
Reload Cost Trees and Network Design

Ioannis Gamvros
IBM Software Group, ILOG Optimization, 4400 North First Street, San Jose, California 95134

Luis Gouveia
Departamento de Estatística e Investigação Operacional, Faculdade de Ciências da Universidade de Lisboa,
Centro de Investigação Operacional Bloco C6, Piso 4, 1749-016 Lisboa, Portugal

S. Raghavan
Robert H. Smith School of Business & Institute for Systems Research, University of Maryland, College Park,
Maryland 20742

In this article, we consider the notion of “reload costs”
in network design. Reload costs occur naturally in many
different settings including telecommunication networks
using diverse technologies. However, reload costs have
not been studied extensively in the literature. Given that
reload costs occur naturally in many settings, we are
motivated by the desire to develop “good” models for
network design problems involving reload costs. In this
article, and as a first step in this direction, we propose and
discuss the reload cost spanning tree problem (RCSTP).
We show that the RCSTP is NP-complete. We discuss
several ways of modeling network design problems with
reload costs. These involve models that expand the orig-
inal graph significantly—to a directed line graph and a
colored graph—to model reload costs. We show that the
different modeling approaches lead to models with the
same linear programming bound. We then discuss sev-
eral variations of reload cost spanning tree and network
design problems, and discuss both their complexity and
models for these variations. To assess the effectiveness
of the proposed models to solve RCSTP instances, we
present results taken from instances with up to 50 nodes,
300 edges, and nine technologies for several variations
of the problem. © 2011 Wiley Periodicals, Inc. NETWORKS,
Vol. 59(4), 365–379 2012

Keywords: reload costs; network design; integer programming
formulations; spanning trees; Steiner variants; diameter/hop con-
straints

Received January 2010; accepted March 2011
Correspondence to: S. Raghavan; e-mail: raghavan@umd.edu
Contract grant sponsor: Fundação para a Ciência e Technologia grant
POCTI-ISFL-1-152 (to Luis Gouveia).
DOI 10.1002/net.20443
Published online 1 August 2011 in Wiley Online Library
(wileyonlinelibrary.com).
© 2011 Wiley Periodicals, Inc.

1. INTRODUCTION

In this article, we consider the notion of “reload costs”
in network design. Reload costs occur in telecommunication
networks using diverse technologies. For example, one of the
products offered by commercial satellite service providers
and their partners is a virtual private network (VPN) that can
offer voice, video, and data connectivity between all of the
geographically dispersed locations of large corporate, gov-
ernment, and military organizations. Typically, these VPNs
are made up of satellite links and fiber optic cables. The use of
diverse technologies at different junctions of the VPN results
in an extra cost component (i.e., in addition to typical routing
costs) that is associated with the equipment required to seam-
lessly bind them together. These interface costs are referred
to as reload costs and depend on the technologies being con-
nected. Moreover, these costs can sometimes dominate other
costs such as the regular routing costs.

Reload costs can appear under many different contexts.
In the telecommunications industry, any network design that
incorporates different technologies will contain reload costs.
Even in cases where the technology remains the same but
there are many different telecommunications providers that
participate in the complete network, switching between the
networks of different providers might entail reload costs.
In the transportation industry, intermodal freight is a fast
growing and very successful business. In these transportation
networks, the unloading of freight from one type of carrier
to another results in significant reload costs. In the energy
industry, reload costs can capture the losses associated with
the interfaces used to transfer energy from one type of carrier
to another.

Given that reload costs occur naturally in many settings,
we are motivated by the desire to develop “good” models for
network design problems involving reload costs. As a first

NETWORKS—2012—DOI 10.1002/net

step in this direction, this article proposes and discusses the
(minimum) reload cost spanning tree problem (RCSTP). For-
mally, we are given a graph GR = (VR, ER), a color Cij for
each {i, j} ∈ ER (the colors represent different technologies in
the telecommunications industry context or different carriers
in the transportation industry context), a per unit (nonneg-
ative) flow (i.e., variable) reload cost1 Ri

nm for each pair of
colors (n, m) at node i, and a set of (nonnegative) demands
dst between all pairs of nodes (s, t) in VR. Given a spanning
tree T , we define the reload cost between nodes s and t as
the sum of the reloads in the unique path in T between s and
tmultiplied by the demand dst . The total reload cost of a span-
ning tree T is given by the sum of the reload costs for all pairs
of nodes. We wish to build a spanning tree over the nodes in
VR that has minimum total reload cost. We call this problem
the RCSTP. For the moment, especially given our desire to
better understand modeling issues related to reload costs, we
ignore other types of costs in our models. Later, we explain
how to incorporate additional costs within our models.

A problem related to the RCSTP is the Quadratic Span-
ning Tree Problem (QSTP) [2]. In the QSTP, we also wish
to build a minimum cost spanning tree, where the costs are
associated with pairs of edges. A version of the QSTP that is
more closely related to the reload cost problem studied in this
article is the so-called adjacent QSTP (AQSTP), where only
adjacent pairs of edges have nonzero costs (see [2]). Notice
that the distinction between the costs in the AQSTP and the
reload costs incorporated in the RCSTP is that the former are
fixed costs associated with the selection of adjacent edges,
whereas the latter are variable (per-unit of flow) costs asso-
ciated with flow on the edges. If the underlying graph has
colored edges as we have in the RCSTP, a “colored” variant
of the AQSTP is obtained when we consider costs associ-
ated with adjacent edges that have different colors. Here, a
fixed reload cost is associated with every adjacent pair of
edges on the tree with different colors. We call this problem
the fixed RCSTP (FRCSTP) (see Section 6 for a discussion
of the FRCSTP) which is also NP-complete because it gen-
eralizes the AQSTP (consider a graph with all edges with
different colors). The difference between the FRCSTP and
the RCSTP is identical to the difference between the classic
Minimum Spanning Tree Problem (MSTP) and the Optimal
Communications Spanning Tree Problem (OCSTP) [14].

Despite their apparent usefulness in modeling complex
cost structures in both the telecommunications and trans-
portation industry, reload costs have not been studied exten-
sively in the literature. Specifically, the only article in which
reload costs appear (and were first introduced) prior to the
preliminary conference version of this article [8] is by Wirth
and Steffan [17] who introduce minimum diameter spanning
trees with reload costs. Their problem is similar to the RCSTP
but with a different objective. They wish to build a tree net-
work that spans all the nodes in the graph but has the smallest

1As the reload costs can be location dependent (e.g., in intermodal freight),
to consider the most general version of this problem, we allow the reload
cost to also depend on the node at which reload occurs.

possible diameter with respect to the reload costs (i.e., they
wish to minimize the maximum reload cost between any two
nodes in the network). The authors show that the minimum
diameter RCSTP is NP-Complete for graphs with an arbitrary
node degree. They also present an approximation algorithm
for graphs with maximum node degree equal to 5 and an exact
algorithm for graphs with maximum node degree equal to 3.
It is interesting to note that the difference between the RCSTP
and the minimum diameter version studied by Wirth and Stef-
fan [17] also has an analogue in more conventional spanning
tree problems given by the previously mentioned OCSTP and
the minimum diameter spanning tree problem [13], where one
wishes to find a tree that minimizes the diameter (meaning the
length of the longest path in the tree). We should note that
except for the MSTP and the minimum diameter spanning
tree problem all of the aforementioned problems are known
to be NP-Complete. Not surprisingly, as we will show, the
RCSTP is also NP-complete.

Subsequent to our presentation and introduction of the
RCSTP in [8], other researchers have begun to consider
reload costs in network design problems. In particular, we
are aware of three new works that have appeared since 2008.
Galbiati [6] considers the minimum diameter spanning tree
with reload costs and solves an open question of Wirth and
Steffan [17]. She shows that unless P=NP the problem cannot
be approximated within any constantα < 2 when reload costs
are unrestricted and cannot be approximated within any con-
stantβ < 5/3 if the reload costs satisfy the triangle inequality.
Amaldi et al. [1] discuss the complexity of some path, tour,
and flow problems under variable reload costs. Gourvès et al.
[11] focus on the complexity of the minimum reload cost
s − t path (which does not allow a node or edge to be revis-
ited), trail (which allows a node to be revisited), and walk
(which allows both a node and an edge to be revisited) prob-
lems under symmetric and asymmetric reload costs. None
of the aforementioned works comprehensively studies tree
problems nor do they consider modeling approaches to solve
reload cost problems.

