
Received: 12 October 2019 Accepted: 2 July 2020 Published on: 10 September 2020

DOI: 10.1002/net.21972

S P E C I A L I S S U E A R T I C L E

Weighted target set selection on trees and cycles

S. Raghavan1 Rui Zhang2

1Robert H. Smith School of Business and Institute
for Systems Research, University of Maryland,
College Park, Maryland, USA
2Leeds School of Business, University of
Colorado, Boulder, Colorado, USA

Correspondence
S. Raghavan, Robert H. Smith School of Business
and Institute for Systems Research, University of
Maryland, College Park, MD 20742.
Email: raghavan@umd.edu

Abstract
There is significant interest in understanding the dynamics of influence diffusion
on a social network. The weighted target set selection (WTSS) problem is a fun-
damental viral marketing problem arising on social networks. In this problem, the
goal is to select a set of influential nodes to target (e.g., for promoting a new prod-
uct) that can influence the rest of the network. The WTSS problem is APX-hard.
With the goal of generating insights to solve the WTSS problem on arbitrary graphs,
we study in this paper the WTSS problem on trees and cycles. For trees, we pro-
pose a linear-time dynamic programming algorithm and present a tight and compact
extended formulation. Furthermore, we project the extended formulation onto the
space of the natural node variables yielding the polytope of the WTSS problem on
trees. This projection leads to an exponentially sized set of valid inequalities whose
polynomial-time separation is also discussed. Next, we focus on cycles: we describe
a linear-time algorithm and present the complete description of the polytope for
the WTSS problem on cycles. Finally, we describe how these formulations can be
applied to arbitrary graphs.

KEYWORDS

cycles, influence maximization, integer programming, polytope, social networks,
trees

1 INTRODUCTION

The target set selection (TSS) problem is a fundamental problem in social network analytics. Chen [8] posed the problem to
answer the following viral marketing question: suppose we want to take advantage of peer influence on a social network to
promote a new product. The diffusion process can be initialized by targeting influential people. Other people start to adopt this
product due to the influence they receive from these early adopters. Ideally, as the number of people who have adopted the
product grows, a cascade will result, encompassing the entire network. Yet, how do we select these influential people who are
targeted initially? Mathematically, in the TSS problem, we are given a connected undirected graph G = (V , E), where for each
node i∈V , there is a threshold, denoted by gi, that is between 1 and the degree of node i, denoted by deg(i). All nodes are
initially inactive. We select a subset of nodes, the target set, which become active immediately. Afterwards, in each step, we
update the state of the nodes with the following rule: an inactive node i becomes active if at least gi of its neighbors are active
in the previous step. The goal is to find the minimum cardinality target set, while ensuring that all nodes are active by the end
of this activation process.

In this paper, we consider the weighted TSS (WTSS) problem. In the WTSS problem, for each node i∈V , there is a positive
weight, denoted by bi, which models the situation in which different nodes might require various levels of effort to become
initial adopters. The goal is to minimize the total sum of bi for the selected nodes in the target set. Chen [8] showed that the
TSS problem is APX-hard, which means that it is NP-hard to approximate within a polylogarithmic factor. He also provided
a polynomial-time algorithm for the TSS problem on trees. However, the algorithm relies on an observation that is not true in
the weighted case, and thus does not apply to the weighted version of the problem. Chiang et al. [10] provided a linear-time

Networks. 2021;77:587–609. wileyonlinelibrary.com/journal/net © 2020 Wiley Periodicals LLC 587

https://orcid.org/0000-0002-9656-5596
https://orcid.org/0000-0002-4029-6585
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnet.21972&domain=pdf&date_stamp=2020-09-10

588 RAGHAVAN AND ZHANG

algorithm for the TSS problem on block cactus graphs. They also showed that the TSS problem is polynomially solvable on
chordal graphs when gi ≤ 2 and on Hamming graphs when gi = 2. Ben-Zwi et al. [6] showed that for a graph with a treewidth
bounded by 𝜔, the TSS problem can be solved in V𝜔 time. As with Chen [8], these algorithms only apply for the unweighted
case. Ackerman et al. [1] provided some combinatorial bounds for the TSS problem under majority (gi ≥

deg(i)
2

) and strict

majority (gi >
deg(i)

2
) influences.

Two papers have discussed heuristics for the TSS problem. Shakarian et al. [27] presented a heuristic and tested it on various
real-world graphs. Cordasco et al. [12] discussed a heuristic for the WTSS problem and showed that the heuristic provides an
optimal solution for a special case of the WTSS problem on complete graphs, where bi = gi for all nodes i in V . Mathematical
programming approaches for the TSS problem seem limited. Two formulations are discussed in Ackerman et al. [1], Shakarian
et al. [27], and Spencer et al. [28] for the TSS problem. However, natural adaptations of these formulations for the WTSS
problem are weak in the sense that the gap between the optimal objective value of the IP formulation and that of its linear
programming (LP) relaxation is large. Even for the WTSS problem on trees, which is polynomially solvable (shown later in
Section 2), LP relaxations of the natural adaptations are weak and provide fractional solutions.

Our research is motivated by the desire to develop mathematical programming approaches and a better understanding of
the underlying polytopes for this fundamental problem. To this end, within this paper, we focus on the WTSS problem on trees
and cycles. There are several reasons to limit our focus. First, for many hard combinatorial optimization problems, developing
tight formulations for polynomially solvable special cases has provided a natural direction (see e.g., [15,22]) for developing
strong formulations for the general case. Trees and cycles represent (in some sense) the structurally simplest nontrivial graphs
for studying the WTSS problem, which motivates our focus on them. Additionally, Adcock et al. [2] empirically demonstrate
that real social and information networks have meaningful large-scale tree-like structures in terms of their decomposability. In
fact, Kwak et al. [20] show that the information propagation process on Twitter can be represented as a tree.

Our discussion of the literature has solely focused on the TSS problem. There is a larger body of literature on influence
maximization, largely driven by a seminal paper by Kempe et al. [19]. Chen et al.’s [9] monograph and Li et al.’s [21] sur-
vey paper nicely summarize some of the most relevant work in this area. Kempe et al. were the first to model the influence
maximization problem (IMP) as an optimization problem. They employed a well-known “threshold” model from mathemati-
cal sociology (see [16]) that explicitly represents the step-by-step dynamics of adoption. They considered a budgeted version
of the problem. Given a budget of k seed products, the goal is to identify k individuals to target so that the product’s adoption
is maximized in the social network. They built their model in a randomized (i.e., stochastic) setting and show that the problem
is NP-hard. Based on the submodularity property of the objective function, due to the particular randomized assumption in the

problem data they make, they developed a
(

1 − 1
e

)
-approximation algorithm for the problem. Their research led to work on the

problem that mostly focused on speeding up the algorithm (because their algorithm has a costly simulation in each step). Wu
and Küçükyavuz [31] studied the IMP in a two-stage stochastic programming framework. They proposed a delayed constraint
generation algorithm by taking advantage of the submodularity property in the objective function and conducted computational
experiments on the stochastic version of the IMP. Although promising, their approach is only computationally viable for seed
sets of size five. Recently, Nannicini et al. [23] considered a robust version of the IMP and presented a novel mixed integer
programming formulation, derived from a bilevel formulation of the problem. They apply an exact branch-and-cut approach for
problems with up to 100 nodes, and find that the approach is only computationally viable for small seed sets with up to five
nodes.

Günneç et al. [17,18] considered a variation of the WTSS problem called the least cost influence problem (LCIP), where
partial incentives are allowed. In other words, instead of having to pay the entire amount bi to an initial adopter i, it is also
possible to pay a partial incentive to intermediate or later adopters so that the sum of the incoming influences from their active
neighbors and the partial incentive is greater than their threshold value. Günneç et al. [17] considered the LCIP in the setting
where the neighbors of a node may exert unequal influence, and where the goal is to influence only a given proportion of
the network; they showed it to be NP-hard. They also showed the LCIP where the entire network must be influenced, and the
neighbors of a node exert equal influence to be APX-hard. They described a totally unimodular (TU) formulation for the LCIP
on trees. Günneç et al. [18] build upon this TU formulation for the LCIP on trees, and show how to apply it to arbitrary graphs.
They design a branch-and-cut procedure that is able to find solutions that are on average within 1.87% on real-world graphs,
with up to 155 000 nodes and 327 000 edges. Fischetti et al. [14] considered the LCIP in the more general setting where the
neighbors of a node may exert unequal influence, the entire network need not be influenced, and the influence structure can
be nonlinear; they proposed a novel set covering based formulation for this version of the LCIP. Using this formulation, they
develop a branch-and-cut approach, where all variables (of which there are exponentially many) are enumerated first. In this
more general setting, their approach can be applied to simulated graph instances, with up to 100 nodes and an average degree
of up to 16.

RAGHAVAN AND ZHANG 589

1.1 Our contributions and the organization of the rest of the paper
We first show that the WTSS problem on trees can be solved by a linear-time algorithm in Section 2. Our algorithm differs
significantly from Chen [8], and his algorithm can be viewed as a special case of ours. In Section 3, we study the polytope of the
WTSS problem on trees. In Section 3.1, we present a tight and compact extended formulation for the WTSS problem on trees.
(The linear-time algorithm discussed in Section 2 is helpful in proving its tightness.) In Section 3.2, we project the extended
formulation onto the space of the natural node variables yielding the polytope of the WTSS problem on trees. This projection
leads to an exponentially sized set of valid inequalities whose polynomial-time separation is also discussed. Building upon the
result for trees, in Section 4 we focus on the WTSS problem on cycles. We present a linear-time algorithm in Section 4.1, and in
Section 4.2 derive the complete description of the polytope for the WTSS problem on cycles. In Section 5, we discuss how the
formulation we derive in this paper for the WTSS problem on trees provides a framework for developing a strong formulation
for the WTSS problem on arbitrary graphs (which is APX-hard). In a parallel paper [26], this strong formulation for the WTSS
problem on arbitrary graphs is embedded into a branch-and-cut approach and tested on 180 real-world graph instances, with
up to approximately 155 000 nodes and 327 000 edges. The branch-and-cut approach finds solutions that are on average 0.90%
away from optimality, and solves 60 out of the 180 instances to optimality. Section 5 also discusses how Fischetti et al.’s [14]
set covering formulation for the LCIP can be adapted to the WTSS problem on arbitrary graphs. Finally, Section 6 provides
concluding remarks and directions for future research.

2 LINEAR-TIME ALGORITHM FOR THE WTSS PROBLEM ON TREES

We present a dynamic programming (DP) algorithm to solve the WTSS problem on trees. The DP algorithm decomposes the
problem into subproblems, starting from the leaves of the tree. A subproblem is defined on a star network, which has a single
central node and (possibly) multiple leaf nodes. The DP algorithm then solves the star subproblem for two cases. Consider the
link that connects the star to the rest of the tree. We refer to the node adjacent to the central node on this link as its parent. In
the first case, there is influence coming into the central node from its parent (this kind of influence is referred to as external
influence), whereas in the second case, there is no external influence. Next, the star is contracted into a leaf node for its parent
node’s star network. This process of solving star subproblems for two cases, followed by the contraction of the star node, is
repeated until we are left with a single star. The last star only requires the solution of one case, where there is no external
influence. After we exhaust all subproblems, a backtracking method is used to identify a final solution, which combines the
solution candidates of the star subproblems for the tree.

Algorithm 1 shows the pseudocode of the proposed algorithm. To create an ordering among the subproblems considered in
the algorithm, it is convenient (but not necessary) to arbitrarily pick a root node (which we denote by r). We then prioritize the
subproblems in the order of how far their central nodes are from the root node of the tree (i.e., at every step among the remaining
subproblems, we consider a subproblem whose central node is farthest from the root node). We call this a bottom-up traversal
of the tree. This ordering can easily be determined a priori by conducting a breadth-first search (BFS) from the root node and by
considering the nonleaf nodes of the tree in reverse BFS order. The global variable C* contains the cost of the optimal solution.

