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Targeted marketing strategies are of significant interest in the smartapp economy. Typically, one seeks

to identify individuals to strategically target in a social network so that the network is influenced at a

minimal cost. In many practical settings the effects of direct influence predominate, leading to the Positive

Influence Dominating Set with Partial Payments (PIDS-PP) problem that we discuss in this paper. The

PIDS-PP problem is NP-complete, as it generalizes the dominating set problem. We discuss several mixed

integer programming formulations for the PIDS-PP problem. First, we describe two compact formulations

on the payment space. We then develop a stronger compact extended formulation. We show that when

the underlying graph is a tree, this compact extended formulation provides integral solutions for the node

selection variables. In conjunction, we describe a polynomial-time dynamic programming algorithm for the

PIDS-PP problem on trees. We project the compact extended formulation onto the payment space, providing

an equivalently strong formulation that has exponentially many constraints. We present a polynomial time

algorithm to solve the associated separation problem. Our computational experience on a test-bed of 100 real-

world graph instances (with up to approximately 465,000 nodes and 835,000 edges) demonstrates the efficacy

of our strongest payment space formulation. It finds solutions that are on average 0.4% from optimality, and

solves 80 out of the 100 instances to optimality.

Key words : social networks, influence maximization, latency constraints, mixed integer programming,

strong models

1. Introduction

Mobile applications and social networks play an important role in the spread of influence, infor-

mation, and ideas in people’s daily lives. Although researchers have acknowledged social influence

as a component in decision making for a long time (see for example Bourne 1957, Brown and

Reingen 1987, Granovetter 1978), online social media help trace the dynamics easily (see Valente

2012). Indeed they provide an unprecedented platform for understanding and reaping the benefits

of direct targeting. This has resulted in the social media influencer marketing segment being a

thriving industry with an estimated worth somewhere between $5 billion to $16 billion in 2020

(Schmidt 2019), and predictions of value up to $15 billion by 2022 (Schomer 2020).

In direct targeting the goal is to identify a set of nodes to target in a network, with the objec-

tive that these directly targeted nodes influence the rest of the network. Although influence can

1



2

theoretically propagate through a network, there is a significant difference between the magnitude

of the effects of “direct” and “indirect” influence in practice. “Direct influence” refers to influence

received from a node that has been selected for targeting, and “indirect influence” refers to influ-

ence received from a node that has not been selected for targeting (i.e., it has been influenced by

its neighbors and subsequently influences its uninfluenced neighbors). Indeed, Goel et al. (2015)

investigated the diffusion of nearly a billion news stories, videos, pictures, and petitions on Twitter

and showed that almost all of the diffusion (over 99%) consisted of direct influence. Furthermore,

Zhang et al. (2018) studied the diffusion of technology adoption in the context of caller ringback

tones (CRBT) on a data set of 200 million calls among 1.4 million users, and found that the adop-

tion of CRBT is consistently predicted solely by direct influence (indicating that the magnitude of

direct influence is statistically much larger than that of indirect influence). The predominance of

direct influence is seen in many different settings including medical technology diffusion (Coleman

et al. 1966) and also in settings where behavioral change is desired for medical reasons (Greaves

et al. 2010) within a target population.

Motivated by the importance of direct influence in targeted marketing, in this paper we focus our

attention on the Positive Influence Dominating Set with Partial Payments (PIDS-PP) problem.

Given a social network represented as an undirected graph G = (V,E), each node i ∈ V has a

threshold bi (representing the cost to the marketer to directly target the node) and an influence

factor fi (representing the amount of influence each of its directly targeted neighbors exerts on

it). A node i that is not directly targeted can be influenced by the payment of an amount pi =

max(0, bi − |Bi|fi), where Bi represents the set of neighbors of node i that have been directly

targeted by the marketer. The goal is to select a subset T ∈ V (a PIDS-PP) that is directly targeted,

so that the sum of the threshold (or full) payments to the selected nodes (T ) and the partial

payments to the remaining nodes (V \T ) is minimized. Notice that when bi = fi = 1 for all i ∈ V ,

we obtain the classic dominating set problem (see Haynes et al. 1998a,b, for a survey). Thus, the

PIDS-PP problem generalizes the dominating set problem, and is NP-hard.

