995) and the potential that taste for
science may be endogenous to time allocation of a
scientist toward basic and applied scientific activi-
ties (Levin and Stephan 1991, Thursby et al. 2007).
Thus, our approach is unable to address important
issues such as effects of within-individual comple-
mentarity in basic and applied science and endoge-
nous taste for science on optimal time allocation,
evolution of human capital along basic and applied
dimensions, and reputation-building strategies and
outcomes. Incorporation of these elements is beyond
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Table 7 Earnings Equation by Cohort

Academia Industry

Basic Applied Basic Applied

Cohort of 1985–1989 graduates
Labor experience 0005∗∗∗ 0002∗∗ 0002 0004∗∗∗

400015 4000095 400025 4000095
Labor experience −00001∗∗∗ −00001∗∗ −00001∗∗∗ −00001∗∗∗

squared 40000035 40000025 40000065 40000035
Constant 10016∗∗∗ 10050∗∗∗ 11014∗∗∗ 10087∗∗∗

400095 400095 400275 400075
Number of 1,866 1,243 210 2 2,259

observations
p-value for <00001 <00001 00664 <00001

joint significance
Cohort of 1990–1994 graduates

Labor experience 0006∗∗∗ 0005∗∗∗ 0006∗∗∗ 0003∗∗∗

4000055 4000075 400025 4000065
Labor experience −00001∗∗∗ −00001∗∗ −00001∗∗ −00001∗∗∗

squared 40000025 40000025 40000075 40000025
Constant 9088∗∗∗ 10000∗∗∗ 10055∗∗∗ 10081∗∗∗

400045 400075 400135 400035
Number of 2,765 1,829 279 2,733

observations
p-value for <00001 <00001 <00001 00004

joint significance

Source. Authors’ estimation using restricted use SDR data for 1995–2006.
Notes. The dependent variable is logarithm of annualized earnings. The
regression specification is the same as the one in Table 5(a), though we only
report constant, labor experience, and labor experience, squared. Numbers
in the parentheses are standard errors. For a joint significance test, the null
hypothesis is that all coefficients are zero.

∗∗∗, ∗∗ and ∗ indicate that coefficients are significant at the 1%, 5%, and
10% levels, respectively.

the scope of this paper, given additional complexity
and model intractability. Thus, our analysis focuses on
where scientists conduct research (similar to Aghion
et al. 2008 and Stern 2004, who also treat taste for
science as exogenous), assuming that there are no
switches or gradual shifts over time between basic
and applied research.

Another simplifying assumption relates to the abil-
ity parameters of basic and applied scientists enter-
ing symmetrically into the knowledge production
function for type B firms in industry. Relaxing this
assumption increases the complexity of the model sig-
nificantly and obscures the model’s prediction regard-
ing similarity of earnings for industry basic and
applied scientists. The prediction hinges on the fact
that the asymmetric force tends to create a gap
in earnings profiles of basic and applied scientists,
whereas the synergy and complementary forces work
to narrow that gap. However, for a reasonable range
of parameters, we can still obtain the model pre-
diction. Further, the assumption of stable matching
(and related assumption of full information) helped
derive an equilibrium matching pattern. As in Shimer
(2005), when a coordination friction is introduced at

the expense of analytical complexity, the assortative
matching becomes imperfect. Some less able scien-
tists are paired with more capable research institu-
tions or scientists, but the average characteristic of a
sorting pattern and earnings evolution remains the
same qualitatively.

In the context of the earnings profile, relaxing the
assumption that scientists’ pay is not linked to cur-
rent investment in human capital but only to accu-
mulated human capital permits the possibility that
current human capital investments also create imme-
diate returns and will result in more time devoted
to human capital investment, provided that scien-
tists’ other activities are assumed away. This makes
the earnings profiles steeper than currently predicted.
Alternatively, if one models the scientists’ other activ-
ities as requiring both time and current research
output, human capital accumulation slows down,
resulting in a flatter earnings profile, though because
of shift up because of income from other activities.