Algorithm 1. Algorithm for the WTSS Problem on Trees

1: Arbitrarily pick a node as the root node of the tree and let C* = 0.
2: Define the order of the star problems based on the bottom-up traversal of the tree.
3: for each star subproblem do
4: StarHandling
5: end for
6: SolutionBacktrack

For a star subproblem, consider the situation when there is no external influence. We wish to find the minimum weight solution
that makes all nodes active. Observe that a leaf node only requires one active neighbor to make itself active. Therefore, in this
star network, if the central node is selected, all nodes become active. However, there is another possibility. Denote the central
node by c and refer to this star as star c. Sort all leaf nodes in ascending order of their weight. Then, if the total weight of the gc
smallest weight leaf nodes is less than the central node’s weight, bc, we can select the first gc leaf nodes to activate the central
node. After that, the active central node activates the remaining leaf nodes. Consequently, when the central node receives no

590 RAGHAVAN AND ZHANG

external influence, the candidate solution is the one with the smaller weight between the central node and the first gc leaf nodes.
Note that this is a crucial difference between the TSS and the WTSS problem. For the TSS problem, where all nodes have
bi = 1, a leaf node of a star will never be selected in the target set. This makes it possible to find a solution for the TSS problem
(as in [8]) easily in one shot (without backtracking or the contraction procedure that we discuss next). In the situation where
the central node receives external influence from its parent node, we only need to select the first (gc − 1) leaf nodes to activate
the central node. Hence, when the central node receives external influence, the candidate solution is the one with the smaller
weight between the central node and the first (gc − 1) leaf nodes.

Algorithm 2. StarHandling

Input: star c
1: if bc <

∑
l∈s(gc−1)

bl then
2: Xc

I ← c, Xc
𝑁𝐼 ← c, and C* = C* + bc.

3: if star c is not the last star ⊳ Case 1
4: Contract star c to a node with weight 0 and threshold 1.
5: end if
6: else if bc >

∑
l∈sgc

bl then
7: Xc

I ← s(gc−1), Xc
𝑁𝐼 ← sgc , and C∗ = C∗ +

∑
l∈s(gc−1)

bl.
8: if star c is not the last star ⊳ Case 2
9: Contract star c to a node with weight b(gc) and threshold 1.

10: else
11: C∗ = C∗ + b(gc).
12: end if
13: else
14: Xc

I ← s(gc−1), Xc
𝑁𝐼 ← c, and C∗ = C∗ +

∑
l∈s(gc−1)

bl.
15: if star c is not the last star ⊳ Case 3
16: Contract star c to a node with weight bc −

∑
l∈s(gc−1)

bl and threshold 1.
17: else
18: C∗ = C∗ + bc −

∑
l∈s(gc−1)

bl.
19: end if
20: end if

After we determine the solution candidates for the current star subproblem, the star is contracted into a single leaf node for
its parent’s star subproblem. This new single node has its threshold set as 1. To determine the weight of the contracted node,
observe in the optimal solution that the star (which this contracted node represents) either receives influence from its parent (with
the candidate solution corresponding to when there is external influence) or sends influence to its parent (with the candidate
solution corresponding to when there is no external influence). Observe, for a star, that the weight of the candidate solution
obtained when there is external influence is less than or equal to the weight of the candidate solution when there is no external
influence. Thus, the weight of the candidate solution obtained when there is external influence must be incurred at a minimum.
The incremental amount, representing the difference in the weight between the candidate solution without external influence
and the candidate solution with external influence, must be incurred if the star sends influence to its parent in the optimal
solution; it is represented as the weight of the contracted node. There are three cases to consider.

Case 1. If the central node’s weight is smaller than the total weight of the first (gc − 1) smallest weight leaf nodes,
then both candidate solutions (when there is external influence and otherwise) select the central node for the
current star. Thus, the contracted node has a weight of 0.

Case 2. If the central node’s weight is bigger than the total weight of the first gc lowest weight leaf nodes, the
candidate solution for the external influence situation selects the first (gc − 1) smallest weight leaf nodes, while the
candidate solution for the situation with no external influence selects the first gc smallest weight leaf nodes. Thus,
the weight of the contracted node is equal to the weight of the gcth smallest weight leaf node, denoted as b(gc).

Case 3. If the central node’s weight is not in the above two cases, the candidate solution for the situation with
external influence selects the first (gc − 1) smallest weight leaf nodes, while the candidate solution for the
no-external influence situation selects the central node. Thus, the weight of the contracted node is equal to the
difference between the central node’s weight and the total weight of the first (gc − 1) cheapest leaf nodes.

RAGHAVAN AND ZHANG 591

We summarize the above procedure in Algorithm 2, StarHandling with the following notation: let Xc
I denote the solution

candidate with external influence, Xc
𝑁𝐼 denote the solution candidate without external influence, sgc denote the set of the gc

cheapest leaf nodes, and s(gc−1) denote the set of the (gc − 1) cheapest leaf nodes.

Algorithm 3. SolutionBacktrack

Input: the last star with root node r and its solution Xr
𝑁𝐼

1: X∗ ← Xr
𝑁𝐼 .

2: if X* is r then
3: ∀l∈L(r)∩NL call EXT-INFLUENCE (l, X*).
4: else
5: ∀l ∈ sgr ∩𝑁𝐿 call NOEXT-INFLUENCE (l, X*).
6: ∀l ∈ (L(r)\sgr) ∩𝑁𝐿 call EXT-INFLUENCE (l, X*).
7: end if
8: return X*.
9: function EXT-INFLUENCE (c, X)

10: X ← (X\c) ∪ Xc
I .

11: ∀l ∈ L(c) ∩ (Xc
I ∩𝑁𝐿) call NOEXT-INFLUENCE (l, X).

12: ∀l ∈ (L(c)\Xc
I) ∩𝑁𝐿 call EXT-INFLUENCE (l, X).

13: return X.
14: end function
15: function NOEXT-INFLUENCE (c, X)
16: X ← (X\c) ∪ Xc

𝑁𝐼 .
17: ∀l ∈ L(c) ∩ (Xc

𝑁𝐼 ∩𝑁𝐿) call NOEXT-INFLUENCE (l, X).
18: ∀l ∈ (L(c)\Xc

𝑁𝐼) ∩𝑁𝐿 call EXT-INFLUENCE (l, X).
19: return X.
20: end function

After we obtain the solution of the last star, which has the root node as its central node, we invoke a backtracking procedure
to obtain the final solution for this tree. For each leaf node in this star, we know whether or not there is external influence
coming into it. For instance, if the central node is selected, then the central node sends out influence to all of its leaf nodes. If
the gc cheapest leaf nodes are selected, then these gc cheapest leaf nodes do not receive external influence, but the remaining
leaf nodes do. With this information, we can now proceed down the tree, incorporating the partial solution at a node based
on whether or not it receives external influence (which we now know). This backtracking procedure is described in Algorithm
3, SolutionBacktrack. We use L(c) to denote the set of leaf nodes in the star c, NL to denote the set of nonleaf nodes in the
tree, and X* to denote the final solution of the tree. In this algorithm, we have two recursive functions: EXT-INFLUENCE

and NOEXT-INFLUENCE, corresponding to with and without external influence, respectively. These two functions choose the
solution for a star c and then recursively choose solutions for stars whose central nodes are leaf nodes of the star c.

Proposition 1. The WTSS problem on trees can be solved in O(| V |) time.

Proof. The correctness of the algorithm can be established via induction, using arguments identical to the preceding
discussion. We now discuss the running time. There are at most ∣V ∣ − 1 stars. For each star c, we need to find the gc

cheapest children, which takes O(deg(c)) time. Finding the gcth order statistics can be done in O(deg(c)) time by the
Quickselect method in Chapter 9 of Cormen et al. [13]. Thus, it takes O(deg(c)) time to go through the list to collect the
gc cheapest children. For the whole tree, this is bounded by O(| V |) time. In the backtracking procedure, we pick the final
solution for each node, which takes O(| V |) time over the tree. ▪

Figure 1A displays an instance of the WTSS problem. There are 11 nodes, and the numbers beside a node are its weight
and threshold. The root of this tree is node 4. Stars 1, 2, and 3 correspond to Cases 1, 2, and 3, respectively. Star 1 has X1

𝑁𝐼 =
X1

I = {1}. Star 2 has X2
𝑁𝐼 = {7,8,9} and X2

I = {7, 8}. Star 3 has X3
𝑁𝐼 = {3} and X3

I = {10}. After we contract these
stars, we have the final star in Figure 1B and the solution X4

𝑁𝐼 = {1, 2}. Next, we start the backtracking procedure. Initially
X∗ = X4

𝑁𝐼 = {1, 2}. Both stars 1 and 2 do not receive external influence, while star 3 receives external influence. Hence,

592 RAGHAVAN AND ZHANG

(A))C()B(

FIGURE 1 (A) WTSS instance, (B) Final star. (C) Solution of Algorithm 1

X∗ = X∗\{1, 2} ∪ X1
𝑁𝐼 ∪ X2

𝑁𝐼 ∪ X3
I , which yields X* = {1,7,8,9,10} and C* = 4+ 7+ 8+ 9+ 10 = 38. Figure 1C illustrates the

solution obtained by Algorithm 1, where the selected nodes are shaded.

3 POLYTOPE OF THE WTSS PROBLEM ON TREES

In this section, we first discuss existing formulations for the TSS problem in the literature. Then, we present a tight and compact
extended formulation for the WTSS problem on trees. After that, we project the extended formulation onto the natural node
space, which gives the complete description of the WTSS problem on trees. This projection leads to an exponentially sized set
of valid inequalities. We also present a polynomial-time separation algorithm for it.

3.1 A tight and compact extended formulation
A combinatorial optimization problem can be formulated as an IP in multiple ways. The standard way (see [11,24]) to compare
different IP formulations for the same problem is to solve their LP relaxations (as this has implications for the computational
tractability of a formulation). Then, these IP formulations are evaluated by the optimal objective values of their LP relaxations.
Given two different IP formulations, A and B, of a given minimization problem, let z𝐿𝑃A and z𝐿𝑃B be the optimal objective value
of their LP relaxations, respectively. We say that formulation A is stronger (or better) than formulation B if z𝐿𝑃A > z𝐿𝑃B . Typically,
a stronger formulation is more computationally efficient [5].

There are two formulations for the TSS problem in the literature. A time-indexed formulation was proposed independently
by Shakarian et al. [27] and Spencer et al. [28]. To model the order in which nodes become active, an artificial time index t
is created, taking values from 1 to ∣V∣. The formulation uses a binary variable xi, t, which is set as 1 if node i is active in time
period t, and is 0 otherwise. For any node i∈V , let n(i) denote the set of node i’s neighbors. The model “TimeIndexed” (applied
to the WTSS) is as follows:

(TimeIndexed) Minimize
∑
i∈V

bixi,1 (1)

Subject to xi,∣V∣ = 1 ∀i ∈ V , (2)

gixi,t−1 +
∑

j∈n(i)
xj,t−1 ≥ gixi,t ∀i ∈ V , t ∈ {2, 3,… , |V|}, (3)

xi,t ∈ {0, 1} ∀i ∈ V , t ∈ {1, 2,… , |V|}. (4)

The objective function (1) minimizes the total weight of the nodes activated in time period 1 (i.e., the nodes selected in the target
set). Constraint (2) makes sure that all nodes are active in time period ∣V∣ (i.e., by the end of the diffusion process). Constraint
(3) states that a node i is active in the time period t only if it was active in the time period t− 1, or if it has at least gi neighbors
that were active in the time period t− 1. We note that this formulation is weak for the instance in Figure 2A. The LP relaxation of
TimeIndexed has a fractional optimal solution with x1, 1 = x2, 1 = 0.0334 and x3, 1 = x4, 1 = x5, 1 = x6, 1 = 0, and an objective value
of 0.0668. However, the optimal integer solution selects nodes 1 and 2 (i.e., x1, 1 = x2, 1 = 1 and x3, 1 = x4, 1 = x5, 1 = x6, 1 = 0)
and has an objective value of 2.

