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a b s t r a c t

In this paper we consider the Robust Connected Facility Location (ConFL) problem within
the robust discrete optimization framework introduced by Bertsimas and Sim (2003). We
propose an Approximate Robust Optimization (ARO) method that uses a heuristic and a
lower boundingmechanism to rapidly findhigh-quality solutions. The use of a heuristic and
a lower boundingmechanism–as opposed to solving the robust optimization (RO) problem
exactly – within this ARO approach significantly decreases its computational time. This
enables one to obtain high quality solutions to large-scale robust optimization problems
and thus broadens the scope and applicability of robust optimization (froma computational
perspective) to other NP-hard problems. Our computational results attest to the efficacy of
the approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Connected Facility Location (ConFL) problem models a variety of problems that are significant in the telecommuni-
cations and data management literature (see [14,17]), as well as the emergencymanagement literature (see [26]). By design
the ConFL problem is deterministic; however, the practical settings that motivate it are characterized by significant uncer-
tainty. In this paper we make the first attempt to address this uncertainty in the ConFL problem using robust optimization
(RO) (within the RO framework introduced by [7] for discrete optimization problems) and provide a heuristic approach that
yields high-quality solutions.

The ConFL problem encompasses a large family of network design problems [3], where at minimum cost a set of facilities
must be opened, customersmust be assigned to open facilities, and lastly, open facilitiesmust be connected through a Steiner
tree. In this setting, the main source of uncertainty lies in the assignment costs as the location and demand of customers are
often unknown. Furthermore, there might be limited information about the distribution of those costs making it difficult to
follow a traditional 2-stage stochastic programming approach to address uncertainty in the problem. However, if one can
estimate a range for the costs (i.e., a lower bound and an upper bound), one can search for a robust solution.

One approach in robust optimization is to protect against the worst-case scenario. In other words the decision maker
wants to find a solution to the problem that minimizes the overall cost for theworst case scenario. However, since this may
be viewed as an ultraconservative approach (which can lead to an expensive solution), Bertsimas and Sim [7] (BS) propose
an alternative RO approach that allows the decision maker to adjust the level of conservatism for the solution. Roughly
speaking, in the BS approach instead of optimizing for the worst-case scenario, the goal is to find a solution that protects the
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decision-maker against all cases in which up to Γ parameters, instead of all of the uncertain parameters, take their worst
value (the remaining parameters take their best case values). When Γ is equal to the number of uncertain parameters in
the solution it corresponds to the worst-case scenario solution.

The BS approach thus deals with discrete optimization problems with interval uncertainty in the objective function
coefficients. It requires a large but polynomial number of nominal problems to be solved. The nominal problems are (suitably
modified) deterministic variations of the original problem. Consequently, when the nominal problem is polynomially
solvable the robust problem is also polynomially solvable (which is a particularly nice feature of the approach). On the
flip side, if the original problem is NP-hard, the nominal problems are also NP-hard and computationally expensive to solve
to optimality. Thus, there are some significant computational challenges in applying the BS approach to NP-hard robust
optimization problems. Alternatively, in this paper, we demonstrate how to use a heuristic and lower bound mechanism to
solve the nominal problems approximately and yet obtain high-quality solutions for the robust problem. This is a significant
computational advantage, as it makes it practical to apply the BS robust optimization paradigm to a large class of NP-hard
optimization problems.

Bertsimas and Sim [7] discuss the application of approximation algorithms in the context of robust optimization. They
show that an α-approximation algorithm for the nominal problem results in an α-approximation algorithm for the RO
problem. Our work expands the scope of their result in a computational practical manner. Approximation algorithm ratios
are worst-case results and they do not (generally) provide tailored lower bounds for specific problem instances. Further,
many NP-hard problems are max-SNP hard (or inapproximable unless P = NP) and thus constant approximation ratios are
not known for them. In a practical setting then the approximation algorithmmay be somewhat dissatisfying when trying to
obtain near-optimal solutions to the problem at hand. In the realm where one has access to a (good) heuristic and a (good)
lower bounding mechanism for individual problem instances (which is often the case for hard combinatorial optimization
problems), we show how to expand upon Bertsimas and Sim [7] to develop an approximate robust optimization procedure
that provides both a heuristic solution and an overall lower bound for the RO problem. We illustrate this approach on the
robust ConFL problem.

The rest of this paper is organized as follows. In Section 2we introduce the robust ConFL problem and related literature. In
Section 3 we review Bertsimas and Sim [7]’s robust optimization approach for discrete optimization problems with interval
uncertainty in the objective function coefficients, and then present our Approximate Robust Optimization (ARO) method.
In Section 4 we apply the ARO method to the robust ConFL problem. We also illustrate the ARO method on a small robust
ConFL problem. We also consider a special case of the robust ConFL problem with disk uncertainty areas. In Section 5 we
illustrate the effectiveness of the ARO method with extensive computational experiments on the robust ConFL problem.
Section 6 provides concluding remarks.

2. Problem definition and related literature

We start by defining the ConFL problem, and later, expanding its definition to describe the robust ConFL problem
considered in this paper.

2.1. Connected facility location problem

The ConFL problem can be stated as follows. We are given a graph G = (V , E), and three disjoint sets: D ⊆ V , set
of demand nodes (or customers); F ⊆ V , set of potential facility nodes; and S ⊆ V , set of potential Steiner nodes,
with D ∪ F ∪ S = V . We seek to find a minimum cost network where every demand node is assigned to an open
facility and open facilities are connected through a Steiner tree T constructed on the subgraph of G on the nodes F ∪ S
(i.e., G(F ∪ S) = (F ∪ S, E(F ∪ S))). There are facility opening costs, fi ≥ 0, incurred for each facility; assignment costs,
aij ≥ 0, for assigning a customer j ∈ D to a facility i ∈ F ; and edge costs, bij ≥ 0, for an edge {i, j} ∈ E(F ∪ S) if it is used
on the Steiner tree T . The nodes in S may be viewed as pure Steiner nodes and can only be used in the tree T as Steiner
nodes, while the nodes in F may be used as Steiner nodes on the tree T incurring a facility opening cost even when no
customers are assigned to them.1 The final network cost is given by


i∈Z fi +


{i,j}∈E(T ) bij +


j∈D ai(j)j, where i(j) is the

facility serving demand node j, Z is the set of open facilities, and T is a Steiner tree connecting the open facilities. We first
describe a formulation for the ConFL problem.