The influence factor fi implicitly assumes that the identity of a neighbor has no impact on its

influence (i.e., all neighbors of a node have equal influence on it). This is motivated by the fact

that privacy concerns are a significant issue on social networks (and has received attention from

regulators globally). Note however, although a node is equally influenced by each neighbor, this

influence factor may be different for each node in the network. We also note that a node that

receives a partial payment needs to receive influence from at least one or more of its neighbors

in order to be influenced. Thus nodes that receive partial payments do not belong to the class of

directly targeted nodes, and any influence they propagate is indirect influence. Since the PIDS-PP
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(a) PIDS-PP Problem Instance
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(b) Equivalent PIDS Problem Instance

Figure 1 Comparing the PIDS-PP and the PIDS Problem

problem is focused solely on direct influence (given the orders of magnitude difference in direct and

indirect influence observed in practice), these indirect influence effects are not modeled.

The PIDS-PP problem is closely related to two problems previously studied in the literature.

When partial payments are not permitted (i.e., pi = 0 for all V \T ), we obtain the Positive Influence

Dominating Set (PIDS) problem (see Wang et al. 2009), which requires that a node i that is not

directly targeted receives influence from gi = ⌈bi/fi⌉ directly targeted neighbors. Figure 1(a) shows

a PIDS-PP instance. A shaded node with solid outline denotes that a node is directly target. A

shaded node with dashed outline denotes that a node receives partial payment. A directed arc shows

the influence direction. An optimal solution has x1 = 1, p2 = 1, p3 = 1, x4 = 1 with an objective value

of 22. By calculating gi for each node, we converting this PIDS-PP instance into an equivalent

PIDS instance in Figure 1(b). Given that partial payments are not allowed, an optimal solution

is to select nodes 1 and 3 (x1 = 1, x2 = 0, x3 = 1, x4 = 0) with an objective value of 40. Comparing

to the PIDS-PP instance, the total cost increases by over 81%. It demonstrates the potential cost

savings by considering partial payments in the PIDS-PP problem. Further, when indirect influence

plays a larger and equivalent role in influence propagation, influence can propagate along paths in

the network through nodes that have been influenced but were not directly targeted. In this case,

we obtain the Least Cost Influence Problem (LCIP)(see Günneç et al. 2020). Thus, in a certain

sense, one can also view the PIDS-PP problem as an influence maximization problem (i.e., the

LCIP) with a latency requirement (of one time-period).

1.1. Our Contributions and Organization of the Paper

We review the related literature in Section 2 and describe the relationship between the PIDS-

PP problem and other influence maximization problems. Section 3 describes three mixed-integer

programming (MIP) formulations for the PIDS-PP problem. The first formulation MIP1, on the

payment space, is closely related to one for the dominating set problem. Next, we strengthen MIP1,

by adding a set of valid inequalities that are based on the observation for a node that is not directly

targeted and receives no partial payment; one of its directly targeted neighbors gives it “lower”

(L) influence. Adding these L-type constraints to MIP1, we obtain a stronger MIP formulation

MIP1L. Then, we add arc variables to MIP1L and apply an edge-splitting idea that strengthens
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the formulation, to obtain our third MIP formulation MIP2. We show that the linear relaxation

of MIP2 provides integral solutions for the node selection variables on trees (thus proving that

it is the strongest possible formulation for the PIDS-PP problem on trees). To complement this

result, we present a polynomial-time dynamic programming algorithm in Appendix EC.2 of the

electronic companion for the PIDS-PP problem on trees. Section 4 projects the compact extended

formulation MIP2 onto the space of the payment variables, giving rise to a formulation MIP3 on

the payment space with two exponentially sized sets of valid inequalities whose polynomial-time

separation is discussed. Section 5 reports on a computational study regarding the efficacy of the

proposed MIP formulations. The projected formulation (on the payment space), MIP3, finds high-

quality solutions (within a 0.4% gap) for very large instances with up to approximately 465,000

nodes and 835,000 edges. Section 6 provides concluding remarks.