Ackerman et al. [1] introduced a different formulation for the TSS. Here, for each node i∈V , a binary variable xi is created
denoting whether node i is selected in the target set. Then, to model the (implicit) order in terms of when the nodes become
active, a linear order is created among the nodes. For any two distinct nodes i and j in V , two binary variables hij and hji are

RAGHAVAN AND ZHANG 593

FIGURE 2 (A) WTSS instance. (B) Fractional optimal solution to ACK

created, with hij = 1 if node i is before node j in the linear order, and hji = 1 if node j is before node i in the linear order. Notice
that the pair of variables hij, hji is created for every pair of nodes in the graph, regardless of whether they have an edge between
them in the graph. The model “ACK” (applied to the WTSS) is as follows:

(ACK) Minimize
∑
i∈V

bixi (5)

Subject to h𝑖𝑗 + h𝑗𝑖 = 1 ∀i ≠ j ∈ V , (6)∑
j∈n(i)

h𝑗𝑖 + gixi ≥ gi ∀i ∈ V , (7)

h𝑖𝑗 + h𝑗𝑘 + h𝑘𝑖 ≤ 2 ∀i ≠ j ≠ k ∈ V , (8)

xi ∈ {0, 1} ∀i ∈ V , (9)

h𝑖𝑗 ∈ {0, 1} ∀i ≠ j ∈ V . (10)

The objective function (5) minimizes the total weight of the nodes selected in the target set. Constraint (6) makes sure that either
node i is before node j, or node j is before node i in linear order. Constraint (7) states that a node i∈V must be selected in the
target set, or at least gi of its neighbors must become active before node i. Constraint (8) ensures that there is linear ordering.

Figure 2A provides a WTSS instance, and Figure 2B describes a fractional optimal solution to the LP relaxation of ACK.
This solution has x1 = 1, x2 = 0.5, with all other x decision variables equal to zero. The nonzero h variables for the edges in
the graph is shown in Figure 2B. For the remaining node pairs h15 = h16 = h23 = h24 = h34 = h35 = h36 = h45 = h46 = h56 = 1
and the rest are zero. The objective value is 1.5. While ACK is stronger than TimeIndexed, it is still weak, and solving its LP
relaxation does not provide integer solutions for the WTSS problem on trees.

We now present a tight and compact extended formulation for the WTSS problem on trees. From the input graph G, we
create a new graph Gt by subdividing each edge. For each edge {i, j}∈E, insert a dummy node d. Let D denote the set of dummy
nodes. Since the dummy nodes have effectively split each edge into two in the original graph, we replace each of the original
edges {i, j}∈E by two edges {i, d} and {d, j} in the new graph Gt. Let Et denote the set of edges in Gt (Gt = (V ∪D, Et)).
The dummy nodes cannot be selected in the target set, and all have a threshold of 1 (thus, if one of its neighbors is activated,
the dummy node will become activated and will propagate the influence to the other neighbor). As before, for each node i∈V ,
a binary variable xi denotes whether or not node i is selected in the target set (these are the natural node variables). For each
edge {i, d}∈Et, where i∈V and d ∈D (notice that Gt is bipartite and Et only contains edges between the nodes in V and D),
create two binary arc variables yid and ydi to represent the direction of influence propagation. If node i sends influence to node
d, yid is 1, and 0 otherwise. As before, for any node i∈V ∪D, n(i) denotes the set of node i’s neighbors. We can now write the
following compact extended formulation “BIPtree” for the WTSS problem on trees:

(BIPtree) Minimize
∑
i∈V

bixi (11)

Subject to
∑

i∈n(𝑑)
y𝑖𝑑 ≥ 1 ∀𝑑 ∈ D, (12)

xi ≤ y𝑖𝑑 ∀i ∈ V , 𝑑 ∈ n(i), (13)

y𝑖𝑑 + y𝑑𝑖 = 1 ∀{i, 𝑑} ∈ Et, (14)∑
𝑑∈n(i)

y𝑑𝑖 + gixi ≥ gi ∀i ∈ V , (15)

xi ∈ {0, 1} ∀i ∈ V , (16)

y𝑖𝑑 , y𝑑𝑖 ∈ {0, 1} ∀{i, 𝑑} ∈ Et. (17)

594 RAGHAVAN AND ZHANG

(A) (B)

FIGURE 3 (A) Gt. (B) A valid solution to BIPtree

Constraint (12) says that each dummy node has at least one incoming arc (since dummy nodes cannot be selected and
have a threshold of 1). Constraint (13) says that if a node is selected, then it sends out influence to all of its neighbors.
Notice that this type of constraint (e.g., xi ≤ hij) would not be valid in ACK, since there could be two neighboring nodes
that are in the target set. Constraint (14) makes sure that on each edge, influence is only propagated in one direction. Con-
straint (15) states that a node i∈V must be selected or must have gi or more incoming arcs. If a node i∈V is selected,
then it has no incoming arcs from constraint (13), and constraint (15) is satisfied. On the other hand, if a node i∈V is not
selected, it must have at least gi incoming arcs. Constraints (16) and (17) are binary constraints. We now show the validity
of BIPtree.

Proposition 2. BIPtree is a valid formulation for the WTSS problem on trees.

Proof. From the discussion above, we can see that if (x, y) is a feasible solution to BIPtree, then x must be a feasible
target set (one that activates all nodes in the graph). We now show how any feasible target set vector x can be extended
as a feasible solution (x, y) to BIPtree, proving its validity. Let P be the set of nodes selected in a feasible target set. For
each p in P, we set xp as 1 and set the remaining x variables as 0. Next, all outgoing arcs of a node p in P are set as
1, and all of its incoming arcs are set as 0, that is, ypd = 1 and ydp = 0∀ p∈P, d ∈ n(p) (this ensures that constraint
(13) is satisfied). Next, for any dummy node d that has y values set for only one of its adjacent edges, we set the y
values, as follows. Without loss of generality, let nodes i and j be adjacent to dummy node d, and yid is now set as 1.
Then, we set yjd = 0 and ydj = 1 to propagate the influence. Afterwards, we check for any new nodes i∈V that have
been activated by incoming influence (arcs). If so, node i sends out influence to those adjacent dummy nodes that do
not send influence to it, that is, yid = 1 and ydi = 0 for all d ∈ n(i), where yid and ydi are not yet set. We repeat this
whole procedure until all nodes are active, and all x and y values are set. Observe that the procedure so far satisfies
constraints (12)-(15). ▪

Figure 3A shows the transformed graph Gt of the instance in Figure 1A. Figure 3B illustrates the outcome of the procedure
described in Proposition 2.

Next, we show that BIPtree is a tight formulation. The linear relaxation of BIPtree is the following LP, which we refer to as
“LPtree”:

(LPtree) Minimize
∑
i∈V

bixi (18)

Subject to (12), (13), (14), (15)

xi ≥ 0 ∀i ∈ V , (19)

y𝑖𝑑 ≥ 0 ∀i ∈ V , 𝑑 ∈ n(i), (20)

y𝑑𝑖 ≥ 0 ∀𝑑 ∈ D, i ∈ n(𝑑). (21)

RAGHAVAN AND ZHANG 595

Let ud, wid, zid, and vi be dual variables for constraint sets (12)-(15), respectively. The dual to LPtree can be written as follows,
which we refer to as “DLPtree”:

(DLPtree) Maximize
∑
𝑑∈D

u𝑑 +
∑
i∈V

givi +
∑

{i,𝑑}∈Et

z𝑖𝑑 (22)

Subject to w𝑖𝑑 + u𝑑 + z𝑖𝑑 ≤ 0 ∀i ∈ V , 𝑑 ∈ n(i), (23)

vi + z𝑖𝑑 ≤ 0 ∀𝑑 ∈ D, i ∈ n(𝑑), (24)

givi −
∑
𝑑∈n(i)

w𝑖𝑑 ≤ bi ∀i ∈ V , (25)

u𝑑 ≥ 0 ∀𝑑 ∈ D, (26)

vi ≥ 0 ∀i ∈ V , (27)

w𝑖𝑑 ≥ 0 ∀i ∈ V , 𝑑 ∈ n(i). (28)

Let conv(X) denote the convex hull of the feasible target set vectors x, and let ETSS denote the feasible region of LPtree. We now
show that Projx(ETSS) = conv(X). To prove this result, we demonstrate for every objective function in the x-space, an optimal
solution (x, y) with integral x. To do so, we use the complementary slackness (CS) conditions between LPtree and DLPtree.(

gi −
∑
𝑑∈n(i)

y𝑑𝑖 − gixi

)
vi = 0 ∀i ∈ V , (29)(

1 −
∑

i∈n(𝑑)
y𝑖𝑑

)
u𝑑 = 0 ∀𝑑 ∈ D, (30)

(xi − y𝑖𝑑)w𝑖𝑑 = 0 ∀i ∈ V , 𝑑 ∈ n(i), (31)(
bi − givi +

∑
𝑑∈n(i)

w𝑖𝑑

)
xi = 0 ∀i ∈ V , (32)

(−vi − z𝑖𝑑)y𝑑𝑖 = 0 ∀𝑑 ∈ D, i ∈ n(𝑑), (33)

(−w𝑖𝑑 − u𝑑 − z𝑖𝑑)y𝑖𝑑 = 0 ∀i ∈ V , 𝑑 ∈ n(i). (34)

Theorem 1. Projx(ETSS) = conv(X).

Proof. For any objective function in the x-space, we use the primal solution from Algorithm 1. Then, we construct a
dual feasible solution and show that the pair of primal and dual solutions satisfy the CS conditions. The full proof is in
Appendix A. ▪

Theorem 1 shows that every extreme point solution found by LPtree has x variables binary (this does not necessarily mean
that ETSS is integral). Interestingly, we can show that any extreme point of LPtree with x variables binary also has the y variables
binary (which also implies that LPtree provides solutions with both x and y variables integral).

Theorem 2. Every extreme point of ETSS with x variables binary has y variables binary.

Proof. Assume that this is not true, and that there is an extreme point (x*, y*) where x* is binary and y* is fractional.
Observe that when x∗i = 1, y∗𝑖𝑑 = 1, and y∗𝑑𝑖 = 0 for all d ∈ n(i) due to constraints (13) and (14). Since the x variables are
binary, this implies that the fractional y values must correspond to arcs adjacent to a node i∈V that is not in the target set.

We look at the supporting graph that is formed by the fractional y* values. In other words, only arcs with fractional
values of y are kept in the supporting graph. Consider a connected component of the supporting graph, as shown in
Figure 4A. We show that an end node in this connected component that is a dummy node (e.g., nodes c and d) must have
constraint (12) satisfied as a nonbinding constraint, and an end node of this connected component that is not a dummy
node (e.g., node 1) must have constraint (15) satisfied as a nonbinding constraint. When an end node is in D, it has one
fractional incoming arc. Because it is an end node and constraint (12) is satisfied, the other incoming arc must have a
value of 1. Thus, constraint (12) is nonbinding. When an end node is in V , it has one fractional incoming arc, and all
other incoming arcs are integers. Given that gi is an integer, constraint (15) must be satisfied as a nonbinding constraint.