This article has several goals. In Section 2, we show that
the RCSTP (and in fact, many special cases of the problem) is
NP-complete. Thus, while reload costs are easy to state and
conceptualize, even the simplest reload cost problems are
challenging. Section 3 begins the discussion of how to effec-
tively model problems with reload costs. Because reload costs
only occur when there is a change of color on the edges on
a route, a straightforward formulation to model the problem
is a network flow problem with a quadratic objective func-
tion which is the first model presented and discussed in this
study. Then, we present a linearized version of the quadratic
model, and an enhanced version of this model that is obtained
by generalizing the flow conservation constraints. This sec-
ond model seems to be quite natural for the problem under
study and can be seen as a straightforward linear network
flow model in a specialized auxiliary graph, more precisely,
a directed line graph of the original graph GR. The line graph
formulation has the disadvantage that it is completely blind
to the number of different colors of a given instance. Section

366 NETWORKS—2012—DOI 10.1002/net

4 presents a different formulation whose size depends on the
number of colors of the problem. This formulation imitates,
in a certain way, the networks using reload costs and views
the given network as partitioned into layers, each one associ-
ated to a given color (technology or carrier). In general, this
formulation that we refer to as the colored graph formula-
tion also has (many) fewer constraints and variables than the
line graph formulation. We also show that both formulations
produce the same linear programming bound, thus making
the colored graph formulation more attractive to use from a
practical point of view (this will be confirmed by our com-
putational experiments). Section 5 discusses the equivalence
between the linear programming relaxations of the two mod-
els together with model enhancements. Section 6 describes
several variants of the RCSTP. Adequate modifications of the
models described for the RCSTP will also be described for
these variants. Section 7 describes our computational exper-
iments which include testing the models for the RCSTP as
well as a directed model for a single-source variant of the
problem. Section 8 provides concluding remarks.

2. COMPLEXITY OF THE RCSTP

The decision version of the RCSTP asks the question
“Is there a spanning tree with total reload cost ≤ K?” It
is easy to see that this decision version of the RCSTP is
in NP. We now show that the RCSTP is NP-complete. To
do so, we transform an instance of the 3-SAT problem to
an instance of the RCSTP. Recall, an instance of 3-SAT is
given by a set X = {x1, x2, x3,, xn} of true/false variables
and a set C = {C1, C2,, Ck} of k clauses over X, each
containing 3 literals. The goal is to find an assignment of
true/false values to the variables so that all clauses are truth-
fully satisfied. An instance of the RCSTP is constructed from
an instance of the 3-SAT problem as follows. Create nodes
r, x1, x2, x3,, xn, C1, C2,, Ck . Connect r to node xi

(i = 1, . . . , n) by two parallel edges: one with color i and one
with color ī. For every i = 1, . . . , n and j = 1, . . . , k connect
xi to Cj by an edge of color i if xi is a literal in Cj, and connect
xi to Cj by an edge of color ī if x̄i is a literal in Cj. So far, the
transformation is identical to that in Wirth and Stefan [17]
and is illustrated by an example in Figure 1.

The reload costs are then set as follows. They are equal
to 0 when there is no change in color, and equal to 1 when
there is a change in color. The demands are set to 1 for every
pair of nodes (r, xi) and (r, Ci), and set to 0 to all other pairs.
The resulting network can be viewed as a single source (as
opposed to all pairs) RCSTP problem with unit reload costs.
Observe that the reload costs satisfy the triangle inequality.

We note that it suffices to focus on spanning trees for the
RCSTP where the clause nodes have unit degree. Suppose
there is a clause node Cj connected to node xi that has no
edge to node r. Deleting (xi, Cj) and adding (r, xi) with color
identical to (xi, Cj) results in a solution whose cost does not
increase, and where the degree of clause node Cj is reduced.
When there is an assignment that satisfies all clauses truth-
fully, there will be no reloads in the paths from node r to

FIG. 1. Transformation of 3-SAT into the RCSTP.

each of the other nodes in the graph, and thus the cost of
the minimum reload cost tree will be 0. On the other hand,
if there is no assignment of values to the variables that sat-
isfies all clauses, then the minimum cost RCSTP must have
a nonzero cost. (The corresponding decision version of the
RCSTP asks the question whether there is a reload cost span-
ning tree with total reload cost ≤ 0.) This shows that the
single-source RCSTP with unit reload costs is NP-complete,
and thus by extension the RCSTP is NP-complete.

3. THE LINEARIZED QUADRATIC FORMULATION
AND THE LINE-GRAPH FORMULATION

In this section, we present a model for the problem
that is obtained after linearizing the objective function of a
straightforward network flow model (Subsection 3.1). Then,
in Section 3.2, we present an enhancement of this model that
is obtained by generalizing the flow conservation constraints
and show that the new model has a natural interpretation when
viewed in a special auxiliary graph.

In terms of notation, we note that, because the models
that we will discuss have underlying directed shortest path
problems, we shall define a set AR of arcs defined from the
edge set ER (that is, for each edge {i, j} in ER, the set AR

contains two arcs (i, j) and (j, i)). We say that a path traverses
arc (i, j) if it traverses edge {i, j} in the direction from i to j.

3.1. The Linearized Formulation

Let ue be a binary variable indicating whether edge e =
{i, j} of the original graph is in the solution (we will use either
the notation ue or u{ij}) and let the binary variables yst

ij (i �= t
and j �= s) indicate whether arc (i, j) is in the path from node s
to node t). Then, the problem can be modeled as a straightfor-
ward network flow model with a quadratic objective function
(to simplify the indexing of the summation terms, we assume
that the models are defined on complete graphs):

min
∑

s,t∈VR

dst

∑
i,j,k∈VR

Rj
CijCjk

(
yst

ij ∗ yst
jk

)
(3.1)

NETWORKS—2012—DOI 10.1002/net 367

∑
i∈VR

yst
ij −

∑
i∈VR

yst
ji =

1 j = t
0 j �= s, t
−1 j = s

for all s, t ∈ VR,

(3.2)

yst
ij + yst

ji ≤ u{ij} for all {i, j} ∈ ER; s, t ∈ VR, (3.3)
∑
e∈ER

ue = |VR| − 1, (3.4)

yst
ij ∈ {0, 1} for all (i, j) ∈ AR, s, t ∈ VR, (3.5)

ue ∈ {0, 1} for all e ∈ ER. (3.6)

We denote by QUAD the formulation presented above.
The objective function is straightforward and considers all
reload costs between arc transitions (note that this cost is
zero when Cij = Cjk). Constraints (3.2) are typical flow con-
servation constraints and guarantee that 1 unit of flow goes
from node s to node t, for each commodity pair (s, t). Con-
straints (3.2) can also be viewed as modeling path problems,
one for each pair of nodes s and t. The forcing constraints
(3.3) restrict the flow to be on edges that are in the span-
ning tree. Constraint (3.4) states that the spanning tree has
the required number of edges and together with the flow con-
servation constraints and the forcing constraints ensures that
the set of edges associated to variables ue equal to 1, form a
spanning tree. Note that when the reload costs are symmet-
ric (i.e., Ri

nm = Ri
mn), and there are no other routing costs

it is possible to reduce the number of commodities by set-
ting dst = dst + dts for s < t, and dts = 0. We then only
consider commodity pairs (s, t) when s < t. In this way, we
only include half of all the possible origin-destination pairs
in our model and therefore we reduce the number of decision
variables considered.

To linearize the quadratic objective function, consider the
variables f st

ijk (i, j �= t and j, k �= s) that indicate whether
the path from s to t traverses arc (j, k) immediately after
traversing arc (i, j). These variables permits us to write a
model with the following linear objective function

∑
s,t∈VR

dst

∑
i,j,k∈VR

Rj
CijCjk

f st
ijk (3.7)

provided that we also introduce constraints linking the sets
of flow variables. Here, we consider the following two sets
of linking constraints:

Forward set:

yst
ij =

∑
k∈VR

f st
ijk for all (i, j) ∈ AR, s, t ∈ VR, j �= t, (3.8a)

yst
it = f st

itt′ for all (i, t) ∈ AR, s, t ∈ VR. (3.8b)

Backward set:

yst
ij =

∑
k∈VR

f st
kij for all (i, j) ∈ AR, s, t ∈ VR, i �= s, (3.9a)

yst
sj = f st

s′sj for all (s, j) ∈ AR, s, t ∈ VR. (3.9b)

Note that when defining the forward linking constraints
for the variables associated with arcs (i, t), constraints (3.8b),
we have also created linearized variables f st

itt′ with zero reload
costs. This is equivalent to adding a node t′ and an arc (t, t′)
to the underlying shortest path problem from any node s to
node t and considering a zero reload cost when changing from
an arc (j, t) to the new arc (t, t′). Similarly, in the backward
linking constraints for the variables associated with arcs (s, j),
constraints (3.9b), we have also created linearized variables
f st
s′sj with zero reload costs. This is equivalent to adding a node

s′ and an arc (s′, s) to the underlying shortest path problem
from any node s to node t and considering a zero reload
cost when changing from the new arc (s′, s) to an arc (s, i).
Thus, a path from any node s to any node t in the original
graph corresponds now to a path from the node s′ to the
node t′ (which necessarily starts with arc (s′, s) and ends with
arc (t, t′)). We denote by LIN-QUAD the model obtained by
replacing the objective function (3.1) in QUAD by (3.7), and
by adding to QUAD the constraints (3.8a/b), (3.9a/b) and

f st
ijk ∈ {0, 1} for all i, j, k ∈ VR : (i, j), (j, k) ∈ AR, s, t ∈ VR.