Minimize

i∈F

fizi +


{i,j}∈E(S∪F)

bijyij +


i∈F ,j∈D

aijxij (1a)

subject to
{i,j}∈E(R)

yij ≤


l∈R\k

zl, ∀R ⊂ (S ∪ F), |R| ≥ 3, ∀k ∈ R (1b)

1 Our definition for the ConFL problem follows Bardossy and Raghavan [3]. They show this general definition of the ConFL captures other variants where
the sets D, F , S overlap; or where facilities incur a cost only when customers are served from that facility. Consequently, this general definition includes all
known variants of the ConFL problem as well as the Steiner tree star problem [16], and the rent or buy problem [12].
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yij ≤ zi, yij ≤ zj, ∀{i, j} ∈ E(S ∪ F) (1c)
{i,j}∈E(S∪F)

yij =


l∈(S∪F)

zl − 1 (1d)
i∈F

xij = 1, ∀j ∈ D (1e)

xij ≤ zi, ∀i ∈ F , ∀j ∈ D (1f)
xij ∈ {0, 1}, ∀i ∈ F , ∀j ∈ D (1g)
yij ∈ {0, 1}, ∀{i, j} ∈ E(S ∪ F) (1h)
zl ∈ {0, 1}, ∀l ∈ S ∪ F . (1i)

The formulation uses three sets of binary variables. The xij variables represent whether (or not) demand node j is
connected to facility location i. The yij variables represent whether (or not) edge {i, j} is in the Steiner tree connecting open
facilities. The zl variables represent whether (or not) node l is in the Steiner tree connecting open facilities. The objective
function adds up the facility opening cost, the core network cost (i.e., the Steiner tree defined by the yij variables), and the
cost of serving each demand node by an open facility. The first set of constraints (1b)–(1d) ensure that open facilities are
connected by a Steiner tree (constraints (1b) are usually referred to as generalized subtour elimination constraints (GSECs)
in the literature). Constraints (1e) ensure that each demand node is served by one facility and constraints (1f) ensure that
demand nodes are only served by open facilities.

Related literature on connected facility location: The first description of the ConFL problem in the literature is due
to Karger and Minkoff [14], where in attempting to solve a network design problem with incomplete information they
discuss the ConFL problem as a solution strategy. Gupta et al. [11] coined the terminology ConFL while considering a
virtual private network design with demand uncertainty. They then gave a 10.66 approximation algorithm for the ConFL
problem by adapting a rounding technique. Swamy and Kumar [23] described a primal–dual approximation algorithm for
the ConFL problem. Their algorithmworks in twophases andhas an approximation ratio of 8.55. Jung et al. [13] improved this
primal–dual algorithm and lowered the approximation ratio to 6.55. Eisenbrand et al. [9] presented a randomized algorithm
that improves the approximation ratio for the ConFL problem to 4 that slightly degrades to 4.23 when the algorithm is
derandomized.

With a focus on computationally solving the problem Ljubić [20] introduced a variable neighborhood search heuristic
that is combined with reactive tabu search. She also proposed a branch-and-cut approach for solving the ConFL problem to
optimality. Tomazic and Ljubić [24] proposed a greedy randomized adaptive search procedure for the ConFL problem that
produced solutions that were on average as large as 10% from the optimal in their test instances. Bardossy and Raghavan [3]
proposed a dual-based local search (DLS) heuristic that yields high-quality solutions rapidly. The approach first applies a
dual-ascent heuristic that provides both a high-quality lower bound and a starting solution for the local search heuristic.
They report, over the 2748 problems they tested, the DLS heuristic found solutions that were on average at most 1.07%
from optimality. Gollowitzer and Ljubic [10] propose several mathematical formulations for the ConFL problem based on
direct graphs and compare their linear-programming relaxations. Leitner et al. [18] present a new formulation based on a
mixed graph, investigate the associated polytope and share their computational experiencewith a branch-and-cut approach
based on this new formulation. In a subsequent paper [19] they adapt this formulation to an asymmetric variant of the ConFL
problem.While there has been a significant amount of research focused on the ConFL problem, none of theseworks consider
uncertainty in the assignment costs (which actually is the case in the motivating examples of [11,14]). This motivates our
study of the robust ConFL problem (with interval uncertainty on the assignment costs).

2.2. Robust ConFL

The robust ConFL problem considers the problem where each assignment cost ãij, {i, j} ∈ δ(D) (δ(D) denotes the edges
between D and F ), takes values in the interval [aij, aij + dij], dij ≥ 0. Motivated by the practical applications of the ConFL,
our model considers two sources of uncertainty: customer location and demand uncertainty. In the first setting customer
location is unknown on a plane but limited to a defined area. Then, the assignment costs range between the best-case
scenario: the closest Euclidean distance between the facility node and a customer location within its uncertainty region,
aij (if the facility node falls within the uncertainty region, aij = 0), and the worst-case scenario: the farthest possible
distance between them, aij + dij. In other words the uncertain assignment cost, ãij ∈ [aij, aij + dij]. On the other hand,
when demand quantities are uncertain we assume that they also range within a predetermined range. Let q̃j ∈ [qj, qj + ∆j]

be the uncertain demand quantity for customer j, and ρij be the per unit demand assignment cost for customer j to facility
i. Then, the uncertain assignment cost is given by ãij ∈ [ρijqj, ρijqj + ρij∆j] = [aij, aij + dij], where aij = ρijqj and dij = ρij∆j.
In both cases uncertainty translates into interval uncertainty in the objective function coefficients, as unknown assignment
costs vary between a minimum and a maximum value without reference to a probability distribution.

As discussed earlier, we follow the Bertsimas and Sim [7] robust optimization approach for discrete optimization
problems with interval uncertainty in the objective function coefficients. Thus, given a budget Γ , we wish to find a solution
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that minimizes the maximum value of the solution when up to Γ assignment costs are at their worst-case value (aij + dij)
and the remaining values are at their best case value (aij).
Related literature on robust optimization: Robust optimization has received significant attention in recent years. The first
introduction of robust optimization is due to Soyster [22], who considered ‘‘columnwise’’ uncertainty in a linear problem,
and consequently, proposed a linear optimization model that is feasible for all data. This approach is ultraconservative as it
only allows decision variables that permit feasible solution under all possible scenarios. This ultraconservative strategy has
motivated the search for alternative concepts tomodel the uncertainty. Since one does not expect all data to take their worst
case values researchers have proposed the concept of uncertainty sets that constrain the possible perturbed data values of
the problem in some fashion.

The pioneering work by Ben-Tal and Nemirovski [5,6] proposes somewhat less conservative models by considering
ellipsoidal uncertainty sets. Roughly speaking this approach bounds the perturbations in the data values to lie in an ellipsoid.
Controlling the size of these ellipsoidal sets has the interpretation of a budget of uncertainty that the decision-maker selects
in order to easily trade off robustness and performance. One nice feature of this approach is the robust counterpart takes
the form of conic quadratic problems. Bertsimas and Sim [8] use polyhedral uncertainty sets (this bounds the uncertain
perturbations to lie in a polyhedral set and includes interval uncertainty) that encode a budget of uncertainty in terms
of cardinality constraints, as opposed to the size of an ellipsoid. The uncertainty sets they consider control the number
of parameters of the problem that are allowed to vary from their nominal values, providing a different trade-off between
the optimality of the solution, and its robustness to parameter perturbation. Bertsimas and Sim [7] apply this concept of
robustness (with interval uncertainty in data values) in the context of discrete optimization. This is the approach that we
take within this paper.