Consider any two end nodes, denoted as s and t, in a connected component of the supporting graph. Let Pst = {(s, l),
…, (k, t)} and Pts = {(t, k), …, (l, s)} denote the fractional paths from nodes s to t and from nodes t to s, respectively. We

596 RAGHAVAN AND ZHANG

(A) (B)

FIGURE 4 Illustrating proof of Theorem 2. (A) A connected component of the supporting graph formed by the fractional y* values. (B) Constructing two
new feasible solutions using the fractional paths between the end node 1 and c

construct two new feasible solutions (x, y) and (x̃, ỹ), as follows:

x = x∗; ya =
⎛⎜⎜⎜⎝
y∗a + 𝜖, a ∈ P𝑠𝑡,

y∗a − 𝜖, a ∈ P𝑡𝑠,

y∗a, a ∈ Et\{P𝑠𝑡 ∪ P𝑡𝑠},
and x̃ = x∗; ỹa =

⎛⎜⎜⎜⎝
y∗a − 𝜖, a ∈ P𝑠𝑡,

y∗a + 𝜖, a ∈ P𝑡𝑠,

y∗a, a ∈ Et\{P𝑠𝑡 ∪ P𝑡𝑠},

where 𝜖 is a sufficiently small positive value (𝜖 should be less than the slack in both the nonbinding constraints at the
two end nodes s and t and should also satisfy 0 ≤ y∗a±𝜖 ≤ 1 for all a∈ {Pst ∪Pts}). Thus, (x*, y*) is not an extreme point
because (x∗, y∗) = 1

2
(x, y) + 1

2
(x̃, ỹ). ▪

3.2 Projecting BIPtree to obtain the polytope on trees
To derive the polytope of the WTSS problem on trees, we follow a method, proposed by Balas and Pulleyblank [4], which is
based on a theorem of the alternatives to project the extended formulation BIPtree onto the node (i.e., x) space by projecting out
all arc (i.e., y) variables.

Consider LPtree. Because yid + ydi = 1, we first project out all yid variables, setting them to 1− ydi (so we only have xi and
ydi variables in the formulation) and obtain the following formulation whose feasible region is denoted as Pd:

Minimize
∑
i∈V

bixi (35)

Subject to −
∑

i∈n(𝑑)
y𝑑𝑖 ≥ −1 ∀𝑑 ∈ D, (36)

−y𝑑𝑖 − xi ≥ −1 ∀i ∈ V , 𝑑 ∈ n(i), (37)∑
𝑑∈n(i)

y𝑑𝑖 + gixi ≥ gi ∀i ∈ V , (38)

y𝑑𝑖 ≥ 0 ∀{i, 𝑑} ∈ Et, (39)

xi ≥ 0 ∀i ∈ V . (40)

We define a projection cone  , described by (u, v, w), which satisfies the following linear inequalities:

wi − u𝑑 − v𝑖𝑑 ≤ 0 ∀i ∈ V , 𝑑 ∈ n(i), (41)

wi ≥ 0, u𝑑 ≥ 0, v𝑖𝑑 ≥ 0 ∀i ∈ V , 𝑑 ∈ n(i). (42)

Here, ud, vid, and wi are dual multipliers corresponding to constraints (36)-(38), respectively. If Pd is written in matrix notation
as {(x,y) : Ax+Gy≥ b, (x,y)≥ 0}, based on Balas and Pulleyblank [4], then any feasible vector (u, v, w) to  defines a valid
inequality: (u,v,w)TAx≥ (u,v,w)Tb to the projection of Pd (in the space of node (x) variables). Furthermore, the projection of
Pd is described by the valid inequalities defined by the extreme rays of  . Thus, in order to apply this method, we now identify
the extreme rays of  . We use these notations: first, S⊆V and S is connected in the original graph G. Also, Gt(S) denotes the
induced subgraph of S in the transformed graph Gt and D(S) denotes the set of dummy nodes belonging to Gt(S). Finally, a(S)
denotes the set of nodes adjacent to set S in the transformed graph Gt.

Theorem 3. The vector r = (u, v,w) ∈  is extreme if and only if there exists a positive 𝛼 such that one of the following
three cases holds:

Case 1. ud = 𝛼 for one d ∈D. All other u, v, w are 0.
Case 2. vid = 𝛼 for one {i, d}∈Et. All other u, v, w are 0.
Case 3. wi = 𝛼 for all i∈ S. Then ud = 𝛼 for all d ∈D(S). In addition, either vid = 𝛼 or ud = 𝛼 for all d ∈ a(S)\D(S). All

other u, v, w are 0.

RAGHAVAN AND ZHANG 597

Proof. Included in Appendix B. ▪

Using these three types of extreme rays, we obtain the following inequalities to define the projection. Case 1’s extreme
directions generate the valid inequality 0≥ − 1, which is not very useful, while Case 2’s extreme directions generate −xi ≥ − 1
or the inequalities, xi ≤ 1 for all i∈V . Given an extreme ray r of the form described in Case 3, define Vi = {d ∈ n(i) : vid > 0} for
all i∈ S based on r. Consequently, Case 3’s extreme directions generate the following valid inequality in the original graph G:∑

i∈S
(gi − |Vi|)xi ≥

∑
i∈S

gi − |n(S)| − |S| + 1 ∀i ∈ S ⊆ V , S is connected, |Vi| = 0, 1,… , 𝜆S
i .

Here, 𝜆S
i = |VS

i |, where VS
i = n(i) ∩ n(S) (in other words, VS

i is the set of neighbors of node i in the original graph G that are
outside the set S), and n(S) denotes the neighbors of set S in the original graph G. Note that for a given set S, there are many
extreme rays r satisfying Case 3, giving rise to sets Vi. The tightest valid inequality for a given set S is obtained when the
coefficient of xi on the left-hand side has the smallest value. This is obtained when Vi = VS

i . After removing the dominated
inequalities, the projection of Pd onto the x space and the polytope of the WTSS problem on trees is:

|n(S)| + (|S| − 1) +
∑
i∈S

(gi − 𝜆S
i)xi ≥

∑
i∈S

gi ∀S ⊆ V , S is connected, (43)

0 ≤ xi ≤ 1 ∀i ∈ V . (44)

Proposition 3. The valid inequalities (43) can be separated in O(|V |3) time.

Proof. The generalized k-minimum spanning tree (k-MST) problem on trees is defined as follows: given a tree
GB = (VB, EB) and an integer k< |VB|, each node i in VB has a nonnegative weight wi and each edge in EB has a nonnegative
weight eij. The goal is to find a subtree T of k edges whose weight

∑
i∈ Twi +

∑
(i, j)∈Teij is minimal.

Given an instance of the separation problem with the cardinality of S specified to be h, we show that it can be
transformed to the generalized k-MST problem on trees with k = 2(h− 1). From the input graph G (which is a tree), we
transform it into graph Gt, which was used to derive the extended formulation. Thus, Gt = (V ∪D, Et). Recall that we
have a current solution x, and deg(i) denotes the degree of node i. For all i in V , set its weight to wi = (1− xi)(deg(i)− gi).
Then, for all d in D, set its weight to wd = M, where M = max{deg(i) : i∈V}. This ensures that an optimal k-MST on Gt

does not have nodes in D as leaves, because k is an even number. Lastly, for each {i, d} in Et, we have the edge weight
eid = xi. We also set k = 2(h− 1) as the target cardinality for the k-MST.

For a node i∈V and a given optimal k-MST T , let ET
i be the set of its adjacent edges in T . The objective value of T

is:
∑

i∈T∩V (1 − xi)(deg(i) − gi) +
∑

(i,𝑑)∈Txi + (h − 1)M =
∑

i∈T∩V (deg(i) − gi − deg(i)xi + gixi + |ET
i |xi) + (h − 1)M. Note

that
∑

i∈T∩V |ET
i | = 2(h−1) is the number of edges in T , which we add and subtract to the objective value of T , obtaining:∑

i∈T∩V{(gi + |ET
i | − deg(i))xi − gi + (deg(i) − |ET

i |)} + 2(h − 1) + (h − 1)M. Let T denote T ∩V . In the original graph,

deg(i) − |ET
i | is identical to 𝜆T

i . If we consider the nodes in T ,
∑

i∈T𝜆
T
i is equal to ∣ n(T) ∣: the cardinality of the set of

neighbors of T in the original graph. Thus, the objective value is equal to
∑

i∈T (gi−𝜆T
i)xi−

∑
i∈Tgi+|n(T)|+(h−1)(M+2).

Other than (h− 1)(M + 2), this is exactly the left-hand side of constraint (43) with S = T after some rearrangement (we
move

∑
i∈ Sgi to the left-hand side and move ∣S ∣ − 1 to the right-hand side). Thus, if

∑
i∈T (gi −𝜆T

i)xi −
∑

i∈Tgi + |n(T)| <
1 − h, we have a violated inequality. Or, if the objective value of this k-MST is strictly less than (h− 1)(M + 1), we have
found a violated inequality. Otherwise, there is no violated inequality for sets S with cardinality h.

Blum [7] provides an O(k2|VB|) algorithm for the (k-MST) problem on trees. It returns the values of the best
l-cardinality trees in GB for all l values in the range 0≤ l≤ k. Thus, we only need to run it once by setting k = |VB| = 2 ∣V∣.
Thus, the time complexity is O(|V |3). ▪

4 THE WTSS PROBLEM ON CYCLES

In this section, we discuss the WTSS problem on a cycle. We first present a polynomial-time algorithm to solve the WTSS
problem on cycles. We then describe the polytope of the WTSS problem on cycles. Before presenting our findings, we introduce
some notation. In a cycle, a node has two neighbors. Thus, its threshold value is either one or two. We call a node i a 1-node if
its gi value is 1. Similarly, a node is called a 2-node if its gi value is 2. Let G1 be the set of 1-nodes and G2 be the set of 2-nodes.
We will refer to a connected component S as a segment because it is a line of nodes in a cycle. Given a segment S, there are two
nodes adjacent to nodes not in S. We refer to these two nodes as end nodes. Finally, we use S2 to denote a segment of nodes that
has exactly two 2-nodes, and these two 2-nodes are its end nodes.

598 RAGHAVAN AND ZHANG

FIGURE 5 Illustration of the cases for the algorithm on cycles

4.1 Linear-time algorithm for the WTSS problem on cycles
We make use of Algorithm 1 to solve the WTSS problem on cycles. First, we conduct two preprocessing steps. For each S2 ⊂V ,
if it contains more than one 1-node, we can replace these 1-nodes by the one with the smallest weight among them. In an optimal
solution, at most, one 1-node will be selected in this S2 segment, and it should be the one with the smallest weight. With this
preprocessing step, each S2 segment contains at most one 1-node. In the second preprocessing step, if this 1-node’s weight is not
strictly the smallest one in this S2 segment, we can delete this 1-node and connect the 2-nodes to each other. This is because, if
this 1-node is selected, then switching it with the 2-node having the smaller weight results in a better solution. Thus, at this point,
each S2 segment has at most one 1-node, and if it has one, this 1-node has the strictly lowest weight among these three nodes.

After preprocessing, if there are no 1-nodes left in the graph, we can arbitrarily pick a node i. Without loss of generality, let
the two nodes adjacent to node i be nodes j and k, as shown in the top left of Figure 5. Then, we solve two subproblems for node
i. One subproblem assumes that node i is selected. After accounting for the influence propagation from node i, it requires that
the tree shown in Figure 5A be solved to ascertain the solution in this case. The other subproblem assumes that nodes j and k
are selected at the same time. After accounting for the influence propagation from nodes j and k, it requires that the tree shown
in Figure 5B be solved to ascertain the solution in this case.

If there are 1-nodes in the graph, we can arbitrarily pick a 1-node i. Without loss of generality, let those two 2-nodes adjacent
to 1-node i be nodes j and k, as shown in the top right of Figure 5. Then, we consider two possibilities for node i. First, we
assume that node i is selected. After accounting for the influence propagation from node i, the tree shown in Figure 5C must
be solved to ascertain the solution in this case. If node i is not selected, then because nodes j and k are 2-nodes, at least one of
them must be selected in the target set. Thus, we first consider the case that node j is selected when node i is not selected; then,
we consider the case that node k is selected when node i is not selected. These require the solution of the trees shown in Figure
5D and 5E, respectively.