(3.10)

Note, that we could have obtained two other valid lin-
earized models by using only one set, forward or backward,
of the linking constraints. However, it can easily be seen that
such models would have a linear programming relaxation
that is weaker than the linear programming relaxation of the
LIN-QUAD model.

3.2. Enhancing the Linearized Model and the Line Graph
Formulation

Recall that when linearizing the quadratic model, we have
introduced new variables that indicate the flow moving from
one arc to another (adjacent) arc. To enhance the model, for
each pair of source and destination nodes, we consider new
constraints that are flow conservation constraints for each
arc of the graph (as opposed to flow conservation constraints
for each node as in the QUAD and LIN-QUAD models).
Subsequently we shall denote by node flow conservation
constraints, the flow conservation constraints (3.2) and by
arc flow conservation constraints, the new flow conservation
constraints (3.11).

The arc flow conservation constraints are as follows:

∑
i∈VR

f st
ijk −

∑
i∈VR

f st
jki

=

1 (j, k) = (t, t′)
0 (j, k) �= (s′, s), (t, t′)
−1 (j, k) = (s′, s)

for all s, t ∈ VR. (3.11)

These new constraints can be interpreted as follows: Sup-
pose that the path from s to t contains arc (j, k). Then, the
constraints state that the path contains an arc entering node j
if and only if it contains an arc leaving node k.

368 NETWORKS—2012—DOI 10.1002/net

We add these constraints to the LIN-QUAD model. Note
that in the presence of these constraints for arcs (j, k) �=
(s′, s), (t, t′), one of the sets of the linking constraints, (3.8a)
or (3.9a), becomes redundant, and can be omitted. In the
remainder of the text, we shall keep (3.8a). We shall use these
linking constraints to replace “old” variables yst

ij by the new
variables f st

ijk in the inequalities of the LIN-QUAD model.
Thus, the previous linking constraints (3.3) become

∑
k∈VR

f st
ijk +

∑
k∈VR

f st
jik ≤ u{ij} for all {i, j} ∈ ER; s, t ∈ VR.

(3.12)

We show next that the node flow conservation constraints
(3.2) are redundant in the LIN-QUAD model augmented
with the arc flow conservation constraints (3.11). First, we
note that under (3.8b) and (3.9b), the node flow conservation
constraints (3.2) for j = s, t are the arc flow conservation
constraints for (j, k) = (t, t′), (s′, s). With respect to (3.2) for
j �= s, t, note that after using the constraints (3.8a) linking the
two sets of variables, the node flow conservation constraints
(3.2) for j �= s, t become
∑
i∈VR

∑
k∈VR

f st
ijk −

∑
i∈VR

∑
k∈VR

f st
jik = 0 for all s, t ∈ VR; j �= s, t.

(3.13)

Now, observe that if for a fixed s, t, and j, we add the arc flow
conservation constraints (3.11) for all arcs (j, k) we obtain
the given transformed node flow conservation constraints
(3.13). Thus, constraints (3.2) can also be omitted from the
model. For clarity, we write the whole new enhanced and lin-
earized model (without redundant inequalities) with the arc
flow conservation constraints:

min
∑

s,t∈VR

dst

∑
i,j,k∈VR

Rj
CijCjk

f st
ijk (3.7)

∑
i∈VR

f st
ijk −

∑
i∈VR

f st
jki =

1 (j, k) = (t, t′)
0 (j, k) �= (s′, s), (t, t′)
−1 (j, k) = (s′, s)

for all s, t ∈ VR, s < t (3.11)

∑
k∈VR

f st
ijk +

∑
k∈VR

f st
jik ≤ u{ij}

for all {i, j} ∈ ER; s, t ∈ VR, s < t, i, j �= s (3.12)

∑
e∈ER

ue = |VR| − 1 (3.6)

f st
ijk ∈ {0, 1} for all i, j, k : (i, j), (j, k) ∈ AR, s, t ∈ VR, s < t

(3.10)

ue ∈ {0, 1} for all e ∈ ER. (3.4)

FIG. 2. The original graph (after directing) associated with commodity
(s, t). This example has three colors denoted by 1,2,3. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

For reasons to be specified next, we denote by LINE-GRAPH,
the formulation just obtained. The steps leading from the
LIN-QUAD model to the LINE-GRAPH model permit us to
state the following result:

Proposition 3.1. The linear programming bound of the
LINE-GRAPH formulation is greater than or equal to the
linear programming bound of the LIN-QUAD formulation.

We are now ready to give a different and intuitive interpre-
tation for the flow systems in the new formulation (and thus
justify its designation). For each pair of nodes s and t, the
underlying “flow” problem can be interpreted as a “conven-
tional” shortest path problem in a more complicated graph,
a directed version of the so-called “line” graph (see [10]).
The designation of the new formulation follows from this
interpretation.

For each commodity (s, t), consider an associated
“directed” line graph LGst = (Vst , Ast) defined as follows:

i. Vst = {(s′, s), (t, t′)} ∪ {(x, y) : (x, y) ∈ AR}
ii. Ast = {((a, b), (c, d)) : (a, b), (c, d) ∈ Vst and b = c}

Thus, the node set Vst contains nodes that correspond to the
directed arcs in AR. The two dummy nodes (s′, s) and (t, t′)
corresponding to dummy arcs, as explained above. The arc set
Ast contains all arcs of the type ((x, y), (y, z)) that correspond
to two subsequent arcs in AR. Note also that the arc flow con-
servation constraints (3.11) are nothing other than the normal
node flow conservation constraints defined in LGst .

Figures 2 and 3 illustrate, for a given commodity (s, t),
the original graph after directing it and the corresponding
directed line graph. In Figure 2, the labels on the arcs denotes
their color. For simplicity, for a given pair i and j of nodes
such that the two arcs (i, j) and (j, i) exist, the figures include
only one bi-directed edge. Note that in the first figure, we are
only considering arcs leaving node s and only arcs entering
node t. A similar situation arises for the directed line graph
shown in the second figure with respect to nodes (s′, s) and
(t, t′). Note that the path P = {s, c, b, t} (here, we only give

NETWORKS—2012—DOI 10.1002/net 369

FIG. 3. The directed line graph obtained from the graph of Figure 2. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

the node set of the path) in the original graph corresponds to
the path PLG = {(s′, s), (s, c), (c, b), (b, t), (t, t′)} in the line
graph. The node transition costs of P are modeled by the arc
costs in PLG. Note that for an undirected “reload” graph GR =
(VR, ER), the associated directed line graph LGst = (Vst , Ast)

for a given commodity pair (s, t) contains 2 + 2|ER| nodes
and approximately

∑
i∈VR

deg(i)2 arcs where deg(i) indicates
the degree of node i in the original graph GR.

4. THE COLORED GRAPH FORMULATION

The LINE-GRAPH formulation has the disadvantage that
it is completely blind to the number of different colors of a
given instance. More precisely, for two instances which dif-
fer only in the number of colors of the edges included in
the underlying graph, the LINE-GRAPH formulation has the
same size for both instances and only differs in the number
of positive reload costs associated with the flow variables. In
this section, we present a different formulation whose size
depends on the number of colors of the problem. Thus, in
the same scenario discussed before, the formulation asso-
ciated with the instance with fewer colors will have fewer
variables and constraints—and thus fewer constraints and
variables than the LINE-GRAPH formulation. We shall also
show that both formulations produce the same linear pro-
gramming bound, thus making the new formulation more
attractive to use from a practical point of view (this will
be confirmed by our computational experiments). We note,
however, that this second formulation does not remove the
interest of the line graph formulation. The reason for this is
that the line graph formulation is more general in the sense
that it allows reload costs that depend on the arcs entering
and leaving the “reload” node. The formulation discussed in
this section cannot model these situations.

4.1. The Colored Graph Formulation

The model proposed here imitates, in a certain way, the
networks where reload costs occur and views the given
network as partitioned into layers, each one associated with a
given color (technology or carrier). Thus, for each color, the
arcs and nodes associated with the color define one of these
layers. Nodes where a reload can occur (change of color,
technology, or carrier) are included in different layers and are
connected by “reload” arcs. One example is given in Figures
4 and 5. Figure 4 depicts the original graph. A number asso-
ciated with an edge indicates the color of the corresponding
edge. Figure 5 shows the corresponding colored graph. As
the original graph has three colors, the colored graph has
three layers. For each node x in the original graph, a copy xi

is created in the layer associated with color “i.” Every edge
e ∈ ER is placed in the layer associated with its color. For
example, edge (s, a) is placed in layer 1 and becomes (s1, a1).
Between the copies of node x across the different layers we
add a clique representing reload cost edges. Going from one

FIG. 4. A reload cost graph GR with three colors. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

370 NETWORKS—2012—DOI 10.1002/net

FIG. 5. The colored graph CG obtained from the graph of Figure 4. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

layer to another represents a color change and thus the occur-
rence of a reload cost. In Figure 5, the unlabeled edges in the
colored graph are the reload edges.