2. Related Literature

Social network analytics have introduced several interesting combinatorial optimization problems

to the research community. These include the clique problem (Verma et al. 2015, Walteros and

Buchanan 2020), the k-plex problem (Balasundaram et al. 2011), and the 2-club problem (Pajouh

et al. 2016). Influence maximization on social networks has stimulated a stream of recent research

work (Fischetti et al. 2018, Wu and Küçükyavuz 2018, Li et al. 2019, Günneç et al. 2020, Raghavan

and Zhang 2019, Nannicini et al. 2020).

Kempe et al. (2003) were the first researchers to consider the influence maximization problem

(IMP) in an operational framework, employing models from mathematical sociology (Granovetter

1978) that explicitly represent the step-by-step dynamics of influence propagation. In a probabilistic

setting, they considered a budgeted version of the problem (i.e., given a budget k, identify the

k individuals to directly target so as to maximize the number of nodes influenced in the social

network) and showed that it is NP-hard in order to find the optimal target set. This seminal work

led to a flurry of follow-up studies on the problem and its variants. The comprehensive reviews by

Chen et al. (2013), Li et al. (2018), and Banerjee et al. (2020) nicely summarize the most relevant

work on this topic in a probabilistic setting.

From the computational perspective, while Kempe et al. (2003) showed that a simple greedy

algorithm has an (1 − 1/e − ε)-approximation ratio for the IMP, it requires a costly simulation

in each step. Consequently, a significant amount of effort has been made on speeding up the

procedure. The first major breakthrough is the Cost Effective Lazy Forward (CELF) algorithm in

Leskovec et al. (2007). In the CELF algorithm and its improvement CELF++ (Goyal et al. 2011),

after the selection of the first node, the costly simulation step is restricted to the top candidate

whenever it is possible. Thus, it speeds up the procedure by orders of magnitude. Recently, a series
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of algorithms based on Reverse Reachable Sets (RRS) has been developed for the IMP (Borgs

et al. 2014, Tang et al. 2015, Nguyen et al. 2016). The key idea of RRS is to intelligently generate

a set of influence propagation realizations a priori based on the live-edge graphs in Kempe et al.

(2003). Then, the solution of the IMP is obtained by solving a maximum coverage problem in

one shot. This leads to a tremendous advantage in terms of running time. All these heuristics

rely on stylized technical assumptions in the IMP that result in a submodularity property, that is

not possessed in a deterministic setting including the APX-hard PIDS-PP problem (the PIDS-PP

problem is APX-hard since the dominating set problem is APX-hard, Chleb́ık and Chleb́ıková

2008). For exact methods, Wu and Küçükyavuz (2018) studied the IMP problem in a two-stage

stochastic programming framework. Nannicini et al. (2020) considered a robust version of the IMP

and presented a novel mixed integer programming formulation, derived from a bilevel formulation

of the problem.

Initiated by Chen (2009), another stream of follow-up work has focused on the problem in a

deterministic setting with a cost minimization aspect (i.e., instead of the marketer being given a

budget k, the desire is to find the minimum number of nodes to target in the network so that

the entire network is influenced). In the Target Set Selection (TSS) problem, given a connected

undirected graph, each node has associated with it a critical value gi, which takes values between 1

and the degree of the node, denoted by deg(i). All nodes are inactive initially. A selected subset of

nodes, the target set, are activated (i.e., switched to an active state). Next, the states of the nodes

are updated step by step with respect to the following rule: an inactive node i becomes active if

at least gi of its neighbors are active in the previous step. The goal is to find the minimum size

target set while ensuring that all nodes are active by the end of this diffusion process. Chen (2009)

showed that the TSS problem is hard to approximate within a polylogarithmic factor. Raghavan

and Zhang (2019) introduced the weighted TSS (WTSS) problem. In the WTSS problem, for each

node i ∈ V , there is a weight, denoted by bi, which models the fact that different nodes require

differing levels of effort to become active.