Overall, we call Algorithm 1 at most three times, and the preprocessing can be done in O(| V |) time. Therefore, we have the
following theorem:

Theorem 4. The WTSS problem on cycles can be solved in O(| V |) time.

4.2 Polytope of the WTSS problem on cycles
Now we derive the polytope for the WTSS problem cycles. Define a binary variable xi for a node i in V . If node i is in the target
set, xi = 1. Otherwise, it is 0. Based on the idea of inequalities (43), we have the following formulation for cycles:

(CIP) Minimize
∑
i∈V

bixi (45)

Subject to ∣ V ∣ +
∑
i∈V

gixi ≥
∑
i∈V

gi, (46)

2 + (|S| − 1) +
∑
i∈S

(gi − 𝜆S
i)xi ≥

∑
i∈S

gi ∀S ⊂ V , S is connected, (47)

xi ∈ {0, 1} ∀i ∈ V . (48)

RAGHAVAN AND ZHANG 599

Constraint (47) is obtained from inequality (43) when S⊂V . The 2+ (| S|−1) term is derived because the subgraph induced by
S has 2 neighbors (i.e., ∣n(S) ∣ = 2) and (| S|−1) edges. Constraint (46) is obtained from inequality (43) when S = V . The ∣V∣
term is derived because there are ∣V∣ edges in the cycle and n(V) = ∅, which also implies that 𝜆V

i = 0.
For constraint (46), moving the first term ∣V∣ to the right-hand side, we can rewrite it as

∑
i∈G1

xi + 2
∑

i∈G2
xi ≥ |G2|. Then,

increasing the coefficient of all 1-node variables from one to two produces a valid inequality: 2
∑

i∈G1
xi + 2

∑
i∈G2

xi ≥ |G2|.
Dividing both sides by two gives

∑
i∈Vxi ≥

|G2|
2

. Finally, the left-hand side must be an integer; thus, replacing the right-hand

side by its ceiling value provides a lifted valid inequality:
∑

i∈Vxi ≥
⌈ |G2|

2

⌉
. Furthermore, when |G2| = 0, it is trivial to see that

the optimal solution is to pick the node with the smallest weight. Thus, we have the following valid inequality instead of (46):∑
i∈V

xi ≥ max
{

1,
⌈|G2|

2

⌉}
. (49)

Next, we start removing redundant constraints in (47). First, when S has at most one 2-node, moving 2+ (| S|−1) to the
right-hand side makes the right-hand side 0 or −1 because

∑
i∈ Sgi is ∣S ∣ + 1 or ∣S∣. Thus, it is dominated by the nonnegativity

constraints.
Second, in a cycle, given a segment S containing at least two 2-nodes, let nodes j and k be end

nodes and node j be a 1-node. Also, in S, node h is the node adjacent to j. Thus, based on S, we have
(gk − 1)xk + ghxh +

∑
i∈ S\{j, k, h}gixi ≥

∑
i∈ Sgi − ∣ S ∣ − 1, which is the summation of xh ≥ 0, and the inequality based on S\{j}:

(gk − 1)xk + (gh − 1)xh +
∑

i∈ S\{j, k, h}gixi ≥
∑

i∈ S\{j}gi − ∣ S ∣ =
∑

i∈ Sgi − ∣ S ∣ − 1 because gj = 1. The latter inequality dominates
the former one. In other words, if both of these two end nodes are not 2-nodes, the inequality given by this set S is redundant.

Third, S has at least three 2-nodes, and the two end nodes are 2-nodes. Let nodes j and k be end nodes and node h be
a 2-node in between j and k. We can break S into two segments: one contains the segment of nodes from node j to node h
(denoted by Sj), and the other one contains the nodes from node h to node k (denoted by Sk). Then, based on S, we have
xj + xk + 2xh +

∑
i∈ S\{j, k, h}gixi ≥

∑
i∈ Sgi − ∣ S ∣ − 1. Also, Sj gives xj + xh +

∑
i∈Sj\{j,h}gixi ≥

∑
i∈Sj

gi − |Sj| − 1 and Sk gives

xk + xh +
∑

i∈Sk\{k,h}gixi ≥
∑

i∈Sk
gi − |Sk| − 1. Thus, the inequality based on S is redundant because it can be obtained by the

summation of the inequalities based on Sj and Sk.
Based on the above three cases, we only need to consider constraint (47) for S2 segments. Thus, constraint (47) can be

simplified, as follows: ∑
i∈S2

xi ≥ 1 ∀S2 ⊂ V . (50)

This allows us to rewrite CIP as

(BIPcycle) Minimize
∑
i∈V

bixi

Subject to (49), (50),
xi ∈ {0, 1} ∀i ∈ V . (51)

We now show that the linear relaxation of BIPcycle, which we refer to as LPcycle, describes the polytope of the WTSS problem
on cycles.

(LPcycle) z𝐿𝑃 = Minimize
∑
i∈V

bixi

Subject to (49), (50),
xi ≤ 1 ∀i ∈ V , (52)

xi ≥ 0 ∀i ∈ V . (53)

Theorem 5. Inequalities (49), (50), (52), and (53) form an integral polytope for the WTSS problem on cycles.

Proof. The constraint matrix is a 0-1 matrix. When |G2|≤ 1, we only have one constraint (49), and we obtain a TU
matrix.

From now on, we consider |G2|≥ 2. When |G2| is an even number, inequalities (49) and (50) together form a TU
matrix. Given a row submatrix, if it contains (49), then we put (49) in partition I1 and put the rest in partition I2. Then,
in I1, all variables appear once. In I2, all of 1-node’s variables appear at most once, and all of 2-node’s variables appear
at most twice. If the row submatrix does not satisfy (49), then the partition must make sure that if two constraints share
a 2-node, these two constraints are not in the same partition. This can be done because |G2| is an even number. Thus,
each variable appears in each partition at most once. Then, in both cases, we have |||∑i∈I1

a𝑖𝑗 −
∑

i∈I2
a𝑖𝑗

||| ≤ 1 for all j∈V .

600 RAGHAVAN AND ZHANG

Thus, we have a TU matrix (see Theorem 2.7 in Nemhauser and Wolsey [24,p. 542] and Proposition 2.1 in Nemhauser
and Wolsey [24,p. 540]).

This leaves us to consider |G2|≥ 3, and |G2| is odd. In this case, the partition procedure for the TU matrix described
above fails because the size of constraint (50) is an odd number. However, if we arbitrarily pick one S2 segment, denoted
by S2

𝜇, and remove its corresponding constraint (50), the remaining constraint matrix is a TU matrix due to the identical
argument for the case when |G2| is an even number. Then, associating a Lagrangian multiplier 𝜇 with the constraint (50)
of S2

𝜇, we obtain the Lagrangian relaxation of LPcycle.

(LR𝜇
cycle) z𝐿𝑅(𝜇) = Minimize

∑
i∈V

bixi + 𝜇

⎛⎜⎜⎝1 −
∑
i∈S2

𝜇

xi

⎞⎟⎟⎠
Subject to

∑
i∈V

xi ≥

⌈|G2|
2

⌉
,∑

i∈S2

xi ≥ 1 ∀S2 ⊂ {V\S2
𝜇},

0 ≤ xi ≤ 1 ∀i ∈ V .

As the constraint matrix is TU, the optimal solution of LR𝜇
cycle is integral. Since LR𝜇

cycle is a relaxation of LPcycle,
zLR(𝜇)≤ zLP. Consider the Lagrangian dual (LD𝜇

cycle) zLD = Maximize𝜇≥ 0 zLR(𝜇). We will demonstrate that for every
objective coefficient b∈R∣V∣ of LPcycle, there exists an integral optimal solution proving that LPcycle has an integral
polyhedron (see page 145 of [30]).

To visualize the argument in the proof consider the example shown in Figure 6; nodes 1 to 7 are 2-nodes. There might
be 1-nodes in this instance, while they are not displayed in the picture. We have |G2| = 7 and pick the S2 segment between
nodes 1 and 7 as S2

𝜇. The constraints (50) of the S2 segment between nodes 1 and 7 are relaxed, shown by a dashed line.
All other constraints (50) are kept in the Lagrangian relaxation, displayed by solid lines. Now there are six constraints
(50). We can ensure that if two constraints share a 2-node, these two constraints are not in the same partition.

Set 𝜇 = 0 and solve LR0
cycle. If the optimal solution, denoted by x0

𝐿𝑅, selects a node in S2
𝜇, x0

𝐿𝑅 is an optimal solution
of LPcycle because x0

𝐿𝑅 is also feasible to LPcycle, and zLR(0) is a lower bound of zLP. Otherwise, we reduce the right-hand
side of constraint (49) of LR0

cycle by 1 and solve the following problem:

(LR0−
cycle) z−𝐿𝑅(0) = Minimize

∑
i∈V

bixi

Subject to
∑
i∈V

xi ≥

⌈|G2|
2

⌉
− 1,∑

i∈S2

xi ≥ 1 ∀S2 ⊂ {V\S2
𝜇},

0 ≤ xi ≤ 1 ∀i ∈ V .

Notice that the optimal solution of LR0−
cycle, denoted by x0−

𝐿𝑅, is also integral. It does not select any node in S2
𝜇, given that

x0
𝐿𝑅 does not have any node in S2

𝜇. Let t = min{bi ∶ i ∈ S2
𝜇}, ĩ = arg min{bi ∶ i ∈ S2

𝜇}, and 𝜃 = z𝐿𝑅(0) − z−𝐿𝑅(0).
Clearly, t≥ 𝜃. Otherwise, x0−

𝐿𝑅 and node ĩ together give a lower cost solution than x0
𝐿𝑅: a contradiction. Furthermore, the

nodes selected in x0−
𝐿𝑅 and node ĩ form a feasible solution to LPcycle because node ĩ is in S2

𝜇, and the number of selected

nodes is at least
⌈ |G2|

2

⌉
. Its objective value is z−𝐿𝑅(0) + t.

Next, set 𝜇 = t− 𝜃 and solve LRt−𝜃
cycle. There are two cases. One is that the optimal solution of LRt−𝜃

cycle, denoted by xt−𝜃
𝐿𝑅 ,

does not contain any node in S2
𝜇. In this case, we must have xt−𝜃

𝐿𝑅 = x0
𝐿𝑅 because the objective function is

∑
i∈V\S2

𝜇
bixi +∑

i∈S2
𝜇
(bi − t + 𝜃)xi + t − 𝜃 =

∑
i∈V\S2

𝜇
bixi + t − 𝜃, and we assume that x0

𝐿𝑅 does not contain any node in S2
𝜇. Thus,

z𝐿𝑅(t − 𝜃) =
∑

i∈x0
𝐿𝑅

bi + t − 𝜃 = z𝐿𝑅(0) + t − 𝜃 = z−𝐿𝑅(0) + t. The other case is that there exists an optimal solution xt−𝜃
𝐿𝑅

that contains exactly one node in S2
𝜇. Observe that at least

⌈ |G2|
2

⌉
− 1 nodes in V\S2

𝜇 are selected in a feasible solution to

satisfy the |G2|− 1 constraints (50) in LR𝜇
cycle (as shown in Figure 6; at least 3 nodes from nodes 2, 3, 4, 5, and 6 must be

selected). Thus, if multiple nodes in S2
𝜇 are selected in xt−𝜃

𝐿𝑅 , deselecting all of them and selecting node ĩ gives a solution

with no worse objective value (since bi − t+ 𝜃 ≥ 0 for all i ∈ S2
𝜇). The nodes selected (which must be at least

⌈ |G2|
2

⌉
−1 in

number) in xt−𝜃
𝐿𝑅 on V\S2

𝜇 satisfy the |G2|− 1 constraints (50) (and are of minimum cost), meaning that they are identical

to x0−
𝐿𝑅. Therefore, xt−𝜃

𝐿𝑅 = x0−
𝐿𝑅∪ ĩ. In this case, z𝐿𝑅(t−𝜃) =

∑
i∈Vbixi +(t−𝜃)

(
1 −

∑
i∈S2

𝜇
xi

)
=
∑

i∈x0−
𝐿𝑅

bi + t = z−𝐿𝑅(0)+ t.
Consequently, in both cases, zLR(t− 𝜃) (which is a lower bound on zLP) is equal to the objective value of the integer

RAGHAVAN AND ZHANG 601

FIGURE 6 Example for the case when |G2|≥ 3 and |G2| is odd

solution consisting of the nodes selected in x0−
𝐿𝑅 and node ĩ, which is feasible to LPcycle. Thus, the nodes selected in x0−

𝐿𝑅

and node ĩ form an optimal solution to LPcycle. This completes the proof. ▪

The number of sets S2 is equal to |G2|, the number of 2-nodes. Thus, the number of constraints is
1+ |G2|+ 2 ∣V ∣ ≤ 3 ∣V ∣ + 1 = O(| V |). Hence, we have a tight and compact formulation, which gives the complete description
of the polytope of the WTSS problem on cycles.