5.2. Robustness Checks, Alternative Explanations,
and Limitations for the Empirical Findings

Our empirical analysis used a large sample of scien-
tists and therefore provided general empirical insights
regarding the model’s predictions. However, several
alternative explanations need to be addressed, par-
ticularly as they relate to underlying heterogeneity
of jobs and characteristics of scientists, resulting in
similar predictions. We first examine whether the dif-
ferences in earnings profile between academic and
industry scientists may be a result of gender com-
position: robustness checks reported in the online
appendix reveal that the propositions are supported
for both male and female subsamples. A second con-
cern is whether mean estimates of earnings pro-
files from OLS regressions are consistent with the
data at different points of the earnings distribution—
i.e., it is possible that opposite effects of high earn-
ers and low earners cancel each other out to generate
the average earnings profiles estimated from OLS
regressions. Quantile regressions at the first, second,
and third quartiles show that the model’s predic-
tions regarding earnings profiles are supported (see
the online appendix). Furthermore, this result indi-
cates that the assortative sorting story is consistent
with the data and strengthens our empirical analy-
sis. Third, we examine whether the propositions are
robust to within-science field comparisons for life
and physical sciences, particularly because the delin-
eation of “basic” versus “applied” may differ across
them. We could not conduct this analysis for other
science and engineering areas, because of the lack
of sufficient observations for meeting NSF disclosure
requirements. As seen in the online appendix, with
one exception, all the propositions are largely sup-
ported within the subsamples. The only proposition
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for which we lacked support was Proposition 4 in the
physical sciences; we did not find support for differ-
ences in initial earnings between academic basic and
applied scientists. We also note that in the life sci-
ences, we received partial support for Proposition 5:
in addition to the predicted steepness of the earnings
slope for basic scientists relative to applied scientists
in academia, we also find similar results in industry
(as opposed to the predicted no significant difference
in slopes in industry). Consistent with extant studies
that use biotechnology as an exemplar of an indus-
try that is based on basic science, the results indicate
that basic scientists, regardless of whether they are in
academia or industry, enjoy higher returns relative to
applied scientists. In unreported regressions, we also
confirmed that our analysis is robust to the exclusion
of post doctoral scientists and of nontenure track fac-
ulty in academia.

Among the empirical limitations of our study, chief
is our inability to rule out some competing expla-
nations. Nonetheless, we are able to examine the
explanatory power of alternative models relative to
ours by using our model’s unique implications as
guidance. In particular, we believe that although some
of the results may be explained piecemeal by alter-
native theories, these theories cannot simultaneously
account for all the empirical findings. For example,
earnings differentials between academia and industry
could be attributed to a relatively small supply of aca-
demic positions, but this simple supply-and-demand
story cannot explain similarities and/or differences
in the evolution of earnings profiles between basic
and applied scientists. High fixed costs in applied
science may induce research institutions to hire able
scientists and lead to higher earnings of applied sci-
entists, but they cannot explain differences in the
slopes observed across institutional settings, partic-
ularly when compared with the earnings slopes of
basic scientists. Similarly, differences in preferences
for nonpecuniary benefits between basic science and
applied science within each research institution may
result in earnings differentials between the two, but
would not explain why the differential exists within
academia and not industry. Alternatively, as Nicker-
son and Zenger (2008) argue, peer envy may result in
similar compensation for basic and applied scientists
in industry, but this explanation leaves unanswered
why academic settings are free from such peer envy.
More importantly, it is hard to explain the evidence
of this study that salary is a more important factor for
industrial scientists than academic scientists.

Although the empirical results of this study are
largely consistent with the theoretical implications,
we acknowledge that our empirical analysis is
descriptive in the sense that it explores empirical pat-
terns of sorting and earnings evolution rather than