Günneç and Raghavan (2017) described the Least Cost Influence Problem (LCIP), which broad-

ens the scope of the WTSS problem by allowing for partial payments to nodes that are not directly

targeted. The LCIP seeks to minimize the sum of the costs of direct targeting and partial payments

provided to influence the entire network. Günneç et al. (2020) addressed the complexity of the

LCIP for a variety of special cases. When the entire network must be influenced and the neigh-

bors of a node exert equal influence, they showed that the LCIP on trees is polynomially solvable

by describing two polynomial time algorithms as well as a totally unimodular (TU) formulation.

Building upon the TU formulation, Günneç et al. (2020) proposed a branch-and-cut approach for

solving the LCIP on arbitrary graphs. Fischetti et al. (2018) further generalized the LCIP to allow
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for a nonlinear influence structure. They proposed a novel set covering based formulation, which

has both an exponential number of variables and an exponential number of constraints. Using this

formulation, they described an exact approach and a heuristic approach on arbitrary graphs.

Wang et al. (2009) proposed the Positive Influence Dominating Set problem. In their variant

(and many of the other papers in the literature), it is assumed that a node i in the graph not

selected in the PIDS needs at least half of its neighbors in the PIDS (i.e., if a node is not selected

for direct targeting, then it needs at least half of its neighbors to be directly targeted). They also

presented and tested an iterative greedy selection algorithm for the PIDS problem with a real-

world online social network data set. Zhu et al. (2010) showed the PIDS problem to be APX-hard

and described a greedy approximation algorithm with a performance ratio O(ln δ), where δ is the

maximum degree in the given graph. Several greedy constructive methods and heuristics have been

proposed for the PIDS problem by Wang et al. (2011), Dhawan and Rink (2015), Khomami et al.

(2018), and Lin et al. (2018). Dinh et al. (2014) considered a slightly more general version of the

PIDS problem, where a node i in the graph not selected in the PIDS needs at least ⌈ρdeg(i)⌉ of

its neighbors in the PIDS, where 0 < ρ < 1 (note that the value of ρ is identical for all nodes).

Raghavan and Zhang (2017) further generalized the PIDS problem. They introduced the weighted

version, and each node can require any positive number of neighbors to be in the PIDS (as opposed

to a fixed number or a fixed proportion of neighbors that is the same for all nodes in the graph).

They presented an integer programming formulation for the PIDS problem, and showed that (i) it

contains a set of facet defining inequalities, and (ii) provides the PIDS polytope on trees. They

described their computational experience with this formulation in a branch-and-cut setting on large

real-world graphs.

3. A Strong and Compact Extended Formulation

In this section, we describe three MIP formulations for the PIDS-PP problem. Typically, a com-

binatorial optimization can be formulated in many different ways. One common way (see Conforti

et al. 2014, Nemhauser and Wolsey 1988) to compare these different formulations for the same

problem is to solve their LP relaxations. Then, these formulations are evaluated by the optimal

objective values of their LP relaxations. Given two different formulations (A and B) of a given

minimization problem, let zLP
A and zLP

B be the optimal objective values of their LP relaxations,

respectively. We say that formulation A is stronger (or tighter) than formulation B if zLP
A > zLP

B .

A stronger formulation is often more computationally efficient (Barnhart et al. 1993).