Before presenting a more formal definition of the colored
graph and of the corresponding model, we point out that for
this approach to work the reload costs on any given node
need to satisfy the triangle inequality; otherwise, the model
would allow solutions that perform several reloads at a given
node before changing from an arc to another. However, this
assumption is quite reasonable and realistic in practice. As
shown in our discussion of the complexity of the RCSTP, the
problem remains NP-complete even when the reload costs
satisfy the triangle inequality.

Let C denote the colors in the original graph GR =
(VR, ER). Consider a color c ∈ C, and let Gc = (Vc, Ec) be
the graph defining the corresponding layer, that is, Vc denotes
the set of nodes adjacent to edges with color c in ER and Ec the
set of edges associated that have color c. The colored graph
CG = (VCG, ECG) is defined as follows. VCG = ∪[c:c∈C]Vc

and ECG = ∪[c:c∈C]Ec ∪ R, where R denotes the set of reload
edges. Edges in R are of the type {ic, ip} where node i is in
the layers associated with colors c and p.

To define the model, we need to create commodities and
flow variables for every pair of nodes (s, t) with positive
demand. We will denote by arc (ic, jc) of the colored graph,

the edge {ic, jc} traversed in the direction from node ic to jc.
Thus, we consider binary variables gst

icjc
(i �= t and j �= s)

indicating whether arc (i, j) of color c, is in the path from
node s to node t (or alternatively whether we use “arc” (ic, jc)
of the colored graph in the path from s to t). We also create
binary variables hst

jcjk
indicating whether we go from color c

to color k at node j, on the path from s to t (or alternatively
whether we use “reload arc” (jc, jk) of the colored graph CG
in the path from s to t). We also use, as before, the binary
variables u{i,j} indicating whether edge e = {i, j} ∈ ECG\R
of the original graph is in the solution (recall that the set of
edges ECG\R is identical to the set of edges ER of the original
graph). In the formulation below, we denote by Cj the set of
colors associated with node j. We can now rewrite the model
as follows (we use notation from the colored graph as well
as from the original “reload” graph):

min
∑

s,t∈VR

dst

∑
j∈VR

∑
m,n∈Cj

Rj
nmhst

jnjm
(4.1)

∑
k∈Cs

∑
j∈Vk

gst
sk jk

= 1 for all s, t ∈ VR, s < t, (4.2)

∑
k∈Ct

∑
i∈Vk

gst
ik tk

= 1 for all s, t ∈ VR, s < t, (4.3)

NETWORKS—2012—DOI 10.1002/net 371

∑
i∈Vk

gst
ik jk

+
∑

c:j∈Vc

hst
jcjk

−
∑
i∈Vk

gst
jk ik

−
∑

c:j∈Vc

hst
jk jc

= 0

for all j �= s, t; k ∈ C : j ∈ Vk ; s, t ∈ VR, (4.4)

gst
ik jk

+ gst
jk ik

≤ u{ij}
for all {i, j} ∈ ER; k ∈ C : i, j ∈ Vk , s, t ∈ VR, s < t,

(4.5)
∑
e∈ER

ue = |VR| − 1, (4.6)

gst
ik jk

, gst
jk ik

∈ {0, 1} for all {i, j} ∈ ER; k = Cij; s, t ∈ VR,
(4.7)

hst
ik ip

∈ {0, 1} for all i ∈ VR, k, p ∈ Ci, s, t ∈ VR, (4.8)

ue ∈ {0, 1} for all e ∈ ER. (4.9)

Constraint set (4.2) states that for a given commodity (s, t),
one arc leaves one of the copies of node s. If the copy of this
node is in colored layer k, then the arc leaving the node must
use the same color. A similar interpretation is given to con-
straint set (4.3) but this time, with respect to the destination
node t. Constraints (4.4) are the flow conservation constraints
for every commodity pair (s, t), for every node j �= s, t and
every color associated to the node. Because every node in a
layer has two types of edges adjacent to it, reload edges and
edges within the layer, the flow balance constraints have two
types of variables corresponding to them. Note that in terms
of feasible solutions, these flow conservation constraints per-
mit a sequence of reload edges on the same node and that
is why we have imposed the triangle inequality assumption
for reloads at each node. The fourth set (4.5) is the forcing
constraints, and they are only defined for edges in ER. Con-
straint (4.6) indicates that the solution has |VR| − 1 edges
in the different layers, and the remaining constrains are self-
explanatory. We denote by COLORED-GRAPH the previous
model.

We note that we could have defined the model in a slightly
different way, which helps in proving the equivalence of the
linear programming relaxation of the two models, LINE-
GRAPH and COLORED-GRAPH. We could have added two
dummy nodes s and t with arcs from node s to every copy
of node s in the corresponding layers and with arcs from any
copy of node t to node t. Then, the first two flow conservation
constraints (4.2 and 4.3) of the model COLORED-GRAPH
can be rewritten as follows:

∑
k∈Cs

gst
s,sk

= 1 for all s, t ∈ VR,

∑
k∈Ct

gst
tk ,t = 1 for all s, t ∈ VR.

We conclude this section by noting that an alternative col-
ored model has been studied in Gamvros [7]. In this approach,
we do not have reload arcs of the type (ic, ip) where node i is
in the layers associated with colors c and p. Instead, we have
arcs of the form (ic, jp), where arc (i, j) has color c and a reload

occurs at node j from color c to color p. Thus, an arc (ic, jp)
in this new layered color graph represents the sequence of
two arcs (ic, jc) − (jc, jp) in the previous colored graph. This
would lead to a layered colored graph with many more arcs
than the one we have developed in this article and that is why
we are omitting the complete description of this approach
from this article.

5. EQUIVALENCE OF THE CORRESPONDING
LINEAR PROGRAMMING RELAXATIONS AND
MODEL ENHANCEMENTS

In this section, we show that under the given assump-
tions, that is, reload costs depend solely on the change in
color of the edges and satisfy the triangle inequality at every
node, the LINE-GRAPH and COLORED-GRAPH formula-
tions produce the same linear programming bound (this is
shown in Subsection 5.1). In Subsection 5.2, we show how to
significantly enhance the linear programming relaxation of
the given models.

5.1. Equivalence of the Linear Programming Relaxations

To show that the two models, LINE-GRAPH and
COLORED-GRAPH produce the same linear programming
bound, we start by making the following simple observation.

Consider two nodes s and t, and consider any path (which
we can assume without loss of generality is loopless and
elementary) between nodes (s′, s) and (t, t′) in the line graph.
This path can easily be transformed into a path between a
copy of node s and a copy of node t in the colored graph.
We only need to distinguish two situations occurring in the
path: (a) an arc ((i, j), (j, k)) with positive cost (because there
is a reload cost at node j and arc (i, j) has color c1 and arc
(j, k) has color c2) being included in the path, and (b) an arc
((i, j), (j, k)) with zero cost (because there is no reload cost
at node j and arc (i, j) has color c1 and arc (j, k) has the same
color c1) being included in the path. In the first case, the part
of the path in the colored graph corresponding to this arc is
composed of the three arcs (ic1, jc1), (jc1, jc2), (jc2, kc2) with
a reload cost on the middle arc. In the second case, the part
of the path in the colored graph corresponding to this arc is
composed of the two arcs (ic1, jc1), (jc1, kc1). Note also that
these arguments show that the two paths have the same cost.
Consider now two nodes sc and tp (that is, the copy of node
s in the layer with color c and the copy of node t in the layer
with color p), and consider an elementary path between sc

and tp in the colored graph such that it does not do multiple
reloads at the same node. By reversing the argument given
before we see that this path can also be easily replicated in
the line graph for commodity (s, t) and that it has the same
cost as the path in the colored graph.

Consider now a feasible solution for the linear program-
ming relaxation of the LINE-GRAPH formulation. Let us
consider any pair s, t and the possible fractional solution cor-
responding to the 1 unit of flow between nodes (s′, s) and

372 NETWORKS—2012—DOI 10.1002/net

(t, t′). As the underlying shortest path model is the stan-
dard unconstrained shortest path model in a special graph,
the flow decomposition theorem (see [4]) permits us to state
that this fractional solution can be decomposed into several
paths, each one carrying a flow of less than one unit and such
that the sum of the individual flows equals 1. Following the
previous observation, each one of these fractional paths can
be transformed into a fractional path, with the same cost,
between a copy of node s and a copy of node t in the colored
graph. Combining all of these fractional paths, we obtain one
unit flow solution in the colored graph corresponding to the
path between the copy of node s and the copy of node t. As
the line graph fractional solution satisfies the forcing con-
straints, the corresponding solution in the colored graph also
satisfies the forcing constraints in the colored graph model.
The reverse transformation is similar. Here, however, we start
with an optimal solution for the linear programming relax-
ation of the colored graph formulation. Thus, any fractional
path between any pair of nodes s and t does not include multi-
ple reloads at any given node, and we can use the observation
given before to obtain a solution feasible for the linear pro-
gramming relaxation of the line graph formulation with the
same cost.