Snyder [21] provides a comprehensive review of facility location problems under uncertainty. Much of the previous
facility location work focuses on the concept of minmax regret that was introduced by Kouvelis and Yu [15]. Here a solution
is evaluated based on the difference in cost against the optimal solution for a given realization of data (this is referred to
as regret). Instead of finding a solution that minimizes the worst case cost, the goal is to find a solution that minimizes
the worst case regret. More recently, Baron et al. [4] addressed the facility location problem in a network facing uncertain
demand over multiple periods. The decision maker has to select the set of facilities to open, their capacity and allocate
demand to open facilities on each period. In this setting, they compare the solution obtained by two approacheswith respect
to demand uncertainty: boxed and ellipsoidal. They show that the alternate models of uncertainty lead to very different
solution network topologies, with the model with box uncertainty set opening fewer, larger facilities. They also show that
both the box and ellipsoidal uncertainty cases can provide small but significant improvements over the solution to the
problem when demand is deterministic and set at its nominal value. The robust spanning tree problem with interval data
was introduced by Kouvelis and Yu [15]. As the ConFL problem, its motivation also comes from the telecommunications
industry when connection costs are uncertain due to congestion rates. Yaman et al. [25] show the worst-case version of this
problem (i.e., where all edges can take their worst-case values) is polynomially solvable, while Aron and Van Hentenryck [2]
shows that minmax regret variant of the problem is NP-complete.

3. Approximate robust optimization (ARO) method

Before we introduce the Approximate Robust Optimization (ARO) Method, we briefly review the BS approach. In general
terms, given the following combinatorial optimization problem min

v∈W
c̃Tv where W ⊆ {0, 1}p represents the set of feasible

solutions, [7] define the robust counterpart, where each entry c̃j, j ∈ P = {1, 2, . . . , p} takes values in [cj, cj + dj], dj ≥ 0,
j ∈ P as follows:

Z∗
= minimize

v∈W
cTv + max

{U|U⊆P,|U|≤Γ }


j∈U

djvj. (2)

The interpretation of this formulation is that at most Γ of the uncertain coefficients will take their highest value.
Consequently, the decision maker minimizes the maximum cost of a solution with at most Γ coefficients at their highest
value. The deviation term (or penalty term), max{U|U⊆P,|U|≤Γ }


j∈U djvj, represents the sum of the maximum deviation of a

specified number, Γ , of uncertain coefficients in the solution. Notice, the value Γ = 0 corresponds to the best-case scenario
problem (i.e., it ignores the deviation term and assumes the minimum cost coefficient for each decision variable), and the
value of Γ = p yields the worst-case scenario solution (i.e., each cost coefficient is included in the deviation term).

Furthermore, Bertsimas and Sim [7] propose an algorithm to find a solution to (2). They show that one can find the optimal
solution to problem (2) by solving at most p+1 (deterministic) nominal problems. The nominal problems are deterministic
instances of the original problem with some of the coefficients at their lowest value and others modified by an added term,
plus a constant. To apply the method one must first identify the values of the deviation coefficients, dj, and label them in
decreasing order such that d1 ≥ d2 ≥ · · · ≥ dp ≥ dp+1 = 0. Then for each deviation coefficient, dl, one defines a nominal
problem, Gl, given by

Gl = Γ dl+ minimize
v∈W

cTv +

l
j=1

(dj − dl)vj. (3)
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Fig. 1. ARO method.

Then, the optimal function value to problem (2) is given by Z∗
= minl=1,...,p+1 Gl and the optimal solution, v∗

=

argminl=1,...,p+1Gl. The number of nominal problems is at most p + 1 because for equal dl values one must only solve one
nominal problem.2

The BS approach requires that several nominal problems are solved to optimality in order to solve the actual robust
problem. However, when the nominal problem is an NP-hard combinatorial optimization problem it can be computationally
expensive to solve it to optimality. Bertsimas and Sim [7] show that an α-approximation algorithm for the nominal problem
results in an α-approximation algorithm for the robust optimization problem. In the situation where one has access to a
(good) heuristic and a (good) lower bounding mechanism for individual problem instances, instead of an approximation
algorithm, we now show how to expand the scope of the BS approach to develop an approximate robust optimization
procedure that provides both a heuristic solution and an overall lower bound for the robust optimization problem.

Fig. 1 describes the Approximate Robust Optimization (ARO) algorithm. Within the algorithm, we can use any (good)
heuristic with a (good) lower bounding mechanism to approximately solve the nominal problems, Ωl = Gl − Γ dl =

minv∈W cTv+
l

j=1(dj−dl)vj. Let vHl denote the heuristic solution to the nominal problemΩl,ΩH
l its objective value, andΩLB

l

its lower bound. Given a heuristic solution vHl to the nominal problem (Ωl) we can use it as a heuristic solution (in fact any
feasible solution to the combinatorial optimization problem is a potential heuristic solution) to the robust optimization
problem. Let ZH

l denote the objective function value of heuristic solution vHl , evaluated for the robust optimization
problem (2). In other words

ZH
l = cTvHl + max

{U|U⊆P,|U|≤Γ }


j∈U

dj(vHl )j.

Here (vHl )j denotes the jth component of vector vHl . The heuristic solution vHl is easily evaluated by adding the Γ largest
deviation terms in the given solution to cTvHl . Let l

∗
= argminl=1,...,p+1 ZH

l , and let t∗ = argminl=1,...,p+1 Γ dl + ΩLB
l . Then

the heuristic solution to nominal problem Ωl∗ is selected as the heuristic solution to the robust optimization problem. That
is, vH = vHl∗ . Its objective value ZH

= ZH
l∗ , and ZLB

= Γ dt∗ + ΩLB
t∗ provides a lower bound to the robust objective. Thus vH is

the heuristic solution obtained by the AROmethod to the robust optimization problem (2). We now show thatZLB is a lower
bound for the robust optimization problem. Consequently ZH is at most β =

ZH
−ZLB

ZLB % greater than the optimal solution. In

other words the solution vH has an optimality gap of β =
ZH

−ZLB

ZLB .

Let αl be the optimality gap of heuristic solution vHl to the nominal problem Ωl (i.e., αl =
ΩH

l −ΩLB
l

ΩLB
l

) and let α =

maxl=1,...,p+1 αl.

Theorem 3.1. vH is a (1 + α)-approximate solution to the robust optimization problem.

Proof. Since α ≥ αl for l = 1, . . . , p + 1, each heuristic solution vHl∗ to the nominal problem Ωl is a (1 + α)-approximate
solution. It follows then from Theorem 4 in [7] that vH is a (1 + α)-approximate solution to the robust optimization
problem. �

In other words vH has an optimality gap of at most α. As noted earlier the above result follows directly from Theorem 4
in [7]. We can strengthen this result, and show that the AROMethod has an even tighter optimality gap (it should be evident
from the earlier discussion that the approximation ratio is equal to 1 plus the optimality gap). In particular we show that
ZLB is a valid lower bound, and that the optimality gap β is less than or equal to the optimality gap of the nominal problem
that provides the lower bound for the robust problem (i.e., t∗). In other words β ≤ αt∗ ≤ α.

2 Álvarez-Miranda et al. [1] show that for a given value of Γ the number of nominal problems required can be decreased to p−Γ +2. Specifically, Z∗
=

minl=Γ ,...,p+1 Gl and the optimal solution, v∗
= argminl=Γ ,...,p+1Gl .
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Theorem 3.2. β ≤ αt∗ .

In order to prove Theorem 3.2 we need the following two lemmas.

Lemma 3.3. ZLB is a lower bound to Z∗.

Proof. Let Z∗
= Gl̄, where l̄ is the nominal problem that solves (2) to optimality. Then Γ dl̄ + ΩLB

l̄
≤ Gl̄ = Z∗. On the other

hand, ZLB
= minl=1,...,p+1 Γ dl + ΩLB

l ≤ Γ dl̄ + ΩLB
l̄
. �

Lemma 3.4. ZH
≤ Γ dl + ΩH

l for all l ∈ P.