7

Figure 2 (a) A PIDS-PP Problem Instance (b) No L-type (c) With L-Type

Our first MIP formulation, for the PIDS-PP problem uses a binary variable xi (for each i ∈ V )

to denote whether node i is selected for direct targeting by receiving full payment (bi). The non-

negative variable pi represents the partial payment that node i receives if it is not selected for

targeting. Let n(i) denote the set of node i’s neighbors. The formulation MIP1 is as follows:

(MIP1) Min
!

i∈V pi +
!

i∈V bixi (1)

Subject to pi + bixi + fi
!

j∈n(i)

xj ≥ bi, ∀i∈ V, (2)

xi ∈ {0,1}, pi ≥ 0, ∀i∈ V. (3)

The objective function (1) is used to minimize the total cost over the network. Constraint set

(2) models the diffusion process—either a node is selected for direct targeting (i.e., paid bi), or

the sum of the partial payment (pi) and the total influence coming from its neighbors that have

been directly targeted is at least bi. Although pi has an upper bound of bi − fi, it is not necessary

to enforce it. If bi − fi < pi < bi, pi can be reduced to bi − fi, resulting in a lower cost solution,

and if pi = bi, we can construct a feasible solution with an equal or lower cost by setting xi = 1

and pi = 0 (the cost can be lower because the node i is now selected for direct targeting and can

influence its neighbors). Thus, we note that in an optimal solution, at most one of xi and pi takes

a positive value for any node i in V . Notice that because the x variables are binary, when the data

are integral, the p variables are automatically an integer. With a slight abuse of notation, from

here on, we refer to the (p,x) space as the payment variable space.

As noted earlier, when bi = fi = 1 we obtain the dominating set problem. Our discussion shows

that for the dominating set problem, 0 ≤ pi ≤ bi − fi = 0. In other words, the p variables can be

dropped from MIP1 for the dominating set problem, yielding a formulation described by Saxena

(2004). He showed that this formulation is integral on trees (i.e., its LP relaxation provides integral

solutions). Although MIP1 is a valid formulation for the PIDS-PP problem, as we will demonstrate

in Section 5 this formulation is weak. Our goal is to build a stronger formulation for the PIDS-PP

problem. We start by making the following observation.
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Observation 1: Suppose that a node i in V does not receive any payment. Then, it has at least gi

neighbors that are directly targeted, where gi =
"

bi
fi

#
. Among these directly targeted neighbors, (gi−

1) of them give it a total of fi(gi−1) units of influence, with each of these directly targeted neighbors

providing it with fi units of influence. Furthermore, there is one directly targeted neighbor that

provides it with li units of influence, where li = bi − fi(gi − 1).

Consider the example in Figure 2(a) for illustration. This node has bi = 12 and fi = 5. Thus, its

gi = 3. Using constraint (2), Figure 2(b) plots (in two dimensions) pi as a function of
!

j∈n(i) xj

under the assumption that node i node is not directly targeted (i.e., xi = 0). The feasible values

of pi and
!

j∈n(i) xj are shaded in this two dimensional plot (under the assumption that they are

both non-negative). Notice that
!

j∈n(i) xj can be fractional in constraint (2), with a value of 2.4

instead of the correct value of 3 to make pi = 0 (in this two dimensional illustration we have a

fractional extreme point in the (pi,
!

j∈n(i) xj) space). In order to strengthen this formulation, we

add the following set of inequalities, which we refer to as L-type constraints:

(L-type constraints) pi + ligixi + li
!

j∈n(i) xj ≥ ligi, ∀i∈ V. (4)

Proposition 1. L-type constraints are valid for the PIDS-PP problem.

Proof: Given a solution (x̂, p̂) of the PIDS-PP problem in terms of MIP1, it must satisfy con-

straint (2). Then, for a node i, if x̂i = 1, its L-type constraint is satisfied. If x̂i = 0, p̂i ≥ bi −

fi
!

j∈n(i) x̂j = li + fi(gi − 1−
!

j∈n(i) x̂j) ≥ li + li(gi − 1−
!

j∈n(i) x̂j) = ligi − li
!

j∈n(i) x̂j because

bi = li + fi(gi − 1) and fi ≥ li > 0. □
Figure 2(c) demonstrates the effect of the L-type constraint, when viewed in two dimensions in the