5 THE WTSS PROBLEM ON ARBITRARY GRAPHS

Given our motivations for studying these special cases, naturally, the next step is to see if we can apply the ideas here to develop
strong formulations for the WTSS problem on arbitrary graphs. In a parallel paper [26], we observe that (i) the tight and compact
extended formulation for trees is also a tight and compact extended formulation for directed acyclic graphs (DAG), and (ii)
the influence propagation network in any arbitrary graph is acyclic. Thus, the key idea in applying the results of this paper to
arbitrary graphs is to ensure that the influence propagation network is acyclic. This is achieved by adding an exponentially sized
set of inequalities that enforce this (acyclic influence propagation network) condition.

In this model for the WTSS problem on arbitrary graphs, we introduce a new variable set, hij and hji, for all {i, j} in E (these
are defined on the original graph). If hij = 1, it means that node i gives influence to node j. Otherwise, hij = 0. A new constraint
set, which ensures that the directed graph formed by h and denoted by G(h) is a DAG, is needed. With this in hand, we have
the following formulation, which we refer to as BIP:

(BIP) Minimize
∑
i∈V

bixi

Subject to (13), (14), (15), (16), (17) (54)

h𝑖𝑗 + h𝑗𝑖 = 1 ∀{i, j} ∈ E, (55)∑
(i,j)∈C

h𝑖𝑗 ≤∣ C ∣ −1 ∀dicycles C in G, (56)

h𝑖𝑗 ≤ y𝑖𝑑 , h𝑗𝑖 ≤ y𝑗𝑑 ∀{i, j} ∈ E, {i, 𝑑}, {j, 𝑑} ∈ Et, (57)

h𝑖𝑗 , h𝑗𝑖 ∈ {0, 1} ∀{i, j} ∈ E. (58)

We have dropped constraint (12) because it is implied by constraint sets (55) and (57). The objective function is the same as
before. Constraint set (55) stipulates that influence must go in one direction between two nodes in the original graph. Constraint
set (56), called k-dicycle inequalities, ensures that the influence cannot propagate around a directed cycle (dicycle). Here, k
refers to the cardinality ∣C∣ of the dicycle. For any dicycle C, the constraint says that at most ∣C ∣ − 1 of the hij variables can be
1. Because the h variables are defined on the original graph G, and the y variables are on the transformed graph Gt, we need
constraint set (57) to serve as the linking constraints, which synchronize the influence propagation process between these two
graphs (notice that when hij = 1, yid = 1, and when hji = 1, yjd = 1).

Based on BIP, in Raghavan and Zhang [26], we design and implement a branch-and-cut approach for the WTSS problem
on arbitrary graphs. The branch-and-cut approach includes a heuristic for initial solutions, ways to speed up the separation
procedure for the exponential set of inequalities, a specialized branching rule, and a primal heuristic to quickly identify feasible
solutions in the search process; all of which improve its performance. On a test set of 180 real-world graph instances (with up to
approximately 155 000 nodes and 327 000 edges), the branch-and-cut approach finds solutions that are on average 0.90% from
optimality, and solves 60 out of the 180 instances to optimality. On the other hand, the best heuristic solutions in the literature
generated are on average 5.46 times greater than the solutions generated by the branch-and-cut approach.

Recently, Fischetti et al. [14] presented a set covering formulation for the LCIP. We describe how this set covering formu-
lation can be adapted to the WTSS problem. For a node i in V , let U ⊆ n(i) denote a set of (previously) active neighbors of node
i during the influence propagation process, and let wU

i denote the cost for this active set U to activate node i. In other words, if
∣U ∣ ≥ gi, then wU

i = 0, and wU
i = bi otherwise. Given a node i and a set U ⊆ n(i), the set U is referred to as a minimal influenc-

ing set for node i, if node i cannot be activated by a proper subset of U at the same cost. For each node i in V , let Ξi ⊆ n(i) denote
the set of all minimal influencing subsets. It is sufficient to focus on minimal influencing sets. For a node i in V , the minimal

602 RAGHAVAN AND ZHANG

influencing set U is thus either a combination of exactly gi neighbors of node i with wU
i = 0 or an empty set with wU

i = bi.
The model needs two sets of variables. For each node i in V and each minimal influence set U in Ξi, 𝜉U

i is 1 if the minimal
influencing set U is used to activate node i, and 0 otherwise.

For each edge {i, j} in E, two arc variables zij and zji are created. If node i sends influence to node j, zij is 1, and 0 otherwise.
The model “COV” is as follows:

(COV) Minimize
∑
i∈V

∑
U∈Ξi

wU
i 𝜉

U
i (59)

Subject to
∑

U∈Ξi

𝜉U
i = 1 ∀i ∈ V , (60)∑

U∈Ξj∶i∈U
𝜉U

j = z𝑖𝑗 ,
∑

U∈Ξi∶j∈U
𝜉U

i = z𝑗𝑖 ∀{i, j} ∈ E, (61)∑
(i,j)∈C

z𝑖𝑗 ≤∣ C ∣ −1 ∀dicycles C in G, (62)

z𝑖𝑗 , z𝑗𝑖 ∈ {0, 1} ∀{i, j} ∈ E, (63)

𝜉U
i ∈ {0, 1} ∀i ∈ V , U ∈ Ξi. (64)

The objective function (59) minimizes the total weight. Notice that the variable 𝜉∅i in COV corresponds to the node selection

variable xi in BIP. COV creates an extra
(
deg(i)

gi

)
variables for each node corresponding to the different possible (minimal)

neighbor combinations that could activate it. Constraint (60) makes sure that each node i in V is either in the target set (when
𝜉∅i = 1) or has a set of exactly gi active neighbors to activate it. Constraint (61) states that for an edge {i, j}, node i sends influence
to node j only when node i is in the influence set that activates node j. Constraint (62) ensures that there are no directed cycles
formed by z variables. COV has exponentially many variables and exponentially many constraints. Thus, it will require the
development and application of column and cut generation techniques to apply COV as an exact approach to large graphs. As
future research, it would be interesting to see how COV performs on the WTSS problem and compare it to the branch-and-cut
approach based on BIP in [26].

6 CONCLUSIONS

In this paper, we studied the weighted version of the well-studied TSS problem on trees and cycles. On trees, our contributions
are 3-fold. First, we show that the WTSS problem can be solved polynomially (via DP) when the underlying graph is a tree.
Our DP algorithm generalizes Chen’s [8] algorithm and runs in O(| V |) time. Second, we present a tight and compact extended
formulation whose LP relaxation provides integral solutions for the WTSS problem on trees. Lastly, we also project this for-
mulation onto the space of the natural node variables, and thus find the polytope of the WTSS problem on trees. On cycles, our
contributions are two-fold. First, a linear-time algorithm is presented. The algorithm is based on an idea that breaks a cycle into
trees and makes use of the linear-time algorithm for the WTSS problem on trees. Furthermore, we derive the polytope of the
WTSS problem on cycles.

One future direction is to consider more complex graphs for polyhedral studies. Given that we know the polytopes for the
WTSS problem on cycles and trees, it would be natural to consider cacti graphs, where any two simple cycles have at most
one node in common. Baïou and Barahona [3] showed how to obtain the polytope of the minimum weight dominating set
problem (MWDSP) on cacti graphs by applying a composition procedure over the polytopes of the MWDSP on trees and cycles.
However, it is not clear how their idea can be applied to the WTSS problem.

In the WTSS problem, the diffusion process continues until it is complete (i.e., we are allowed as many steps/time periods
as needed for the influence to propagate through the entire network). However, if we restrict the number of steps/time periods
to one, the entire network must be influenced after one time step. We obtain a weighted version of a problem called the positive
influence dominating set (PIDS) problem proposed by Wang in [29]. This models the situation in which the marketer would
like the diffusion process to take place rapidly. In the PIDS problem, either a node is selected at a weight of bi, or it requires gi
of its neighbors to be selected (notice that when both bi and gi are 1, we obtain the dominating set problem). In a related paper
[25], we study the PIDS problem.

One generalization of the WTSS problem has unequal influence from neighbors. Unfortunately, this problem is somewhat
harder to solve. Raghavan and Zhang [26] show that the WTSS problem with unequal influence is even NP-complete on stars
(i.e., a tree where all nodes are leaves other than a single central node). Deriving strong formulations for this and other closely
related IMPs is an avenue of our current and future research.

RAGHAVAN AND ZHANG 603

ORCID

S. Raghavan https://orcid.org/0000-0002-9656-5596
Rui Zhang https://orcid.org/0000-0002-4029-6585

REFERENCES

[1] E. Ackerman, O. Ben-Zwi, and G. Wolfovitz, Combinatorial model and bounds for target set selection, Theoret. Comput. Sci. 411 (2010),
4017–4022.

[2] A. B. Adcock, B. D. Sullivan, and M. W. Mahoney, Tree-like structure in large social and information networks, 13th International Conference
on Data Mining (ICDM), IEEE, 2013, pp. 1–10.

[3] M. Baïou and F. Barahona, On the integrality of some facility location polytopes, SIAM J. Discrete Math. 23 (2009), 665–679.
[4] E. Balas and W. Pulleyblank, The perfectly matchable subgraph polytope of a bipartite graph, Networks 13 (1983), 495–516.
[5] C. Barnhart, E.L. Johnson, G.L. Nemhauser, G. Sigismondi, and P. Vance, Formulating a mixed integer programming problem to improve

solvability, Oper. Res. 41 (1993), 1013–1019.
[6] O. Ben-Zwi, D. Hermelin, D. Lokshtanov, and I. Newman, Treewidth governs the complexity of target set selection, Discrete Optim. 8 (2011),

87–96.
[7] C. Blum, Revisiting dynamic programming for finding optimal subtrees in trees, Eur. J. Oper. Res. 177 (2007), 102–115.
[8] N. Chen, On the approximability of influence in social networks, SIAM J. Discrete Math. 23 (2009), 1400–1415.
[9] W. Chen, C. Castillo, and L.V. Lakshmanan, Information and Influence Propagation in Social Networks, Morgan & Claypool Publishers, San

Rafael, CA, 2013.
[10] C.-Y. Chiang, L.-H. Huang, B.-J. Li, J. Wu, and H.-G. Yeh, Some results on the target set selection problem, J. Combin. Optim. 25 (2013),

702–715.
[11] M. Conforti, G. Cornuéjols, and G. Zambelli, Integer Programming, Springer, New York, 2014.
[12] G. Cordasco, L. Gargano, A.A. Rescigno, and U. Vaccaro, “Optimizing spread of influence in social networks via partial incentives,” Structural

Information and Communication Complexity, C. Scheideler (ed.), Springer, Cham, 2015, pp. 119–134.
[13] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press, Cambridge, MA, 2009.
[14] M. Fischetti, M. Kahr, M. Leitner, M. Monaci, and M. Ruthmair, Least cost influence propagation in (social) networks, Math. Program. Ser. B