Proof.

ZH
≤ ZH

l for all l ∈ P

= cTvHl + max
{U|U⊆P,|U|≤Γ }


j∈U

dj(vHl )j. (4)

From Eq. (19) in [7], the inner maximization can be replaced as follows.

max
{U|U⊆P,|U|≤Γ }


j∈U

dj(vHl )j = min
θ≥0


j∈P

max(dj − θ, 0)(vHl )j + Γ θ


.

This implies that if we set θ = dl for any l

min
θ≥0


j∈P

max(dj − θ, 0)(vHl )j + Γ θ


≤ Γ dl +

l
j=1

(dj − dl)(vHl )j.

Continuing from the last equality in (4):

cTvHl + max
{U|U⊆P,|U|≤Γ }


j∈U

dj(vHl )j ≤ cTvHl + Γ dl +
l

j=1

(dj − dl)(vHl )j

= Γ dl + ΩH
l

which yields

ZH
≤ Γ dl + ΩH

l for all l ∈ P. �

Proof of Theorem 3.2. Recall,

β =
ZH

− ZLB

ZLB
.

Noting that ZLB
= ΩLB

t∗ + Γ dt∗ , and using Lemma 3.4 that says ZH
≤ Γ dt∗ + ΩH

t∗ we obtain:

β ≤
ΩH

t∗ + Γ dt∗ − (ΩLB
t∗ + Γ dt∗)

ΩLB
t∗ + Γ dt∗

=
ΩH

t∗ − ΩLB
t∗

ΩLB
t∗ + Γ dt∗

=
αt∗Ω

LB
t∗

ΩLB
t∗ + Γ dt∗

= αt∗


ΩLB

t∗

ΩLB
t∗ + Γ dt∗


since Γ dt∗ ≥ 0,0 ≤

ΩLB
t∗

Γ dt∗ + ΩLB
t∗

≤ 1, thus

β ≤ αt∗ . �

4. Approximate robust optimization method applied to the robust connected facility location problem

We now apply the Approximate Robust Optimization method to the robust connected facility location problem. Recall,
the robust counterpart of the ConFL problemconsiders the problemwhere each assignment cost ãij, {i, j} ∈ δ(D), takes values
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Fig. 2. Example of robust ConFL problem.

in the interval [aij, aij + dij], dij ≥ 0, and the set of feasible solutions (x, y, z) satisfy constraints (1b)–(1i). For convenience
we will denote by X the set of feasible solutions to (1b)–(1i).

Applying the BS framework, we obtain a robust counterpart where we would like to find a solution (x, y, z) ∈ X that
minimizes the maximum cost


i∈F fizi +


{i,j}∈E(S∪F) bijyij +


i∈F ,j∈D ãijxij such that at most Γ of the coefficients ãij are at

theirmaximumvalue (and the remaining ones are at theirminimumvalues). LetW(x, y, z) =


i∈F fizi+


{i,j}∈E(S∪F) bijyij+
i∈F ,j∈D aijxij (the best case cost of the solution (x, y, z)). Then, the robust ConFL is given by the following formulation:

Z = Minimize FΓ (x, y, z) = W(x, y, z) + max
{U|U⊆δ(D),|U|≤Γ }


{i,j}∈U

dijxij (5)

subject to: (x, y, z) ∈ X.

The second term in the objective function accounts for the uncertainty of the Γ highest possible deviations in the
assignment costs for each feasible solution (and thus incorporates the uncertainty in the location (and/or demand) of each
customer node). Notice that in any solution to a ConFL instance there is exactly one deviation term for each customer
node. Consequently, although themaximumnumber of uncertain coefficients (i.e. assignment costs) is |F ||D|; themaximum
number of possible assignment costs at their worst case value in a solution is |D|. In other words, even though the number
of nominal problems may be as large as |F ||D|, we only need to consider Γ values in the range 0 to |D|. In the robust ConFL
problem, the nominal problems are deterministic ConFL problems with their assignment costs adjusted by the deviation
terms, dl. (The deviation terms, dl, are the various assignment cost deviations, dij, organized in decreasing order and relabeled
accordingly.) Then, the nominal problems, Gl, for the robust ConFL problem are given by

Gl = Γ dl + minimize
(x,y,z)∈X


i∈F

fizi +


{i,j}∈E(S∪F)

bijyij +


i∈F ,j∈D

(aij + max{dij − dl, 0})xij (6)

and Ωl simply by

Ωl = minimize
(x,y,z)∈X


i∈F

fizi +


{i,j}∈E(S∪F)

bijyij +


i∈F ,j∈D

(aij + max{dij − dl, 0})xij. (7)

To solve the problems, Ωl, we use Bardossy and Raghavan [3]’s dual-based local search (DLS) heuristic. The AROmethod
uses the DLS heuristic to find a (good) heuristic solution (xl, yl, zl) for each deterministic ConFL problem, Ωl, defined by
(7). Then, the heuristic solution value ZH

l is calculated by evaluating the solution (xl, yl, zl) in problem (5). The smallest of
these solutions is selected as the heuristic solution to the robust ConFL problem. The algorithm uses the lower bounds ΩLB

l
obtained by DLS for each of the nominal problems to calculate a lower bound ZLB (recall minl=1,...,p+1 Γ dl + ΩLB

l ) for the
problem.

One advantage of solving all p + 1 nominal problems (as opposed to p − Γ + 2 as indicated in [1]) is that once we have
a heuristic solution (xl, yl, zl) and a lower bound Ωl for each nominal problem; one can quickly find heuristic solutions for
different Γ values by recalculating the heuristic solution value ZH

l in problem (5) and the lower bounds with the new Γ .
This is particularly useful in the context of sensitivity analysis (where a decision maker may rapidly want solutions for a
wide range of Γ values).

4.1. Illustration of the ARO method on the robust ConFL problem

In this sectionwe illustrate theAROmethodwith a small robust ConFL instance. Fig. 2 depicts an instancewith two facility
nodes and three customer nodes with disk uncertain areas. Distances are the Euclidean distances between the coordinates
of the nodes. For this example we set the facility opening cost equal to 1 and the cost of the edge between the two potential
facilities as twice the Euclidean distance between them.

Table 1 provides information on the interval in which the costs of the assignment edges lie (and also shows the cost of
the ‘‘tree edge’’ between the two potential facilities). Here, aij = max{∥i − j∥2 − rj, 0}, and dij = min{∥i − j∥2 + rj, 2rj},
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Table 1
Assignment and tree edge costs.

Assignment costs
Customer Facility Minimum cost Deviation

1 4 0.00 5.83
1 5 0.00 4.41
2 4 0.00 6.00
2 5 2.00 6.00
3 4 1.39 8.00
3 5 0.00 7.61

Tree edge cost
Facility Facility Cost
4 5 6.32

Table 2
Assignment costs for each nominal problem.