establishing a causal relationship. Accordingly, some
empirical findings in this paper need to be interpreted
with caution. Further, we note that our main interest
is not to estimate an earnings profile of each career
path for a scientist randomly chosen from the popula-
tion; thus, we do not attempt to control for potential
selection effects in the empirical analysis. Nonethe-
less, our theoretical model regarding the sorting of
scientists guides us to infer a direction of the poten-
tial selection effects in our empirical results. Because
this and other studies report that academic scien-
tists have a taste for science, an estimated earnings
profile of academic scientists in our study would be
downward biased from random selection. Ability or
learning ability sorting may result in an upward bias
from random assignment for the estimated slope of
basic scientists in academia and a downward bias for
applied scientists in academia. An estimated earn-
ings profile of industrial scientists is likely upwardly
biased from random selection, given the positive sort-
ing between basic and applied scientists. Finally, we
are also cognizant of the fact that additional useful
insights may be obtained by empirically examining
a causal or structural relationship between sorting
of scientists and earnings evolution. Unfortunately, a
simple self-selection model such as a Roy model (Roy
1951, Heckman and Honoré 1990) does not resolve a
self-selection problem because of the nature of two-
sided matching. The problem is further exacerbated
by the fact that we do not have data from a ran-
dom experiment. Accordingly, we leave it for future
research to firmly establish a causal relationship by
developing a full structural estimation model with a
two-sided matching estimation.

6. Discussion and Conclusion
Our paper integrates matching theory with life cycle
models of human capital investments to analyze labor
markets for scientists, where heterogeneous character-
istics of scientists and institutions result in an optimal
match between specific individuals and the alterna-
tive career options. Specifically, we model how scien-
tists who differ across two dimensions—ability and
taste for nonpecuniary returns—choose their careers.
The sorting patterns for early career scientists, along
with differences in complementarities between basic
and applied scientists and in investments in human
and physical capital within academia and industry
also have implications for the earnings trajectory for
scientists within each career option. We test the model
implications using comprehensive and rich data com-
piled by the NSF’s SESTAT program and find support
for its predictions.

Our model’s predictions for the sorting of scien-
tists and the resultant earnings evolution contribute
to the literature in the economics of science. By inte-
grating insights from matching theory (Becker 1973)
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into traditional models of scientific labor markets
that build on life cycles in human capital invest-
ments (Becker 1962), we address Stephan’s (1996) call
for better modeling of the economics of science. For
example, some of our model implications are very
consistent with the implications generated by life
cycle models (e.g., Levin and Stephan 1991, Thursby
et al. 2007), but incorporating the two-sided match-
ing element permits us to generate new implications:
our study models how competition within scientists
for preferred jobs and within institutions for preferred
scientists results in matching based on ability, pref-
erences, and complementarity in multifactor scientific
production functions. The matching outcomes in turn
influence the evolution of human capital and earn-
ings over time. Our model thus generates some novel
insights that are backed by the empirical analysis: in
academia, scientists of higher ability sort into basic
rather than applied research, and initial earnings of
basic scientists are lower but the slope of earnings
is higher relative to applied scientists. In industry,
by contrast, there is no such ability sorting, and the
earnings trajectories of basic and applied scientists
are similar to each other. Thus, we hope that our
study sheds light on how possible self- or sample-
selection biases may influence applications of the life
cycle model to specific empirical contexts.

Our study also contributes new insights by build-
ing on extant work related to the “taste for sci-
ence” (Roach and Sauermann 2010, Stern 2004). We
predict and find that a higher taste for nonpecu-
niary returns sorts scientists in academia over indus-
try. Stern (2004) focuses primarily on industry and
shows that scientists with higher “taste for science”
are willing to accept a compensating wage differen-
tial to work for science oriented firms, and we use
a similar logic to show how such preferences may
result in these scientists preferring academia over
industry. Further, by incorporating life cycle–related
trade-offs between current and future opportunities,
we generate additional important insights regard-
ing the relation between a taste for nonpecuniary
returns and earnings trajectories. Our study reveals
that the initial earnings of basic scientists are lower
than applied scientists within academia, in spite of
the fact that science norms and nonmonetary benefits
are very similar in these research domains. We posit
and show that basic academic scientists may sacri-
fice current earnings for steeper growth over their
life cycle, relative to applied academic scientists. The
empirical analyses support our model prediction that
basic and applied scientists have similar earnings
in industry, given synergies between the two. Thus,
our model implications indicate that the observed
earnings differential between academia and industry
stem from both differences in a taste for science and

the presence (absence) of complementarities between
basic and applied scientists in industry (academia).
This result holds even after controlling for observable
and unobservable characteristics of scientists.