170 (2018), 293–325.
[15] M.X. Goemans, The Steiner tree polytope and related polyhedra, Math. Program. 63 (1994), 157–182.
[16] M. Granovetter, Threshold models of collective behavior, Am. J. Sociol. 83 (1978), 1420–1443.
[17] D. Günneç, S. Raghavan, and R. Zhang, Least-cost influence maximization on social networks, INFORMS J. Comput. 32 (2020), 289–302.
[18] D. Günneç, S. Raghavan, and R. Zhang, A branch-and-cut approach for the least cost influence problem on social networks, Networks 76 (2020),

84–105.
[19] D. Kempe, J. Kleinberg, and É. Tardos, Maximizing the spread of influence through a social network. Proceedings of the 9th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ACM, 2003, pp. 137–146.
[20] H. Kwak, C. Lee, H. Park, and S. Moon, What is Twitter, a social network or a news media? Proceedings of the 19th International Conference

on the World Wide Web, ACM, 2010, pp. 591–600.
[21] Y. Li, J. Fan, Y. Wang, and K.-L. Tan, Influence maximization on social graphs: A survey, IEEE Trans. Knowl. Data Eng. 30 (2018), 1852–1872.
[22] T. L. Magnanti and L. A. Wolsey, “Optimal trees,” Handbooks in Operations Research and Management Science, vol. 7, chapter 9, Elsevier,

Amsterdam, 1995, pp. 503–615.
[23] G. Nannicini, G. Sartor, E. Traversi, and R. Wolfler-Calvo, An exact algorithm for robust influence maximization, International Conference on

Integer Programming and Combinatorial Optimization, Springer, 2019, pp. 313–326.
[24] G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimization, Wiley, New York, 1988.
[25] S. Raghavan and R. Zhang, Rapid influence maximization on social networks: The positive influence dominating set problem, Working paper,

University of Maryland, 2017.
[26] S. Raghavan and R. Zhang, A branch-and-cut approach for the weighted target set selection problem on social networks, INFORMS J. Optim.

1 (2019), 304–322.
[27] P. Shakarian, S. Eyre, and D. Paulo, A scalable heuristic for viral marketing under the tipping model, Soc. Netw. Anal. Min. 3 (2013), 1225–1248.
[28] G. Spencer, S. Carattini, and R.B. Howarth, Short-term interventions for long-term change: Spreading stable green norms in networks, Rev.

Behav. Econ. 6 (2019), 53–93.
[29] F. Wang, H. Du, E. Camacho, K. Xu, W. Lee, Y. Shi, and S. Shan, On positive influence dominating sets in social networks, Theoret. Comput.

Sci. 412 (2011), 265–269.
[30] L.A. Wolsey, Integer Programming, Wiley, New York, 1998.
[31] H.-H. Wu and S. Küçükyavuz, A two-stage stochastic programming approach for influence maximization in social networks, Comput. Optim.

Appl. 69 (2018), 563–595.

How to cite this article: Raghavan S, Zhang R. Weighted target set selection on trees and cycles. Networks.
2021;77:587–609. https://doi.org/10.1002/net.21972

APPENDIX A: PROOF OF THEOREM 1

Proof. Let L be the set of leaf nodes in Gt, and let r be the root of the tree, as determined by Algorithm 1 (the central
node in the last star in Algorithm 1). We start from the leaf nodes and then follow the sequence of stars that Algorithm

https://orcid.org/0000-0002-9656-5596
https://orcid.org/0000-0002-9656-5596
https://orcid.org/0000-0002-4029-6585
https://orcid.org/0000-0002-4029-6585

604 RAGHAVAN AND ZHANG

1 considers (the proof works with any sequence, but for expositional reasons, it is best to consider the same sequence of
stars) and construct a dual feasible solution to DLPtree that satisfies the CS conditions.

For the purposes of this proof, we construct a specific form of the extended solution (x, y) from the (integral) solution
x obtained by Algorithm 1. Recall that as we backtrack for each central node of a star encountered, we know whether or
not it obtains external influence in the final solution. Thus, even prior to inserting the dummy nodes, we simply direct
the arc from a central node c’s parent to itself in the case of external influence, and the arc to a central node c’s parent in
the case of no influence. For any leaf node that is picked, we direct the arc from the leaf to its parent. For leaf nodes that
are not picked, we direct the arc from its parent to itself. It is easy to observe (before the dummy nodes are inserted and
the solution is extended) that in a solution obtained by Algorithm 1, a node i that is not selected has by design exactly gi

incoming arcs. We now insert the dummy nodes on each edge. If the influence on the edge propagates from i to j, then
with the dummy node d inserted in the middle of the edge, the influence propagates from i to d to j, with the y values set
accordingly. Now, to satisfy constraint (13) for any node i that is selected and has external influence, we simply reverse
the arc from the node i to the dummy node that is inserted between itself and its parent. An important (and meaningful)
consequence of this construction is that if a dummy node d in this extended solution has two incoming arcs (from nodes i
and j, with node i being node j’s child in Algorithm 1), then node i must have been picked in the solution. Notice that this
results in always satisfying constraint (15) as a binding inequality, implying that the CS condition (29) is always satisfied
between the primal solution (x, y) and every dual feasible solution. In other words, we can focus on the CS conditions
(30)-(34) for the rest of the proof.

We start with the leaf nodes and show how to set the dual variables associated with them to satisfy the CS conditions.
Specifically, for each leaf node l in L and the dummy node d adjacent to node l, we set vl = bl, ud = bl, wld = 0, and
zld = − bl. Figure A1 illustrates this construction. With these choices, constraints (23)-(25) associated with l, d, and edge
{l, d} are satisfied and always binding. Consequently, regardless of the primal solution, conditions (32)-(34) are satisfied
for nodes l∈L and the edge {i, d} adjacent to it. Condition (31) is satisfied because wld is 0. For (30), if 1− yld − yid

is not equal to 0, where node i is the other node adjacent to node d, then node l is selected when it can be activated by
an incoming arc, which never happens in Algorithm 1 (otherwise, this would imply that stars solely containing the leaf
nodes of the original tree select both a leaf node and its parent node at the same time in Algorithm 1). Hence, we have
1− yld − yid = 0, and (30) is satisfied. Therefore, the CS conditions are satisfied for this part of the dual solution.

Now we consider the remaining dual variables. For the center of a star i that Algorithm 1 considers, we iteratively
show how to set vi, up for the dummy node p, which is node i’s parent, wid for all d ∈ n(i), and zid for all {i, d}∈Et,
while ensuring that all of the associated CS conditions are satisfied. Start with the first star that Algorithm 1 considers.
The center of this star i must have child dummy nodes that have their u variables set. Relabel these child dummy nodes
in ascending order based on their u values. Let Sgi−1 be the first (gi − 1) child dummy nodes and let Sgi be the first gi

child dummy nodes. If node i is not the root node r, let p be the parent dummy node of node i, and set the value up in the
following way: we have three cases corresponding identically to the three cases in how a star is handled and contracted in
Algorithm 1. If bi <

∑
𝑑∈Sgi−1

u𝑑 , set up = 0. If bi >
∑

𝑑∈Sgi
u𝑑 , set up = ugi . Otherwise, set up = bi −

∑
𝑑∈Sgi−1

u𝑑 . We refer
to these as Cases 1, 2, and 3, respectively. If gi is equal to deg(i), then there is no Sgi , and we only have Cases 1 and 3. By
setting up in the aforementioned way for a dummy node p, which is the parent of the central node of a star encountered by
Algorithm 1, (30) is satisfied. To show this, we only need to worry about the value of up when the dummy node p has two
incoming arcs. Let i and j be the two adjacent nodes to this dummy node p (with i being the central node of the current star
and j being its parent in Algorithm 1). As we have argued above, node i must have been selected by Algorithm 1. However,
then we have up = 0 because node p’s value would be set based on Case 1, thus satisfying (30). Figure A2 illustrates this
construction. Now we focus on selecting feasible values for the remaining dual variables to satisfy conditions (31)-(34).

Sort the dummy nodes adjacent to node i based on their u values in ascending order. Let Fgi be the first gi dummy
nodes. We consider two situations. In situation 1, node i is selected in the solution. Thus, xi = 1. Then, we set vi as u(gi),
as the gith smallest value in {ud : d ∈ n(i)}. Let W = givi − bi. Because node i is selected in the solution, bi is smaller than∑

𝑑∈Fgi
u𝑑 , and W has a positive value because u(gi) is bigger than bi

gi
. We have yid = 1 for all d ∈ n(i) due to (13) and ydi = 0

for all d ∈ n(i) due to (14). Thus, (23) and (25) must be binding based on condition (32) and (34). Meanwhile, we need
to satisfy (24). We set zid = − vi and wid = vi − ud for all 𝑑 ∈ Fgi . Then, zid = − ud and wid = 0 for all 𝑑 ∈ {n(i)\Fgi}.
Lastly, let w = W −

∑
𝑑∈Fgi

w𝑖𝑑 . Pick any dummy node 𝑑 in n(i)\Fgi and set wi𝑑 = w and zi𝑑 = −u
𝑑
− w. Here, we reset

the value of wi𝑑 to distribute the excess amount of W in order to satisfy
∑

d ∈ n(i)wid = W and ensure that (25) is binding.
For any d ∈ n(i), (23) is binding. Furthermore, (24) is binding for any 𝑑 ∈ Fgi and is satisfied as an inequality for any
𝑑 ∈ n(i)\Fgi . Thus, condition (31) is satisfied because xi = yid = 1, and condition (33) is satisfied because ydi = 0. We
have (23) and (25) as binding; thus, conditions (32) and (34) are satisfied. Therefore, the CS conditions are satisfied for
this part of the dual solution. Figure A3 illustrates this construction.

RAGHAVAN AND ZHANG 605

FIGURE A1 Leaf nodes and complementary slackness conditions [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE A2 Setting up and condition (30) [Color figure can be viewed at wileyonlinelibrary.com]

In situation 2, node i is not selected, but it has exactly gi incoming arcs. We have xi = 0, and condition (32) is satisfied.
Let I be the set of dummy nodes that sends influence to node i, that is, ydi = 1 for all d in I. We set vi = u𝑑 , where
𝑑 = arg max{u𝑑 ∶ 𝑑 ∈ I}. Then, for all d ∈ I, we also have ydi = 1 and yid = 0 due to (14). Thus, (24) must be binding due
to condition (33). First, we set wid = 0 for all d ∈ n(i) and zid = − vi for all d ∈ I. Let W = givi − bi. If W has a positive value,
then (25) is violated. Thus, following the ascending ordering of ud for all d in I, we set wid = min{vi − ud, W −

∑
j∈ Iwij}

to satisfy (25). Because node i is not selected, it implies that bi ≥
∑

d ∈ Iud. Thus, vigi − bi ≤ vigi −
∑

d ∈ Iud, given that
∣I ∣ = gi. Therefore, we can distribute W in this way (i.e.,

∑
d ∈ Iwid = W) and ensure that condition (23) holds. Then, for

all d ∈ I, (23) is satisfied, and (24) is binding. Condition (31) is satisfied because xi = yid = 0; condition (33) is satisfied
because zid = − vi; and condition (34) is satisfied because yid = 0. Also, (25) is satisfied. Next, for all d ∈ n(i)\I, yid = 1
and ydi = 0 due to (14) and (15). Hence, (23) must be binding due to condition (34). Then, we set zid = − ud for all
d ∈ n(i)\I. Thus, for all d ∈ n(i)\I, (23) is binding, and (24) is satisfied because u𝑑 ≥ u(gi). Condition (31) is satisfied
because wid = 0; condition (33) is satisfied because ydi = 0; and condition (34) is satisfied because zid = − ud and wid = 0.
Lastly, condition (32) is satisfied because xi = 0 and (25) is satisfied. Thus, the CS conditions are satisfied for this part
of the dual solution. Figure A4 illustrates this construction.