Assignment costs

Customer Facility Deviation dl
8.00 7.61 6.00 5.83 4.41 0.00

1 4 0.00 0.00 0.00 0.00 1.42 5.83
1 5 0.00 0.00 0.00 0.00 0.00 4.41
2 4 0.00 0.00 0.00 0.17 1.59 6.00
2 5 2.00 2.00 2.00 2.17 3.59 8.00
3 4 1.39 1.78 3.39 3.56 4.98 9.39
3 5 0.00 0.00 1.61 1.78 3.20 7.61

where i and j are coordinates of node i ∈ F and j ∈ D, respectively; and rj is the radius of the uncertainty disk for node j ∈ D.
In this example, there are five distinct deviation values, dl; consequently, we need to solve six nominal problems: one for
each deviation value plus one additional problem for dl = 0, D = {8.00, 7.61, 6.00, 5.83, 4.41, 0}.

Table 2 depicts the assignment costs for each nominal problem l, Ωl, as defined in (7). Each column in the table depicts
assignment edge costs for different ConFL (nominal) problem thatmust be solved.We use the dual-ascent local search (DLS)
heuristic to obtain both a heuristic solution (xl, yl, zl) and a lower bound ΩLB

l for each nominal problem.
Table 3 shows results of applying the ARO method for Γ = 2. The second column provides the lower bound obtained

for each nominal problem (7), the fourth column provides the lower bound for each nominal problem ΩLB
l , the fifth column

computes Γ dl + ΩLB
l , and the sixth column provides the objective value of the solution (xl, yl, zl) evaluated in the objective

function (5). Recall the overall lower bound can be computed by the lowest of the values in the fifth column, and the overall
upper bound (and heuristic solution) from the lowest of the values in the sixth column. Thus, when Γ = 2 the AROmethod
obtains a lower and upper bound of 16.39 and opens facility 4. Since the upper and lower bounds are equal, in this case the
ARO method finds the optimal solution.

Although we set Γ equal to 2, with the heuristic solution and lower bound to each nominal problem at hand, it is easy
to vary Γ between 0 and 3 and apply the ARO method to observe how the solution changes. As mentioned earlier this is
particularly useful in the context of sensitivity analysis. The ARO method obtained the optimal solution (as the upper and
lower boundswere equal) for all values ofΓ . Notice that the six nominal problems,Ωl, produced only two distinct solutions;
that is, to either open facility 4 or facility 5. Thus the ARO method will produce one of these two solutions as the heuristic
solution to the robust ConFL for a given value of Γ . Table 4 shows the objective value for these two solutions in the robust
optimization formulation. To open facility 4 is optimal for every Γ value except 3. In other words, to open facility 4 is a
robust solution under a wide range of realizations except when the worst-case scenario takes place.

4.2. Special case: disk uncertainty with facilities outside

When all of the potential facilities fall outside the customers’ disk uncertainty areas, there is only one dij value (=2rj) for
each customer j ∈ D regardless of the facility i ∈ F . We now show that the optimal solution to the robust ConFL problem
is identical for all values of Γ . Thus we can solve the robust ConFL problem (for any value of Γ ) by simply solving the best
case scenario problem.

Theorem 4.1. If every i ∈ F falls outside the uncertainty disk for every demand node j ∈ D, the optimal solution to the robust
ConFL problem is identical for all values of Γ .

Proof. By assumption i ∈ F lies outside the uncertainty diskwith radius rj for all j ∈ D, and assignment cost ãij ∈ [aij, aij+dij].
Since any i ∈ F lies outside j’s uncertainty disk, dij = 2rj, ∀i ∈ F . Hence, we can rearrange the order of summation in Eq. (1a)
and noting


i∈F xij = 1 (from constraint (1e)) we get:


j∈D


i∈F dijxij =


j∈D 2rj


i∈F xij =


j∈D 2rj. Consequently, the
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Table 3
Results of ARO method on Fig. 2 example with Γ = 2.

l dl Solution ΩLB
l Γ dl+ΩLB

l Zl
H

1 8.00 Open facility 4 2.39 18.39 16.39
2 7.61 Open facility 4 2.78 18.00 16.39
3 6.00 Open facility 4 4.39 16.39 16.39
4 5.83 Open facility 4 4.73 16.39 16.39
5 4.41 Open facility 5 7.79 16.61 16.61
6 0.00 Open facility 5 21.02 21.02 16.61

Table 4
Results for 0 ≤ Γ ≤ 3.

Solution Γ

0 1 2 3

Open facility 4 2.39 10.39 16.39 22.21
Open facility 5 3.00 10.61 16.61 21.02

deviation term max{D|D⊂D,|D|≤Γ }


j∈D 2rj is a constant dependent on Γ but unaffected by the problem solution. Thus, the

optimal solution to problem (5) is obtained by solving the best-case problem. �

5. Computational experiments

Wenow report on a set of computational experimentswith the AROmethod on the robust ConFL problem. The purpose of
these experiments is to assess the effectiveness of the ARO method, in terms of solution quality and computational time, to
solve the robust ConFL problem under various uncertainty levels and uncertainty regions. Furthermore, these experiments
allow us to observe how the solution changes under different levels of the conservatism parameter Γ . The ARO method
(with the DLS heuristic) is coded in C++ and all computations are conducted on a computer with an Intel Core i7-2600 CPU
@ 3.40 GHz and 16 GB RAM running Windows 7.

We generated instances by first selecting nodes randomly located on a 100 × 100 square grid. The Euclidean distances
were used as a basis for the edge lengths. The assignment edge costs are equal to the edge lengths between demand nodes
and facility nodes, while tree edge costs are equal to the edge lengths multiplied by an M factor. The M factor illustrates
the significantly higher (in terms of cost per unit distance) connection cost, in practice, of edges in the tree T . For our test
instances, we consider three levels for theM factor,M ∈ {3, 5, 7}. Each instance has 50 demand nodes, 50 facility nodes and
20 pure potential Steiner nodes. In addition, the facility opening cost was set to 30. These problem parameters cover a wide
range of characteristics and were specifically chosen to include the hardest types of ConFL instances (for the DLS heuristic)
reported in Bardossy and Raghavan [3].

In order to evaluate how the shape of the uncertainty region affects the ARO method’s performance, in particular the
computational times,we generated three sets of instanceswith various uncertainty regions: circular, square and rectangular.
In Set 1 the location of demand nodes is represented by an uncertainty diskwhose radius is uniformly generated in the range
0–R.We considered various ranges for the radius and chose R = 2, 5, 10, or 20, on each subset of instances. Consequently, for
each demand node, j, we defined a center location j = (j1, j2) and an uncertainty radius rj. Then the minimum assignment
cost for demand node j from facility i with coordinates i = (i1, i2) is aij = max{∥i − j∥2 − rj, 0}, and the deviation is
dij = min{∥i − j∥2 + rj, 2rj}.

In Set 2 the location of demand nodes is represented by a square uncertainty region, while in Set 3 the demand nodes
are in a rectangular uncertainty region. Again to evaluate the effect of the magnitude of location uncertainty, we created
instances with various ϵj1 and ϵj2 deviations for each coordinate axis. These values were uniformly generated between 0
and R = 2, 5, 10, and 20. For each demand node we defined a center location j and an uncertainty deviation ϵj (i.e., for
square uncertainty region ϵj1 = ϵj2.) Similarly to Set 1, we then calculate the minimum assignment cost and maximum
deviation for each pair of demand and facility nodes.