The preceding argument shows that we can transform an
optimal solution for the linear programming relaxation of
one of the models into one for the linear programming relax-
ation of the other model with the same cost, leading to the
statement.

Proposition 5.1. The linear programming bound of the
LINE-GRAPH formulation is equal to the linear program-
ming bound of the COLORED-GRAPH formulation.

5.2. Enhancing the Linking Constraints

As our experiments will show, the model given above has
a weak linear programming bound. In the context of Unca-
pacitated Network Design, Balakrishnan et al. [3] describe
a way of strengthening the forcing constraints present in the
model COLORED-GRAPH. The idea is that when edge {i, j}
is selected then all commodities flowing to (from) a given
node “s” will flow either from i to j or from j to i. We model
this situation with the following set of constraints.

The first set, constraints (5.1), are defined for commodities
flowing out of node “s” and the second set, constraints (5.2),
are defined for commodities that terminate at node “s.”

gsi
ik jk

+ gsj
jk ik

≤ u{ij}

for all {i, j} ∈ ER; k ∈ C : i, j ∈ Vk , s ∈ VR (5.1)

gis
ik jk

+ gjs
jk ik

≤ u{ij}

for all {i, j} ∈ ER; k ∈ C : i, j ∈ Vk , s ∈ VR (5.2)

We will denote by “Set1” the set of forcing constraints
included in the COLORED-GRAPH model and by “Set2”

the set of constraints (5.1), (5.2) together with the set of forc-
ing constraints already included in the model. The previous
constraints can be further generalized by taking into account
all combinations of edges and commodities leading to

gsp
ik jk

+ gsq
jk ik

≤ u{ij}

for all {i, j} ∈ ER; k ∈ C : i, j ∈ Vk , s, p, q ∈ VR : (s < p, q),
(5.3)

gps
ik jk

+ gqs
jk ik

≤ u{ij}

for all {i, j} ∈ ER; k ∈ C : i, j ∈ Vk , s, p, q ∈ VR : (p, q < s).
(5.4)

These constraints include the constraints (5.1), (5.2) as well as
constraints (4.5) originally included in the model. We denote
by “Set 3” the set defined by (5.3) and (5.4).

We note that similar forcing constraints could also have
been suggested for the LINE-GRAPH model. This leads to
enhanced versions of the LINE-GRAPH model and one can
state propositions similar to Proposition 5.1 for the enhanced
versions of the two models. However, due to the simplicity
of the colored graph model, we focus our discussion on the
colored graph model. Gamvros [7] describes the equivalent
constraints for the directed LINE-GRAPH model.

6. VARIANTS OF RELOAD COST NETWORK
DESIGN PROBLEMS

In this section, we discuss many different variants of
the reload cost network design problem. For simplicity, we
describe different specifications in each subsection, noting
that more complex variations can be obtained by considering
together specifications given in different subsections. Fur-
thermore, we restrict our attention to modeling these variants
on the COLORED-GRAPH model.

6.1. The Single-Source Multi-Destination Version of the
RCSTP

As noted in Section 2, the single-source multidestination
version of the RCSTP is also NP-Complete. At first sight, this
simpler version of the RCSTP appears not to deserve further
discussion as it is enough to point out that, letting node 1 be
the source, we can easily adapt the models previously stated
by just considering commodities (1, t) with t ∈ VR\{1}. For
simplicity, because all paths originate at node 1, we drop the
superscript “1” from the g1p

ik jk
and h1p

ik iq
variables. The forcing

constraints in the model become

gp
ik jk

+ gq
jk ik

≤ u{ij}

for all {i, j} ∈ ER; k ∈ C : i, j ∈ Vk , p, q ∈ VR, (6.1)

However, the special structure of the problem (only one
source) permits us to direct the tree away from the source

NETWORKS—2012—DOI 10.1002/net 373

node, node 1, and we can model the problem by using directed
arcs associated with the set AR instead of the undirected
edge variables u{ij} associated with the set ER. The reader
is referred to Magnanti and Wolsey [15], where this directing
technique is fully explained and exploited in terms of single-
source multidestination tree problems. Let xij be a binary
variable indicating whether arc (i, j) of the original graph is
in the solution. This version of the problem can be modeled
as follows.

min
∑

p∈VR\{1}
d1p

∑
j∈VR

∑
m,n∈Cj

Rj
nmhp

jnjm

∑
k∈Cs

∑
j∈Vk

gp
1k jk

= 1 for all p ∈ VR\{1}
∑
k∈Ct

∑
i∈Vk

gp
ikpk

= 1 for all p ∈ VR\{1}
∑
i∈Vk

gp
ik jk

+
∑

c:j∈Vc

hp
jcjk

−
∑
i∈Vk

gp
jk ik

−
∑

c:j∈Vc

hp
jk jc

= 0

for all j, p ∈ VR\{1], j �= p, k ∈ C : j ∈ Vk

gp
ik jk

≤ xij for all (i, j) ∈ AR; k ∈ C : i, j ∈ Vk , p ∈ VR\{1}
(6.2)

∑
i∈VR

xij = 1 for all j ∈ VR\{1} (6.3)

gp
ik jk

∈ {0, 1} for all (i, j) ∈ AR, k ∈ C : i, j ∈ Vk , p ∈ VR\{1}
hp

ik iq
∈ {0, 1} for all i ∈ VR, k, q ∈ Ci, p ∈ VR\{1}

xij ∈ {0, 1} for all (i, j) ∈ AR.

The constraints that characterize this directed model are
(6.2) and (6.3). It is interesting to relate the linear pro-
gramming relaxation of this model with linear programming
relaxation of the undirected model. For that, we consider the
constraints

xij + xji = u{ij} for all {i, j} ∈ ER; i, j �= 1, (6.4)

x1j = u{1j} for all j ∈ VR\{1},
that link the two sets of variables, directed and undirected.
Now, it is well known (and easy to see) that constraints (6.2)
imply, under the linking constraints (6.4), the undirected
forcing constraints (6.1) and that the indegree constraints
(6.3) imply the edge cardinality constraint in the undirected
model. Thus, the linear programming relaxation bound of
the directed model is at least as good as its undirected coun-
terpart. It is also possible to show (using ideas given, for
instance, in Magnanti and Wolsey [15]) that the directed
model and the undirected model, have equal linear program-
ming bounds. This result exhibits the strength of the directed
model, because at the cost of using twice as many design vari-
ables, it requires many fewer forcing constraints (of the order
of |A||C||V|) than the ones needed in the undirected model
(of the order of |A||C||V|2) for obtaining an equivalent lower
bound. We should note that when the xij variables are defined

as binary in the above directed model, the flow variables gp
ik jk

and hp
ik iq

may be relaxed, as the resulting constraint matrix
is totally unimodular. (A similar observation can be made
with regard to the ue variables and the LINE-GRAPH and
COLORED-GRAPH models in Sections 3 and 4.)

6.2. The Fixed Cost RCSTP

As noted in the introduction, we can consider a variant of
the problem that is similar to the AQSTP and where we only
consider costs related to adjacent edges with different colors.
We can model this variant by adding binary arc reload vari-
ables vimin associated with each reload edge, i ∈ VR, m, n ∈ Ci

indicating whether there is a reload at node i from color m to
color n. The objective function becomes

min
∑
j∈VR

∑
m,n∈Cj

Rj
nmvjnjm , (6.5)

and we add the following constraints to the COLORED-
GRAPH model described in Section 4, where we have
demands between all pairs of nodes.

hst
imin

≤ vimin for all i ∈ VR; m, n ∈ Ci; s, t ∈ VR. (6.6)

vimin ∈ {0, 1} for all i ∈ VR; m, n ∈ Ci; s, t ∈ VR. (6.7)

The FRCSTP helps illustrate an important difference
between typical network design problems in the literature
and the same network design problem with reload costs. We
can model the MSTP by using a single-source model. We
cannot do that for the FRCSTP as the single-source model
would not allow us to model reload costs between some pairs
of edges diverging from the same node. Consider a (directed)
solution composed of the arcs {(1, 2), (2, 3), (2, 4)}. Assume
that the colors of the three arcs are different, and node 1
is the source. The given model permits us to model reload
transitions associated with the pairs of edges {{1, 2}, {2, 3}}
and {{1, 2}, {2, 4}}. However, the reload transition associated
with the pair of edges {{2, 3}, {2, 4}} is not considered in a
single-source model with node 1 as the source.