Repeating this procedure for each star in the order that they are encountered in Algorithm 1 provides a dual feasible
solution to DLPtree, which satisfies the CS conditions associated with our primal solution obtained from Algorithm 1. ▪

We illustrate the procedure for constructing the dual solution with the example and primal solution in Figure 3B. Starting
at the leaf nodes (5,6,7,8,9,10,11) and dummy nodes adjacent to them (d, e, f , g, h, i, j), we have v5 = 5, v6 = 6, v7 = 7, v8 = 8,
v9 = 9, v10 = 10, v11 = 11 and ud = 5, ue = 6, uf = 7, ug = 8, uh = 9, ui = 10, uj = 11. For those edges between them, we

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

606 RAGHAVAN AND ZHANG

FIGURE A3 Situation 1: nonleaf node i is selected in the solution [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE A4 Situation 2: nonleaf node i is not selected in the solution

have w5d = 0, w6e = 0, w7f = 0, w8g = 0, w9h = 0, w10i = 0, w11j = 0, and z5d = − 5, z6e = − 6z7f = − 7, z8g = − 8, z9h = − 9,
z10i = − 10, z11j = − 11.

Then, we have nodes 1, 2, and 3 ready for the next step. We start with node 1. Node 1’s parent dummy node is node a and
ua = 0 because node 1 is a Case 1 node. Node 1 is in situation 1. We have v1 = 5 because g1 = 2 and the second smallest value
among {0,5,6} is 5. W = 5× 2− 4 = 6. Hence, z1a = − 5, w1a = 5 and z1d = − 5, w1a = 0 for edges (1, a) and (1, d). Then,
w1e = 6− 5 = 1 and z1e = − (6+ 1) = − 7.

Next, node 2’s parent dummy node is node b and ub = 9 because node 2 is a Case 2 node. Node 2 is in situation 2. We have
v2 = 9 because it has the incoming arcs (f , 2), (g, 2), and (h, 2), and the biggest value among {7,8,9} is 9. Hence, z2f = − 9,
z2g = − 9, z2h = − 9 and w2f = 0, w2g = 0, w2h = 0. W = 27− 30 = − 3. Then, z2b = − 9 and w2b = 0.

We now look at node 3. Node 3’s parent dummy node is node c and uc = 10 because node 3 is a Case 3 node. Node 3 is in
situation 2. Thus, v3 = 10 because it has the incoming arcs (c, 3) and (i, 2), and the biggest value among {10, 10} is 10. Thus,
z3c = − 10, z3i = − 10 and w3c = 0, w3i = 0. W = 20− 20 = 0. Then, z2b = − 11 and w2b = 0.

Now, node 4 is ready. It is in situation 2. Thus, v4 = 9 because it has the incoming arcs (a, 4) and (b, 4), and the biggest
value among {0, 9} is 9. Then, z4a = − 9, z4b = − 9 and w3c = 0, w3i = 0. W = 18− 15 = 3. Start from node a. w4a = min{9− 0,
3} = 3. Also, z4c = − 10 and w4c = 0. The sum of 2v4, z3c, z3i, and z3j is −10. The dual objective value is 38, which is exactly
equal to the primal objective value.

APPENDIX B: PROOF OF THEOREM 3

Proof. For ease of exposition, we use Figure B1 to illustrate the notation in Case 3. Figure B1A shows the original
graph G, and Figure B1B shows the transformed graph Gt. Here, w1, w2, w3, and w4 have positive values of 𝛼. Thus, S
contains nodes 1, 2, 3, and 4. Notice that S is connected in the original graph G. The induced subgraph Gt(S) is shown in
Figure B1C. Based on Gt(S), we obtain D(S) = {a, b, c} and a(S)\D(S) = {d, e, f , g, h, i, j}.

Sufficiency. Let r ∈  be of the form Case 1, and assume that r = 1
2
(r1 + r2) for some r1, r2 ∈  . Then, except for

u1
𝑑 and u2

𝑑 , all other entries are 0. Then, r1, r2 are in R(r). Thus, r is extreme.
Case 2 is similar to Case 1.
Let r ∈  be of the form Case 3, and assume that r = 1

2
(r1 + r2) for some r1, r2 ∈  . Thus, for any component of r

with the value of 0, their corresponding components in r1 and r2 are also 0. Given i and d, let pk
𝑖𝑑 represent the positive

component of uk
𝑑 or vk

𝑖𝑑 , k = 1, 2. Then, we have w1
i +w2

i = 2𝛼 and p1
𝑖𝑑 + p2

𝑖𝑑 = 2𝛼 for all d ∈ n(i) and for all i∈ S. Then, if
there is a pair d1 and d2, we have p1

𝑖𝑑1
> p1

𝑖𝑑2
if and only if p2

𝑖𝑑1
< p2

𝑖𝑑2
. However, constraint (41) stipulates that wk

i ≤ pk
𝑖𝑑 ,

http://wileyonlinelibrary.com

RAGHAVAN AND ZHANG 607

k = 1, 2. Hence, pk
𝑖𝑑1

= pk
𝑖𝑑2

= 𝛼k, k = 1, 2, for all d1, d2 ∈ n(i). Otherwise, either constraint (41) would be violated or
w1

i +w2
i < 2𝛼 because wk

i would take the smaller value between pk
𝑖𝑑1

and pk
𝑖𝑑2

, k = 1, 2. Therefore, r1, r2 are in R(r). Thus,
r is extreme.

Necessity. Let r be an extreme vector of  . Let Cr = {S⊆V : wi > 0 ∀ i∈ S, S is connected in the original tree graph
G and is maximal}, Sd = {d ∈D : ud > 0} and Sid = {{i, d}∈Et : vid > 0} based on this r. In the following proof, to prove
that a given ray r is not extreme, we construct two feasible rays r1 and r2, which are different in at least one component.
After constructing r1, r2 is set as 2r − r1. Then, r = 1

2
(r1 + r2) by design.

First, we consider the situation where Cr = ∅ and assume that |Sd |+ |Sid |> 1. Let r1contain all but one of the positive
components in r with their values doubled. Thus, if |Sd |+ |Sid |> 1, r is not extreme, contrary to the assumption. We
conclude that if Cr = ∅, then |Sd |+ |Sid | = 1 and thus, r is either in the form of Case 1 or Case 2. Figure B2 illustrates
this situation for the problem considered in Figure B1. Here, a shaded node indicates that the node has an associated dual
variable with a positive value.

Now consider the situation when Cr ≠ ∅. When |Cr|> 1, there is more than one connected component. Consider any
set S∈Cr. r1 has values w1

i = 2wi and u1
𝑑 = 2u𝑑 , v1

𝑖𝑑 = 2v𝑖𝑑 for all d ∈ n(i) and all i∈ S and 0s in the other components.
Thus, if |Cr|> 1, r is not extreme, contrary to the assumption. Figure B3 illustrates this situation. The two components in
Cr are denoted by S′

and S′′
.

When |Cr| = 1 (so that the set of nodes with wi > 0 in the original tree G forms a single connected component) and
S∈Cr, define S0 = {{j, d}∈Et : pjd > 0, j∈V\S}. Recall that we use pjd to generically represent either of the positive
components ud or vjd. Suppose that S0 ≠ ∅; let r1 have w1

i = 2wi and u1
𝑑 = 2u𝑑 , v1

𝑖𝑑 = 2v𝑖𝑑 for all d ∈ n(i) and all i∈ S
and 0s in the other components. Then, r2 is feasible and has at least one positive component because S0 is not empty, and
its corresponding components are not in r1. Thus, if |Cr| = 1 and S0 ≠ ∅, r is not extreme, contrary to the assumption.
Figure B4 illustrates this situation.

(A) (B) (C)

FIGURE B1 Illustration of notation in Theorem 3

FIGURE B2 Cr = ∅ and |Sd |+ |Sid |> 1: figure shows that if Cr = ∅, r must be of the form Case 1 or Case 2 [Color figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com

608 RAGHAVAN AND ZHANG

FIGURE B3 When ∣Cr ∣ > 1, r is not extreme [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE B4 When |Cr | = 1 and S0 ≠ ∅ (some u’s and v’s outside S have positive values), r is not extreme [Color figure can be viewed at
wileyonlinelibrary.com]

When |Cr| = 1, define S1 = {{i, d}∈Et : i∈ S, ud > 0 ⊕ vid > 0}, where only one of u and v variables is positive, and
S2 = {{i, d}∈Et : i∈ S, ud > 0, vid > 0}, where both u and v variables are positive. Suppose that S2 ≠ ∅; let 𝛼1 = 2min{wi,
ud, vid : i∈ S, (i, d)∈ S2}; then, we make r1 have w1

i = 𝛼1 for all i∈ S. For {i, d}∈ S2, we have v1
𝑖𝑑 = 𝛼1. Also, for {i,

d}∈ S1, if ud > 0, we have u1
𝑑 = 𝛼1. Otherwise, we have v1

𝑖𝑑 = 𝛼1. The remaining components are 0s. Then, r1, r2 are
different in at least one direction because the component that is {wi, ud, vid : i∈ S, {i, d}∈ S2} is positive in r1, but zero
in r2. Thus, we must have |S2| = ∅. Figure B5 illustrates this situation.

Next, suppose that |Cr|= 1 and ∣S2 ∣ = ∅; consider a node i∈ S and let wi = 𝛼. Define S+ = {{i, d}∈ S1 : pid >𝛼}. When
S+ ≠ ∅, consider an edge {i, d}∈ S+ with ud > 0. We can make r1 have u1

𝑑 = 2(u𝑑 − 𝛼) and 0s in the other components.
Then, r1, r2 are different in at least one direction because r1 only has one positive component, and r2 has at least two
positive components. Thus, if |Cr| = 1, then S+ = ∅. Figure B6 illustrates this situation.

Next, define Sv = {{i, d}∈Gt(S) : vid > 0}. Suppose that Sv ≠ ∅; consider an edge {i, d}∈ Sv with j adjacent to d. We
decompose S into two connected components (in the original tree graph G) by using the edge {i, j} (removing {i, j} in G
separates S into two connected components). Let S(i) be the one containing node i. We make r1 have w1

i = 2wi, u1
𝑑 = 2u𝑑 ,

and v1
𝑖𝑑 = 2v𝑖𝑑 for all i in S(i) and d in n(i). Additionally, it has 0s in the remaining components. Thus, if |Cr| = 1, then

Sv = ∅. Figure B7 illustrates this situation.
This leaves a single possibility: |Cr| = 1, S0 = ∅, S2 = ∅, S+ = ∅, and Sv = ∅. Consider an edge {i, j} in the original

graph G where both i, j∈ S; and the edges {i, d} and {d, j} in Gt(S) are associated with {i, j}. Here, only ud > 0 because
Sv = ∅. Thus, wi = wj = ud because S+ = ∅. Given that S is a connected component, we have wi = wj for i, j in S; thus,
ud = 𝛼 for d ∈D(S). This proves that if Cr ≠ ∅, then r must be in the form of Case 3. ▪

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

RAGHAVAN AND ZHANG 609

FIGURE B5 When |Cr | = 1, S0 = ∅, and S2 ≠ ∅ (ud and vid are nonzero for some node i∈ S), r is not extreme (the bold line represents the associated dual
variable v and takes a positive value) [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE B6 When |Cr | = 1, S0 = ∅, S2 = ∅, and S+ ≠ ∅ (either ud or vid is greater than 𝛼 for some node i∈ S), r is not extreme [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE B7 When |Cr | = 1, S0 = ∅, S2 = ∅, S+ = ∅, and Sv ≠ ∅ (vid is nonzero for some edge {i, d} in Gt(S), the induced graph of S), r is not extreme [Color
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