We variedΓ between 0 and 50, in steps of 10, to assess its effect on the solution and the performance of the heuristic.We
generated 10 instances for each combination of problem characteristics. Note that while the demand node center location
will always fall within the 100×100 grid by construction, the uncertainty area may extend outside the predefined grid, and
consequently, the worst-case location of a demand node may fall outside the grid.

5.1. Results for Set 1—disk uncertainty area

The ARO method yields high-quality solutions rapidly for the problems in Set 1. Table 5 reports average optimality gaps
for different Γ values and maximum uncertainty radius. Recall, we generate 10 instances for each combination of Γ and R.
Thus, each row of the table reports on the average over 10 instances. The average optimality gaps are under 3.34% (M = 3)
and the highest gap for all instances is below 8.76% (M = 7). Furthermore, we observe that average gaps decrease for higher
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Table 5
Average optimality gaps for Set 1.

M Maximum radius Γ

0 10 20 30 40 50

3 2 2.04% 1.98% 1.94% 1.92% 1.90% 1.90%
3 5 2.47% 2.29% 2.18% 2.10% 2.04% 2.03%
3 10 2.73% 2.35% 2.02% 1.88% 1.79% 1.77%
3 20 3.34% 2.61% 1.75% 1.63% 1.48% 1.43%

5 2 2.43% 2.37% 2.32% 2.30% 2.28% 2.27%
5 5 2.57% 2.41% 2.30% 2.23% 2.18% 2.17%
5 10 2.79% 2.46% 2.23% 2.06% 1.99% 1.97%
5 20 3.06% 2.36% 2.00% 1.82% 1.74% 1.71%

7 2 2.83% 2.77% 2.72% 2.69% 2.67% 2.67%
7 5 1.79% 1.70% 1.63% 1.59% 1.57% 1.56%
7 10 2.64% 2.39% 2.12% 2.00% 1.94% 1.92%
7 20 3.23% 2.58% 2.23% 2.03% 1.91% 1.88%

Table 6
Average heuristic times for Set 1.

M Maximum radius Nominal problems DLS (s) Processing (s) Total (s)

3 2 52 2.2703 0.0055 2.3033
3 5 59 2.6041 0.0062 2.6410
3 10 77 3.4245 0.0094 3.4807
3 20 141 6.3286 0.0203 6.4501

5 2 53 3.0160 0.0075 3.0609
5 5 57 3.4084 0.0093 3.4640
5 10 76 4.4714 0.0126 4.5471
5 20 139 8.4112 0.0242 8.5567

7 2 52 2.9000 0.0041 2.9245
7 5 57 3.1741 0.0055 3.2069
7 10 74 3.9815 0.0065 4.0204
7 20 128 7.0099 0.0111 7.0763

values of Γ . On the other hand, for higher magnitudes of location uncertainty the average gaps remain stable. In fact, the
highest gap is observed for an instance with uncertainty radius bounded by 2 (M = 7).

Table 6 shows the average number of nominal problems solved for each instance, the average time the DLS heuristic
took to solve the nominal problems and the average processing times. The processing time accounts for the time required to
compute FΓ (x, y, z) and select the best solution out of all the solutions obtained for the nominal problems. The processing
time is infinitesimally small (less than 0.001 s) for eachΓ value. The average number of nominal problems increaseswith the
magnitude of location uncertainty because as the radius of the uncertainty disk increases, facility nodes are more likely to
fall within uncertainty disks. In addition, the average running time for the DLS heuristic increases as the number of nominal
problems increases. However, the average time is below 5 s when the maximum radius is 10 or below 10 s when the
maximum radius is 20. The maximum time required to solve one of these instances was 9.652 s (maximum radius = 20
and M = 5).

Recall, with the ARO method it is easy to rapidly compute heuristic solutions for many values of Γ ; and thus from a
sensitivity analysis perspective it is easy to observewhen and how the solution changes for differentΓ values. Sincewe have
access to heuristic solutions across a large set of Γ values, we decided to perform some additional robustness/sensitivity
analysis to examine how different the DLS heuristic for the best case-scenario was from the ARO heuristic solution across
the different Γ values. We take the DLS solution (x1, y1, z1) for the best-case scenario (i.e., the nominal problem Ω1, which
is identical to the robust formulation for Γ = 0); and evaluate its cost as the solution for different Γ values. (In other words
we compute ZH

1 = FΓ (x1, y1, z1) for different Γ values.) We use this to calculate the percentage cost difference (or loss) of
the DLS heuristic solution (x1, y1, z1) against the ARO method’s solution for different values of Γ .

loss% =
FΓ (x1, y1, z1) − ZH

ZH
. (8)

Table 7 shows the average percentage loss in cost between the DLS heuristic best-case solution and the ARO heuristic
solution. For M = 7 for different magnitudes of location uncertainty the average loss is below 0.33%. However, for M = 3
the average loss reaches 1.67% and the maximum loss for Γ = 20 is as high as 4.37% for one instance. Interestingly, we
observe that for about half of the instances with low to medium magnitudes of location uncertainty (maximum radius =
2–10), the DLS heuristic best-case solution (ZH

1 ) is identical to the ARO method heuristic solution (ZH ) for the different
levels of conservatism considered. For high magnitudes of location uncertainty (maximum radius = 20) this is not the case
(only one instance shows that behavior withM = 3).We should note the reason that there is a non-zero value in the column
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Table 7
Average percentage loss of the DLS heuristic best-case solution for Set 1.

M Maximum radius Γ

0 10 20 30 40 50

3 2 0.44% 0.43% 0.42% 0.41% 0.41% 0.41%
3 5 0.03% 0.02% 0.02% 0.02% 0.02% 0.02%
3 10 0.47% 0.45% 0.47% 0.44% 0.43% 0.40%
3 20 0.92% 0.88% 1.30% 1.61% 1.66% 1.64%

5 2 0.31% 0.30% 0.30% 0.29% 0.29% 0.29%
5 5 0.27% 0.26% 0.25% 0.24% 0.24% 0.24%
5 10 0.68% 0.58% 0.56% 0.55% 0.53% 0.52%
5 20 0.96% 0.97% 1.14% 1.12% 1.07% 1.06%

7 2 0.33% 0.32% 0.32% 0.32% 0.31% 0.31%
7 5 0.32% 0.29% 0.28% 0.28% 0.27% 0.27%
7 10 0.30% 0.32% 0.33% 0.30% 0.29% 0.29%
7 20 0.28% 0.29% 0.32% 0.32% 0.32% 0.33%

Table 8
Average optimality gaps for Set 2.

M R value Γ

0 10 20 30 40 50

3 2 1.79% 1.71% 1.63% 1.59% 1.58% 1.57%
3 5 1.98% 1.73% 1.56% 1.51% 1.48% 1.46%
3 10 2.45% 1.85% 1.69% 1.71% 1.61% 1.58%
3 20 3.40% 2.03% 1.32% 1.27% 1.18% 1.17%

5 2 3.56% 3.46% 3.40% 3.32% 3.29% 3.28%
5 5 2.40% 2.19% 2.03% 1.98% 1.93% 1.90%
5 10 3.09% 2.72% 2.56% 2.44% 2.28% 2.24%
5 20 4.28% 2.99% 2.71% 2.30% 2.07% 1.99%

7 2 1.95% 1.90% 1.87% 1.87% 1.84% 1.84%
7 5 2.25% 2.10% 1.94% 1.88% 1.81% 1.80%
7 10 2.27% 1.84% 1.75% 1.67% 1.61% 1.59%
7 20 3.38% 2.44% 1.92% 1.71% 1.74% 1.72%

Table 9
Average heuristic times for Set 2.