However, one could consider a single-source version of the
FRCSTP. The transformation in Section 2 holds in this case
as well and so this single-source (all destinations) version of
the FRCSTP is NP-complete. A similar modeling change as
in (6.5), (6.6), (6.7) applied to the directed model of Section
6.1 provides a directed model for the single-source variant of
the FRCSTP.

The variables vimin allow us to model variants of the prob-
lem (both in the fixed and variable reload cost setting) with
a limit on the total number of allowed reloads, or a limit on
the number of allowed reloads per node. The first constraint
(6.8) shown below imposes a limit of K on the number of
reloads in the given solution, while the subsequent constraint

374 NETWORKS—2012—DOI 10.1002/net

(6.9) imposes a limit of Ki on the number of reloads at node
i in the given solution.

∑
i∈VR

∑
m,n∈Ci

vimin ≤ K (6.8)

∑
m,n∈Ci

vimin ≤ Ki for all i ∈ VR. (6.9)

6.3. Reload Hop and Diameter Constraints

Hop constraints [5] bounding the number of reloads
permitted along a path can be modeled by adding the
constraints

∑
j∈VR

∑
m,n∈Cj

hst
jnjm

≤ H for all s, t ∈ VR, s < t.

A generalization of hop constraints is obtained by using
“path-length” constraints (see [12]) as follows

∑
j∈VR

∑
m,n∈Cj

Rj
nmhst

jnjm
≤ H for all s, t ∈ VR, s < t.

In this general version, we are restricting the “length” in terms
of reloads between any pair of nodes s and t of the graph. We
note that all of the problems described so far in this subsection
remain NP-complete, as the problem without the reload limit,
hop or path-length constraints is NP-complete.

We can use these concepts in a slightly different way.
Instead of adding path-length constraints, we can seek span-
ning trees where we want to minimize the length of the
longest reload cost path (i.e., with a minimax objective). This
is precisely the first reload cost problem introduced by Wirth
and Steffan [17], called the minimum diameter spanning tree
problem with reload costs, which is NP-complete. To model
this, we add the variable v, the constraints

∑
j∈VR

∑
m,n∈Cj

Rj
nmhst

jnjm
≤ v for all s, t ∈ VR, s < t

and replace the objective function with the simpler objective
min v.

We also note that these hop and path-length constraints
and the minmax objective variants can also be considered in
terms of the single-source variants discussed in the previous
section, and remain NP-complete.

6.4. Modeling Routing and Fixed Costs

As noted in the introduction models using reload costs may
also involve the more conventional (edge) fixed and variable
(flow) costs. Let A{i,j} be the installation cost of edge {i, j} ∈
ER and let Bij be the per unit of flow cost associated with
arc (i, j) ∈ AR. Then, we can model these costs by using the

COLORED-GRAPH model with the more complex objective
function

min
∑

s,t∈VR:s<t

dst

∑

j∈VR

∑
m,n∈Cj

Rj
nmhst

jnjm
+

∑
k∈C

∑
(i,j)∈Ak

Bijg
st
ik jk

+
∑

{i,j}∈ER

A{i,j}u{i,j}.

6.5. Steiner Tree Variants

In this section, we will discuss a Steiner variant of the
single-source RCSTP discussed in Section 6.1 and a Steiner
version of the RCSTP. Consider a set R of nodes, R ⊆ VR,
of so-called required nodes. For simplicity, we assume that
node 1 is in R. In the single-source version of the problem, we
define the reload cost of the tree as the sum of the reloads for
all pairs (1, p) with p in R. We first note that the Steiner single-
source RCTSP remains NP-complete. The transformation of
Section 2 can be used again, with the set of R nodes as node
r together with C1, C2,, Ck . This Steiner version of the
single-source RCSTP is easy to model. We simply use the
directed model presented in Section 6.1 with the following
modifications: (i) in the constraints, the index p ranges only
in R\{1} and for all j ∈ VR\({1} ∪ R), (ii) the constraints∑

i∈VR
xij = 1 are replaced by

∑
i∈VR

xij ≤ 1.
In the multi-source Steiner version of the RCSTP, the

reload cost of the tree is defined as the sum of the reloads for
all pairs (p, q) with p,q in R. In this case, it is not as easy to
adapt the COLORED-GRAPH model of Section 4, because
the cardinality constraint giving the number of edges in the
solution is necessary to guarantee that the solution is a tree.
However, we can use well-known ideas from the literature on
Steiner tree formulations and introduce binary node variables
zi indicating whether node i is in the solution together with
the following constraints (see [9], for instance)
∑
e∈ER

ue =
∑
i∈VR

zi − 1,

∑
e∈E(S)

ue ≤ |S ∩ R| +
∑

i∈S\R

zi − 1 for all S ⊂ V :S ∩ R �= Ø,

∑
e∈E(S)

ue ≤
∑
i∈S

zi − zj for all S ⊂ V , j ∈ S : S ∩ R = Ø,

zi = 1 for all i ∈ R.

Then, by restricting the range of the commodity indices (s, t)
to s, t in R, we obtain a valid formulation for the problem.

Our discussion of Steiner variants of the RCSTP has
considered variable reload costs. Note that, similar Steiner
variants can be formulated and modeled for fixed reload costs.
It is easy to see that the Steiner variant of the single-source
FRCSTP is NP-complete, using the identical transformation
as for the Steiner RCSTP. Furthermore, Steiner versions of
(both fixed and variable cost) reload cost tree problems with
additional reload limit, hop or path-length constraints can be
formulated and modeled, and remain NP-complete.

NETWORKS—2012—DOI 10.1002/net 375

TABLE 1. Comparing the LINE-GRAPH and the COLORED-GRAPH
models.

L-G LP L-G IP C-G LP C-G IP
Problem set time (s) time (s) time (s) time (s)

N10E25C3 0.359 3.403 0.066 1.266
N10E25C5 0.272 0.850 0.075 0.353
N10E25C7 0.400 2.368 0.094 0.844
N15E50C3 18.328 9008.250 2.913 3589.244
N15E50C5 4.956 334.456 1.256 88.644
N15E50C7 8.353 241.575 2.194 135.725
N15E50C9 9.647 381.928 2.841 180.794
N20E100C3 1054.191 11524.241 86.372 728.672
N20E100C5 389.734 14403.853 68.056 14400.316
N20E100C7 101.209 12461.706 28.956 7508.584
N20E100C9 105.375 8694.272 32.222 8695.159

6.6. Uncapacitated Network Design

Another interesting problem that appears in the telecom-
munications and transportation industries is the Uncapaci-
tated Network Design Problem (UNDP). In this problem,
there are costs associated with the routing of flow on the
edges of the network constructed, but there are also fixed
costs associated with the selection of the edges as described
in the previous subsection. Quoting Balakrishnan et al. [3],
the problem is “deceptively simple” and contains other
well-known problems as special cases, like the Steiner tree
problem, the uncapacitated facility location and the travel-
ing salesman problem. In this section, we briefly discuss
the Reload Cost Uncapacitated Network Design Problem
(RCUNDP).

The RCUNDP can be formulated with the COLORED-
GRAPH model by removing the constraint that restricts the
number of edges and by considering the more complex objec-
tive function with routing reload costs as well as fixed reload
costs

min
∑

s,t∈VR

dst

∑
j∈VR

∑
m,n∈Cj

R1j
nmhst

jnjm
+

∑
j∈VR

∑
m,n∈Cj

R2j
nmvjnjm .

In the objective above, we have both variable reload costs
denoted by R1 and fixed reload costs denoted by R2. As
there is no constraint in this model that restricts the num-
ber of edges to be selected, the network to be designed is
not restricted to the set of spanning trees. Naturally, this
model can be strengthened with the same constraints we used
to improve the original reload cost minimum spanning tree
problem presented and discussed in Section 5.

It is important to point out an important distinction
between fixed reload costs in the tree and network design set-
ting. Suppose we have demands between all pairs of nodes.
In the tree setting, if there are any two edges of different col-
ors (say n and m) in the tree that are adjacent at a node i
the fixed reload cost Ri

nm is incurred. In the network design
setting, because we no longer require a tree, it is possible
for two edges of different colors to be adjacent at a node
without any flow being sent from one of them directly to the
other. Thus, two possible interpretations may be given to fixed

reload costs in the network design setting. In the first inter-
pretation, the fixed reload cost Ri

nm for changing from color
n to color m at node i is incurred only if there is a commod-
ity that goes from color n to color m at node i. In the second
interpretation, the fixed reload cost Ri

nm is incurred regardless
of whether there is a commodity that changes from color n to
color m at node i. We believe the first interpretation of fixed
reload costs is more reasonable in a practical setting, and our
COLORED-GRAPH model is for the RCUNDP under the
first interpretation of fixed reload costs (the complexity of
this problem is open). Under the second interpretation of fixed
reload costs (which is somewhat contrived) for the RCUNDP
the problem is NP-complete (again using the transformation
of Section 2), but the problem is not so straightforward to
model.