Further, extant work on careers of scientists typi-
cally examines either industry or academic scientists
or examines the institutional differences in nar-
rowly defined fields such as life sciences (Bercovitz
and Feldman 2008, Roach and Sauermann 2010,
Sauermann and Stephan 2012, Stuart and Ding 2006).
Using a broad, rich data set allows us to build on
extant work by comparing industry and academic sci-
entists across a broad, generalizable range of fields.
Our model and empirical findings are consistent with
the survey-based study of Roach and Sauermann
(2010), who show that scientists self-select between
academia and industry based on their “taste for sci-
ence,” and with Sauermann and Stephan (2012), who
explore similarities and differences between academic
and industrial science. Consistent with Roach and
Sauermann (2010) and our study’s Propositions 2
and 3, Sauermann and Stephan (2012) find that aca-
demic scientists are relatively more satisfied with
nonpecuniary benefits than industrial scientists, thus
underscoring the importance of nonmonetary benefits
in sorting scientists between academia and industry.
Further, our longitudinal findings related to Proposi-
tions 4 and 5 regarding earnings profiles within and
across institutional settings provide a more nuanced
relationship that complements their cross-sectional
findings. They find that academic scientists earn less
than industrial scientists; we find a striking similarity
of earnings profiles between basic and applied scien-
tists within industry, but divergence of earnings pro-
files between basic and applied scientists in academia.
Additionally, we find that at later career stages, basic
academic scientists’ earnings are not significantly dif-
ferent from those of industrial scientists.

Our study provides managerial and policy impli-
cations for each institutional setting that we exam-
ine. Within industry, policy makers and innovation
managers need to recognize that high complementar-
ities between basic and applied scientists permit them
to attract equally able scientists in either research
domain, and thus these complementarities deserve to
be emphasized by creating cultures that recognize the
importance of basic science to technological applica-
tions. Within academia, our study offers some insights
to policy makers and administrators, particularly in
the hiring and retention policies for scientists in basic
and applied domains. For instance, our model shows
that a sorting of ability within basic and applied aca-
demic research is driven by the differential invest-
ments in complementary physical capital. Thus, to
the extent that national science and innovation policy
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may encourage universities to engage in more tech-
nology transfer, there is a need to develop stronger
complementarities between basic and applied scien-
tists. Existing models underscore the value of time
allocation of an individual scientist between basic
and applied activities, but our study highlights that
increasing complementarities across individuals that
specialize in basic or applied science may also have
beneficial outcomes.

Our study also offers young scientists seeking to
embark on alternative careers an understanding of the
sorting patterns and average earnings, so that they
can make informed decisions based on an assessment
of their own ability and preferences. This is even more
important because all young scientists are trained in
academia, where there is often a pejorative assess-
ment placed on either applied research or working in
industry settings (Stephan 1996). Given that only 26%
of scientists are employed in basic academic research
(Agarwal and Sonka 2010), for the United States to
remain competitive in an increasingly knowledge-
based economy, there is also a need for renewed
assessment of our science education policy, and to
examine if our universities provide the other 74% of
their graduate student population with the necessary
knowledge, skills, and attitudes required for success.
Such an assessment may lead to the more widespread
development of innovative programs within universi-
ties that will provide young scientists with the literacy
and experiential learning of the economic, business,
and legal issues they may encounter in their careers
(Agarwal and Sonka 2010). Similarly, national inno-
vation policies may also want to encourage focused
programs developed for lifelong learning skills for
scientists and provide for the development of con-
tinued education programs that permit scientists in
the workforce to efficiently learn the complementary
management and entrepreneurship skills that they
need to be more successful in leveraging their scien-
tific accomplishments.

In summary, our theoretical model and the empir-
ical findings identify the impact on institutional dif-
ferences on the microlevel choices made by economic
agents (firms and universities on the demand side,
and scientists with heterogeneous ability and pref-
erences on the supply side) and is an important
first step toward identifying the extent to which
market forces guide the allocation of scientists. Our
theoretical study demonstrates this point by using
insights from two-sided matching theory. Based on
the premise that there may be higher comple-
mentarities between basic and applied scientists in
industry production functions relative to academia,
our model derives distinctive implications regarding
career choices and resultant earning trajectories of sci-
entists. As a result, our study can be regarded as

a minimal test (i.e., a necessary condition test) for
the existence of the complementarity and contributes
to the literature that has previously documented the
synergies in basic and applied research conducted in
industry settings.
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