M R value Nominal problems DLS (s) Processing (s) Total (s)

3 2 2485 113.3821 0.2217 114.7126
3 5 2484 113.2993 0.2618 114.8703
3 10 2478 115.1680 0.2966 116.9476
3 20 2480 115.7032 0.4209 118.2287

5 2 2480 126.9626 0.2339 128.3663
5 5 2484 129.2902 0.2464 130.7684
5 10 2483 123.0530 0.2489 124.5462
5 20 2477 126.3557 0.3126 128.2313

7 2 2474 143.9196 0.1850 145.0294
7 5 2473 140.6016 0.1935 141.7627
7 10 2477 141.6860 0.2590 143.2401
7 20 2473 144.9919 0.2354 146.4044

Γ = 0 is the DLS heuristic finds one solution, while the AROmethod evaluates the heuristic solution obtained by all nominal
problems to ascertain the best heuristic solution for a given value of Γ (including Γ = 0).

5.2. Results for Set 2—square uncertainty area

The ARO method also provides high-quality solutions for Set 2. Table 8 shows the average optimality gaps are under
4.28% (M = 5) and the maximum gap is below 6.93% (M = 5). The average gaps also decrease as Γ increases and there is
no significant difference in the average gaps for higher magnitudes of location uncertainty. For low values of Γ , the average
gap is slightly higher for higher uncertainty levels. However, this tendency fades away as Γ increases.

Table 9 shows the average number of nominal problems and times for instances in Set 2. The maximum computational
time required by any instance is below 2.56 minutes (M = 7). With regard to the running time of the ARO method, the
instances in Set 2 (and Set 3) take a significantly greater amount of time than the instances in Set 1. The main reason is that
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Table 10
Average percentage loss of the DLS heuristic best-case solution for Set 2.

M R value Γ

0 10 20 30 40 50

3 2 0.54% 0.53% 0.53% 0.54% 0.53% 0.52%
3 5 0.35% 0.32% 0.42% 0.42% 0.40% 0.39%
3 10 0.37% 0.75% 0.71% 0.70% 0.75% 0.73%
3 20 1.17% 1.75% 2.74% 2.83% 2.82% 2.74%

5 2 0.32% 0.33% 0.34% 0.34% 0.33% 0.33%
5 5 0.77% 0.73% 0.76% 0.75% 0.74% 0.73%
5 10 0.66% 0.78% 0.81% 0.81% 0.77% 0.76%
5 20 0.79% 1.28% 1.58% 1.70% 1.80% 1.76%

7 2 0.20% 0.20% 0.22% 0.22% 0.22% 0.22%
7 5 0.58% 0.59% 0.69% 0.67% 0.68% 0.68%
7 10 0.40% 0.49% 0.46% 0.45% 0.42% 0.42%
7 20 1.35% 1.23% 1.42% 1.39% 1.37% 1.34%

Table 11
Average optimality gaps for Set 3.

M R value Γ

0 10 20 30 40 50

3 2 1.72% 1.68% 1.64% 1.61% 1.60% 1.59%
3 5 1.83% 1.63% 1.62% 1.49% 1.37% 1.42%
3 10 2.27% 1.87% 1.74% 1.62% 1.64% 1.65%
3 20 2.62% 1.66% 1.29% 1.30% 1.48% 1.77%

5 2 2.16% 2.07% 2.01% 1.93% 1.91% 1.92%
5 5 2.74% 2.57% 2.39% 2.31% 2.15% 2.08%
5 10 2.18% 2.07% 1.99% 1.90% 1.84% 1.89%
5 20 3.35% 2.59% 2.28% 2.22% 2.19% 2.43%

7 2 2.22% 2.17% 2.13% 2.10% 2.05% 2.03%
7 5 1.91% 1.75% 1.69% 1.63% 1.61% 1.62%
7 10 2.48% 2.18% 1.99% 2.08% 2.07% 1.91%
7 20 1.39% 1.26% 1.47% 1.56% 1.73% 1.78%

to solve the robust counterpart of these instances, we have to solve a significantly larger number of nominal problems. The
average number of nominal problems for each instance in Set 2 and 3 is above 2400 (and this number remains about the
same even as the R value changes). Recall that the maximum number of possible nominal problems in these instances is
2500. Consequently, the total computational times are much higher and they average around 2 minutes.

Table 10 shows the average difference between the cost of the DLS heuristic best-case solution and the ARO heuristic
solution. The AROheuristic solution is slightly better than theDLS heuristic best-case solution for lowmagnitudes of location
uncertainty. However, for the greatest level of location uncertainty, the DLS heuristic best-case solution can be on average
as high as 2.84% more costly than the ARO heuristic solution. Over the whole set, the most costly DLS heuristic best-case
solution is 5.39% more costly than its ARO heuristic solution counterpart.

5.3. Results for Set 3—rectangular uncertainty area

Table 11 shows the average optimality gaps for Set 3. The AROmethod also provides high-quality solutions for Set 3. The
average optimality gaps are under 3.35% (M = 5) slightly below the average optimality gaps observed in Set 2. Similarly, the
highest gap in Set 3 is below 5.86% (M = 5). For smaller R values (R = 2, 5) the average gaps show an overall tendency to
decrease asΓ increases. However, for largermagnitudes of location uncertainty (R = 10, 20) the average gaps first decrease
with Γ and then increase for the largest values of Γ .

Table 12 shows the average number of nominal problems is slightly higher in Set 3; and consequently, the computational
times are proportionally higher. The average total time per instance is approximately 2 minutes, with the maximum of
2.62 minutes. The running times for Sets 2 and 3 increase asM increases.

Table 13 shows the average difference between the cost of the DLS heuristic best-case solution and the ARO heuristic
solution.

5.4. Smaller data set and comparison to compact robust formulation

The first three data sets provide a significant amount of information regarding the performance of the AROmethod on the
robust ConFL problem. As an alternative to solving all of the nominal problems to solve the robust optimization problem (5);
one can solve a single mixed-integer program (MIP) that models the deviation in the objective function of problem (5) (see
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Table 12
Average heuristic times for Set 3.

M R value Nominal problems DLS (s) Processing (s) Total (s)

3 2 2494 113.7649 0.2043 114.9907
3 5 2494 113.3844 0.2932 115.1435
3 10 2489 113.9181 0.3421 115.9708
3 20 2491 116.6032 0.5112 119.6702

5 2 2487 128.1238 0.3060 129.9597
5 5 2483 132.4882 0.3175 134.3932
5 10 2478 131.8056 0.3044 133.6323
5 20 2480 135.0287 0.4783 137.8983

7 2 2483 141.2065 0.1878 142.3334
7 5 2489 140.5241 0.2387 141.9561
7 10 2483 143.2032 0.2417 144.6533
7 20 2485 147.3074 0.2670 148.9095

Table 13
Average percentage loss of the DLS heuristic best-case solution for Set 3.