We note that a more general version of the RCUNDP with
both reload (fixed and variable) costs and normal (routing and
fixed edge) costs can be modeled by using a slightly more
general objective obtained by combining the objective above
with the objective given in Subsection 6.4. Furthermore, a
single-source variant could be formulated as in Section 6.1,
and hop, diameter, and path-length constraints can also be
considered as in Section 6.3. To conclude our discussion on
different variants of reload cost network design problems,
we remind the reader that by combining the specifications
discussed in this section many additional variants of reload
cost network design problems may be formulated.

7. COMPUTATIONAL EXPERIMENTS

In this section, we present computational experiments to
evaluate the quality of the proposed models (specifically
the colored graph formulation) to solve instances of the
RCSTP as well as its single-source multidestination version.
Our experiments will consist of three main parts. Our first
experiment (see Table 1) focused on comparing the linear pro-
gramming relaxations of the non-enhanced version of the two
models, for the RCSTP, to emphasize the advantages of using
the COLORED-GRAPH model instead of the LINE-GRAPH
model. Our second set of experiments (see Tables 2–5) was

TABLE 2. Comparing the gaps for the enhanced versions of the C-G model.

Set 1 Set 2 Set 3
Problem set LP-IP gap (%) LP-IP gap (%) LP-IP gap (%)

N10E25C3 19.11 5.42 4.13
N10E25C5 9.25 1.33 0.00
N10E25C7 7.44 3.80 1.81
N15E50C3 40.06 19.89 12.09
N15E50C5 11.42 3.91 2.59
N15E50C7 14.03 6.45 2.59
N15E50C9 10.22 5.98 3.24
N20E100C3 0.00 0.00
N20E100C5 72.56 25.47
N20E100C7 35.65 7.55
N20E100C9 18.12 8.76

376 NETWORKS—2012—DOI 10.1002/net

TABLE 3. Comparing the CPU times for the enhanced versions of the C-G model.

Set 1 Set 2 Set 3

Problem set LP time (s) IP time (s) LP time (s) IP time (s) LP time (s) IP time (s)

N10E25C3 0.066 1.266 0.122 0.753 1.334 59.219
N10E25C5 0.075 0.353 0.103 0.350 1.366 1.794
N10E25C7 0.094 0.844 0.159 0.922 2.447 8.078
N15E50C3 2.913 3589.244 7.563 131.081 2830.966 8964.506
N15E50C5 1.256 88.644 3.006 62.544 219.972 5773.903
N15E50C7 2.194 135.725 5.319 65.834 3761.725 9872.688
N15E50C9 2.841 180.794 6.141 101.938 2860.509 9223.506
N20E100C3 86.372 728.672 247.656 519.734
N20E100C5 68.056 14400.316 208.463 6150.091
N20E100C7 28.956 7508.584 113.556 2521.200
N20E100C9 32.222 8695.159 99.041 7170.775

to assess the effectiveness of the three sets of forcing con-
straints (Set 1, Set 2, and Set 3) for the COLORED-GRAPH
model. Recall that Set 3 contains Set 2, and Set 2 contains
Set 1. Our third set of experiments (see Tables 6 and 7) focus
on the single-source version of the RCSTP and the directed
model given in Section 6.1.

Our computational study was conducted on a set of
randomly generated problem instances with varying char-
acteristics. All graphs were generated on a 100 × 100 grid.
The endpoints for the edges were randomly picked among the
nodes in the graphs and the color for each edge was drawn
from a discrete uniform distribution. In the tables that fol-
low, we identify each set as “NxEyCz” where x denotes the
number of nodes, y the number of edges, and z the number of
colors. Each set consists of five problem instances. All com-
putational results were conducted on a Dell Optiplex 740 with
an AMD Athlon 64 X2 5000+ dual core processor with 3 GB
of RAM running Microsoft Windows XP. The formulations

TABLE 4. Nonunit reload cost instances. Comparing the gaps for the
enhanced versions of the C-G model with Set 1 and Set 2.

Set 1 Set 2
Problem set LP-IP gap (%) LP-IP gap (%)

N20E100C3 0.00 0.00
N20E100C5 30.58 4.15
N20E100C7 31.93 3.40
N20E100C9 21.59 4.88

TABLE 5. Nonunit reload cost instances. Comparing the CPU times for
the enhanced versions of the C-G model with Set 1 and Set 2.

Set 1 Set 2

Problem set LP time (s) IP time (s) LP time (s) IP time (s)

N20E100C3 89.322 993.284 272.003 645.272
N20E100C5 51.875 5824.913 128.438 498.338
N20E100C7 38.884 3110.506 98.981 460.764
N20E100C9 33.331 5547.013 90.263 960.209

were solved using ILOG CPLEX 11.0. All instances were
limited to a maximum of 4 hours of running time.

In our first set of experiments, we compared the LINE-
GRAPH (L-G) model with the COLORED-GRAPH (C-G)
model. We considered unit reload costs and unit demands.
In other words, all reload costs between all combinations of
colors were set equal to 1; and the demand between all pairs
of nodes was also set equal to 1. For these RCSTP instances,
we generated problems where the number of nodes and edges
in the graph varied between 10 and 20 and between 25 and
100, respectively. Also, we increased the number of different
colors in the graph from 3 to 9.

Table 1 presents the results. The first column identifies the
instance set; the second and the third give the CPU times (in
s) for solving the LP relaxation and for obtaining the opti-
mal integer solution with the L-G model. The fourth and fifth
columns give similar information with respect to the C-G
model. The results indicate and confirm that the C-G model
is, in general, much faster than the L-G model, both in terms
of solving the corresponding LP relaxations as well as for
obtaining the IP optimal solutions. Thus, for our subsequent

TABLE 6. Evaluating the directed model for solving the single-source
version of the RCSTP.

Problem set LP-IP gap (%) LP time (s) IP time (s)

N10E25C3 0.00 0.016 0.034
N10E25C5 0.00 0.006 0.028
N10E25C7 0.00 0.019 0.028
N15E50C3 0.00 0.034 0.056
N15E50C5 0.00 0.038 0.075
N15E50C7 0.00 0.047 0.078
N15E50C9 0.00 0.056 0.075
N20E100C3 0.00 0.141 0.175
N20E100C5 0.00 0.134 0.194
N20E100C7 0.00 0.175 0.338
N20E100C9 0.00 0.169 0.263
N50E300C3 0.00 98.963 142.228
N50E300C5 0.00 11.447 23.103
N50E300C7 10.00 19.494 405.003
N50E300C9 10.00 5.041 18.881

NETWORKS—2012—DOI 10.1002/net 377

TABLE 7. Evaluating the directed model for solving the single-source
version of the RCSTP with nonunit reload costs.

Problem set LP-IP gap (%) LP time (s) IP time (s)

N20E100C3 0.00 0.125 0.141
N20E100C5 0.00 0.134 0.263
N20E100C7 4.00 0.181 0.347
N20E100C9 0.00 0.197 0.386
N50E300C3 0.00 183.763 213.250
N50E300C5 0.00 16.650 90.156
N50E300C7 10.00 15.047 197.503
N50E300C9 6.40 8.603 22.456

experiments, we used the C-G model. We should note that in
the 4 hour time limit, it was not possible to solve the IP mod-
els for problems with more than 20 nodes. This provides an
inkling that the RCSTP is a very computationally challenging
problem.

Our second set of experiments assessed the effectiveness
of the three sets of forcing constraints. Tables 2 and 3 present
the results for unit reload instances. These instances are iden-
tical to those in our first set of experiments (i.e., Table 1). As
before, the first column identifies the instance set. The sec-
ond, third, and fourth columns present the average percentage
LP-IP gap calculated as the difference between the values of
the optimal integer solution and the LP bound divided by the
value of the optimal integer solution2 for the three models,
the C-G model, the C-G model with Set 2, and the C-G model
with Set 3. Table 3 gives similar information with respect to
the corresponding CPU times.

The results taken with Set 1 indicate that with exception
of a few classes of instances, the gaps are quite large. In gen-
eral, the gaps get better when the number of colors increase.
Exceptions to this are obtained in some of the instances with
the smallest number of colors where the reported gap was
equal to zero. The reason for this is that these instances were
easy to solve because it was possible to find a solution with
only one color for the edge set in the spanning tree.

From the information presented in these tables, it is also
clear that the forcing constraints associated with Sets and 2
and 3 can provide substantial improvements over the origi-
nal model. It is interesting to see that Set 2 alone seems to
be responsible for the major improvements. However, notice
that these improvements come with a penalty in terms of the
computation time required which becomes more noticeable
for the larger sized instances. These computational penalties
are a direct consequence of the increased number of con-
straints in the various formulations. For example, consider
one of the problem instances with 15 nodes and 50 edges.
For this problem, the total number of constraints was equal

2As we compare the values of different linear programming relaxations, we
keep the denominator fixed as the value of the optimal integer solution. In
other words, the LP-IP Gap is simply 1 minus the ratio of the optimal LP
solution to the optimal integer solution. If the optimal integer solution is not
available (this occurred in only one instance over all the problems tested),
we use the best upper bound.

to 9,283. With Set 2, the total number of constraints is 10,259.
With Set 3, we consider triplets of nodes, and as a result the
total number of constraints goes up to 124,398. From this
example, it should be clear that the significant increase in the
size of the formulation with Set 3 forcing constraints is caus-
ing the very large computation times observed. Based on the
improvement percentages and computation times presented
in Tables 2 and 3 for problems with up to 15 nodes, one can
argue that the extra running time associated with Set 3 out-
weighs the benefits introduced. Consequently, we have not
tested constraint Set 3 on problem instances with more than
15 nodes. (Especially, because even the LP relaxation of the
models did not solve to optimality within 4 h of CPU time
for 20 node instances with Set 3.) Although the CPU times
associated with solving the linear programming relaxation of
the model with Set 2 are substantially greater than the CPU
times needed by the linear programming relaxation with Set
1, the results also show that for solving the instances tested,
the improvement in the linear programming bounds produced
by the model with Set 2 more than compensates for the extra
time. Finally, we observe that although the LP relaxations of
the C-G model with Set 2 take greater time to solve than the
LP relaxations of the C-G model with Set 1, the reverse is true
with the IP models. The running time for the IP of the C-G
model with Set 2 is usually less than the running time of the
IP of the C-G model with Set 1. In fact within the 4 hour time
limit, the IP of the C-G model with Set 1 only solved 45 out
of the 55 test instances to optimality, whereas the IP of the
C-G model with Set 2 solved 54 out of the 55 test instances
to optimality. This also suggests that the C-G model with Set
2 as most appropriate for solving the IP.

We also tested instances with non-unit reload costs. The
non-unit reload problems are generated in exactly the same
way as the unit reload cost problem with respect to the cre-
ation of the node coordinates and the edges in the graph. In
fact, the graphs are identical. The only difference is that for
each pair of colors in the graph, we generate an integer reload
cost whose value is drawn from a discrete uniform distribu-
tion in the range [1, 10]. We have restricted the presentation
of results to 20 node instances with the C-G model using Set 1
and Set 2 forcing constraints. We ignore Set 3 for the reasons
explained above.

The non-unit reload results are interesting because, in a
certain way, they confirm the behavior of the unit reload
cost experiments. For these instances, all instances have been
solved to optimality by the C-G model using Set 2. However,
only 14 out of the 20 test instances have been solved by using
Set 1. Tables 4 and 5 provide a summary of our computational
experiments and are similar to Tables 2 and 3.

Our third set of experiments focus on the single-source
version of the RCSTP. For the single-source version of the
problem, we consider the same set of instances as before,
except we select node 1 as the source. We also generate
larger instances with 50 nodes and 300 edges. In Tables 6
and 7, we present results of our computational experience
with the directed model given in Section 6.1 for the single-
source version of the problem. Table 6 refers to instances

378 NETWORKS—2012—DOI 10.1002/net

with unit reload costs, and Table 7 refers to instances with
non-unit reload costs.

The results show that, as expected, the single-source ver-
sion of the problem is much easier to solve. This is explained
by the fact that for a given number of nodes, edges, and
colors, the single-source multidestination model has many
fewer commodities (and thus, many fewer variables and con-
straints) than the multi-source multidestination model of the
RCSTP. Another explanation for these results, namely the 0%
gaps for most of the cases tested, is the fact that the directed
model implies all the forcing constraints of the corresponding
undirected model.

The results are similar for the cases with non-unit reloads.
In fact, the main conclusion appears to be that using non-unit
reload costs instead of unit reload costs does not appear to
have an effect on the performance of the methods. The results
also show that the evaluation of the model starts to become
interesting only for the 50 node instances (in the sense that
these problems are harder to solve to integer optimality for
the LP relaxations). On the other hand, some experiments
performed with larger instances show that the behavior of
the proposed models starts to deteriorate for even larger
instances.

8. SUMMARY AND CONCLUSIONS

In this article, we motivated the notion of reload costs
that occurs in telecommunications, transportation, and energy
networks. Despite their wide applicability reload costs have
only recently been treated in the literature, first in [16, 17],
and more recently in [1,6–8,11]. In this article, we looked at
a wide spectrum of reload cost tree problems, discussed their
complexity, and developed strong models for these problems.
We developed models using two types of extended graphs—
a directed line graph and a colored graph—that allow us to
assign reload costs to specific edges rather than pairs of edges.

Our computational experiment focused on the strength of
the linear programming relaxations of the RCSTP that moti-
vated this work. Given that this is the first article to consider
MIP models for the reload cost problems, we focused on
problems solely with reload costs. In the all pairs model, our
strongest model results in a linear programming relaxation
that is on average only 3.78% from optimality (over 35 test
instances). This model grows rapidly in size and is not compu-
tationally viable for problems with more than 15 nodes. Our
2nd strongest model results in a linear programming relax-
ation that is on average 11.51% from optimality (over 75 test
instances) and is the most successful one in solving the test
instances to optimality. In the single-source model over 115
instances, the average LP-IP gap of our directed formulation
was only 1.76% from optimality, and we were able to solve
problems with up to 50 nodes to optimality.

We hope this comprehensive introduction and discussion
of reload cost tree and network design problems will spark
an interest in the network design community to further study
reload cost network design problems. In this regard, we have
the following two suggestions for future work. First, given

that the models on the colored graph rapidly become large, a
natural thought might be to think about a path-based model
(and the use of branch-and-price) for reload cost problems
in which the pricing problem is solved on the colored graph.
The advantage of this approach is that it might possibly result
in a faster solution procedure, as the large colored graph is
implicitly considered in the model. Second, we believe it is
necessary to assess the application of heuristics for “normal
cost” variants of spanning tree problems to “reload cost” vari-
ants, and to develop high-quality heuristics for reload costs
problems.

REFERENCES

[1] E. Amaldi, G. Galbiati, and F. Maffioli, On minimum reload
cost paths, tours and flows, Networks 57 (2011), 254–260.

[2] A. Assad and W. Xu, The quadratic minimum spanning tree
problem, Nav Res Logist 39 (1992), 339–417.

[3] A. Balakrishnan, T.L. Magnanti, and R.T. Wong, A dual-
ascent procedure for large scale uncapacitated network
design, Oper Res 37 (1989), 716–740.

[4] W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver,
Combinatorial optimization, Wiley, New York, 1998.

[5] G. Dahl, L. Gouveia, and C. Requejo, “On formulations
and methods for the hop-constrained minimum spanning tree
problem,” Handbook of optimization in telecommunications,
M.G.C. Resende and P.M. Pardalos (Editors), Springer, New
York, 2006, pp. 493–516, Chapter 19.

[6] G. Galbiati, The complexity of a minimum reload cost diam-
eter problem, Discrete Appl Math 156 (2008), 3494–3497.

[7] I. Gamvros, Satellite network design, optimization, and man-
agement, Ph.D. Thesis, University of Maryland, College
Park, 2006.

[8] I. Gamvros, L. Gouveia, and S. Raghavan, “Reload cost
trees and network design,” Proceedings of the International
Network Optimization Conference, Spa, Belgium, 2007.

[9] M. Goemans and Y. Myung, A catalog of Steiner tree
formulations, Networks 23 (1993), 19–28.

[10] M. Gondran and M. Minoux, Graphs and algorithms, Wiley,
New York, 1984.

[11] L. Gourvès, A. Lyra, C. Martinhon, and J. Monnot, “The
minimum reload s-t path/trail/walk/ problems,” Proceedings
of the 35th Conference on Current Trends in Theory and
Practice of Computer Science, Lecture Notes in Computer
Science, Vol. 5404, Springer, 2009, pp. 621–632.

[12] L. Gouveia, A. Paias, and D. Sharma, Modeling and solv-
ing the rooted distance-constrained minimum spanning tree
problem, Comput Oper Res 35 (2008), 600–613.

[13] G.Y. Handler, Minimax location of a facility in an undirected
tree graph, Transport Sci 7 (1973), 287–293.

[14] T.C. Hu, Optimum communication spanning trees, SIAM J
Comput 3 (1979), 188–195.

[15] T.L. Magnanti and L.A. Wolsey, “Optimal trees,” Handbooks
in operations research and management science, M.O. Ball,
T.L. Magnanti, C.L. Monma, and G.L. Nemhauser (Editors),
Vol. 7, Elsevier, Amsterdam, 1995, pp. 503–615, Chapter 9.

[16] H.C. Wirth, Multicriteria approximation of network design
and network upgrade problems, Ph.D. Thesis, Universität
Würzburg, 2001.

[17] H.C. Wirth and J. Steffan, Reload cost problems: Minimum
diameter spanning tree, Discrete Appl Math 113 (2001),
73–85.

NETWORKS—2012—DOI 10.1002/net 379