M R value Γ

0 10 20 30 40 50

3 2 0.53% 0.52% 0.53% 0.54% 0.53% 0.52%
3 5 0.54% 0.52% 0.56% 0.62% 0.65% 0.65%
3 10 0.64% 0.60% 0.75% 0.97% 1.02% 0.94%
3 20 1.00% 1.83% 2.63% 2.97% 3.21% 3.17%

5 2 0.33% 0.35% 0.36% 0.41% 0.42% 0.43%
5 5 0.56% 0.63% 0.66% 0.67% 0.69% 0.70%
5 10 0.94% 0.98% 1.07% 1.22% 1.36% 1.37%
5 20 1.39% 1.23% 1.55% 1.81% 2.09% 2.17%

7 2 0.27% 0.28% 0.26% 0.25% 0.25% 0.24%
7 5 0.31% 0.33% 0.31% 0.38% 0.40% 0.40%
7 10 0.88% 0.82% 0.84% 0.95% 1.09% 1.25%
7 20 0.81% 0.99% 1.16% 1.52% 1.56% 1.58%

Theorem 1 in [7]). To get a sense of the speedup in applying the ARO method, as well as to visually display solutions for
some non trivial but smaller instances, we created a fourth set of 10 test instances. They contain 25 demand nodes, 25
facility nodes, and 10 facility nodes. For these instances we fixed the facility opening cost to 30, M = 3, and Γ = 10. The
uncertainty area is rectangular with R value of 20.

Formulation (9) shows the compact formulation of the robust ConFL problem as an MIP. We implemented constraint set
(9e) by means of a single commodity flow (SCF) formulation for the ConFL problem. It is certainly possible to implement
constraint set (9e) using a multicommodity flow formulation or using an exponential set of GSECs (as in (1b)). In terms of
a quick comparative implementation the multicommodity flow formulation is not viable because it rapidly blows up and
is not computationally tractable. The GSEC based formulation requires the implementation of a branch-and-cut procedure
which is specialized and beyond the scope of this paper. Hence, we implemented (9e) by means of a SCF formulation in
CPLEX 12.5.

Minimize

i∈F

fizi +


{i,j}∈E(S∪F)

bijyij +


i∈F ,j∈D

aijxij +


i∈F ,j∈D

πij + Γ δ (9a)

subject to
πij + δ − dijxij ≥ 0 ∀i ∈ F , ∀j ∈ D (9b)

δ ≥ 0 (9c)
πij ≥ 0 ∀i ∈ F , ∀j ∈ D (9d)

(x, y, z) ∈ X. (9e)

We limited the size of our instances to 60 nodes because CPLEX 12.5 could not handle larger instanceswithin a reasonable
time. We limited the running time for all methods to 1800 s. Table 14 shows the results obtained by Formulation (9),
and the ARO heuristic. For comparative purposes we also provide the running time for one nominal problem with the
SCF formulation. This was then used to get a very rough estimate of the time it would take to solve the problem if the
SCF formulation (from a computational perspective we would not recommend the single commodity flow formulation for
exact approaches, and would recommend using a state-of-the-art branch-and-cut code as in [10,18] to solve nominal ConFL
instances) was used.
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Table 14
Comparison of results for Set 4.

Inst Formulation (9) ARO heuristic Nominal problem (SCF)
Cost Gap Time (s) Cost Gap Time (s) Time (s) p Est. Time (s)

1 903.42 8.67% 1801.74 909.84 0.71% 49.40 3.91 619 2420.40
2 1014.05 13.99% 1801.50 994.16 0.16% 52.48 6.51 618 4024.26
3 938.61 17.09% 1803.82 940.91 0.24% 47.32 35.93 616 22133.31
4 914.36 16.64% 1800.94 914.36 0.37% 44.07 11.24 621 6977.91
5 994.01 19.50% 1801.17 979.81 1.33% 101.68 56.19 620 34837.42
6 929.75 27.57% 1802.09 931.38 0.67% 43.92 24.54 616 15115.20
7 934.63 19.25% 1802.47 916.57 2.92% 45.56 10.65 619 6593.27
8 779.79 12.69% 1800.59 779.79 0.00% 44.05 6.62 616 4080.70
9 919.96 19.24% 1803.65 924.13 0.45% 42.05 25.00 620 15497.11

10 962.79 8.67% 1804.67 959.82 0.24% 46.60 13.56 624 8460.81

Fig. 3. Example of robust ConFL problem—instance 7.

Fig. 4. Example of robust ConFL problem—instance 9.

Table 14 shows the total cost of the best solution foundwithin the 1800 s allotted time for Formulation (9), the optimality
gap of the solution using its best-known lower bound, and the total time in seconds. Table 14 also shows the total cost, the
optimality gap of the solution (using the AROmethod’s lower bound) and the total time in seconds for the ARO heuristic. As
can be seen from the table, the upper bounds found by both the compact formulation and the AROmethod are comparable.
However, the compact formulation using the SCF provides weak lower bounds. In fact for instance 7 we let Formulation (9)
run for two hours and obtained a slightly better solution than the ARO heuristic; yet this compact formulation reported a
gap of 17.3% (but when the solution is measured against the ARO lower bound, the gap is in fact 2.8%). On the other hand,
the ARO heuristic obtained a solution with an optimality gap of 2.9% in 45 s. The last few columns of the table show the total
time required to solve one nominal instance to optimality using the SCF formulation, the total number of nominal problems,
and an estimate of the total time required should one solve the robust problem to optimality applying the BS algorithmwith
the SCF formulation for each nominal problem.

Figs. 3 and 4 provide a visual representation of the solution for different Γ values. This is another significant benefit of
the ARO method. The ARO allows the decision-maker to rapidly observe how the (approximate) solution to the problem
changes as the level of conservatism changes. For instance 9, we observe that the ARO method’s (robust) solution changes
from low conservatism values to medium conservatism values and then changes back for high conservatism values. This
type of information can be particularly useful to a decision maker who may be unsure of what value of Γ to choose. Having
a solution that is near optimal for a large set of conservatism values can be useful in making a final decision on the ‘‘robust’’
solution to choose.
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6. Conclusions

In this paper we introduced the robust ConFL problem. It more accurately models the practical problems that motivated
the ConFL [11,14]. To address the issue of solving large-scale robust variants of challenging (NP-hard) discrete optimization
problems,we introduced the approximate robust optimizationmethod. Toworkwell in practice, this approach requires both
high quality upper and lower bounds for each nominal problem. We applied the ARO method to the robust ConFL problem,
using a dual-based local search heuristic that gives high quality upper and lower bounds on the deterministic ConFL [3].
A more significant contribution is the ARO method—along with its application on the robust ConFL problem. Secondly, we
proposed anAROmethodby extending the BS robust optimization approachusing heuristics and lower bounding procedures
for the nominal problems. And lastly, we demonstrated this approach using a dual-based local search heuristic and found
that it yielded high-quality solutions for the robust ConFL problem.

The ARO method found high-quality solutions to the robust ConFL very rapidly. In fact, were we to solve each nominal
problem exactly using a state-of-the-art method as in [10,18] it would require a significantly greater computational effort3
(with the benefit of course being we would have solved the robust ConFL to optimality). Since the AROmethod expands the
scope of the BS method in a computationally practical manner – allowing one to apply heuristics to the nominal problems
(when there is a good lower bound at hand) and obtain high-quality solutions to the robust optimization problem rapidly –
we hope this approach will be adopted by researchers for other robust optimization problems.
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