(pi,
!

j∈n(i) xj) space. It cuts off the fractional extreme point, where
!

j∈n(i) x̂j = 2.4, and introduces

two integer extreme points, where
!

j∈n(i) x̂j = 2 or
!

j∈n(i) x̂j = 3. Adding L-type constraints to

MIP1, we obtain a stronger formulation, which we refer to as MIP1L:

(MIP1L) Min
!

i∈V pi +
!

i∈V bixi (5)

Subject to pi + bixi + fi
!

j∈n(i) xj ≥ bi, ∀i∈ V, (6)

pi + ligixi + li
!

j∈n(i) xj ≥ ligi, ∀i∈ V, (7)

pi ≥ 0, xi ∈ {0,1} , ∀i∈ V. (8)

Figure 3(a) provides a PIDS-PP problem instance whose underlying graph is a tree, Figure 3(b)

shows that nodes 1 and 3 must be directly targeted in the optimal solution that has an objective

value of 26. Figure 3(c) describes a fractional optimal solution to the LP relaxation of MIP1,
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(a) A PIDS-PP Problem Instance (b) An Optimal Solution

(c) A Fractional Optimal Solution of LP1 (d) A Fractional Optimal Solution of LP1L

Figure 3 A PIDS-PP Problem Example for Comparing the LP Relaxations

denoted by LP1. It has x1 = 1, x3 = 0.52, and x4 = 0.857; all other decision variables are zero,

and the objective value is 18.286. Figure 3(d) describes a fractional optimal solution to the LP

relaxation of MIP1L, denoted by LP1L. It has x1 = 1, p2 = 6.5, x3 = 0.5, and x4 = 1; all other

decision variables are zero, and the objective value is 25. Although LP1L is stronger than LP1 for

this instance, neither of them provide integral solutions for this tree instance. (Recall that LP1

without the p variables is integral on trees for the dominating set problem.)

We now create an extended formulation by adding arc variables to the formulation. For each

edge {i, j} in E, we define yij and yji as binary variables representing whether (when equal to 1)

the directly targeted node i influences its neighbor j, and whether the directly targeted node j

influences its neighbor i, respectively. We can add the inequality:

xi ≥ yij, ∀i∈ V, j ∈ n(i). (9)

Additionally, since yji tells us whether a directly targeted neighbor of i influences it, we can replace
!

j∈n(i) xj in MIP1 and MIP1L by
!

j∈n(i) yji.

Observation 2: In a feasible solution to the PIDS-PP problem, neighboring nodes do not influence

each other. Therefore, we can add the following set of inequalities in the extended formulation:

yij + yji ≤ 1, ∀{i, j}∈E. (10)

Observation 3: Ideally, if a node i is directly targeted (i.e., xi = 1), it should send influence to

all of its neighbors that are not directly influenced (i.e., yij = 1 for all j in n(i) with xj = 0). One

might try to accomplish this by adding the following set of inequalities:

xi ≤ yij, ∀i∈ V, j ∈ n(i). (11)

Unfortunately, constraint (11) is not valid for the PIDS-PP problem when a directly targeted node

has a directly targeted node as a neighbor (as it conflicts with constraint 10).
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(a) An Original Edge

! "#

(b) A Transformed Edge

(c) The Transformed Graph for the Instance in Figure 3 (d) The Directed Arcs in the Transformed Graph

Figure 4 Illustration of the Edge-Splitting Idea

To work around this, and obtain the strengthening benefit of constraint (11) without violating

constraint (10), we use the following edge-splitting idea. From the input graph G, we create a new

graph Gt by adding one dummy node d to each edge {i, j} in G. Let D denote the set of dummy

nodes. Since the dummy nodes have effectively split each edge into two, we replace each of the

original edges {i, j} ∈ E by two edges {i, d} and {d, j} in the new graph Gt. The procedure is

shown in Figure 4(a) and Figure 4(b). Let Et denote the set of edges in Gt (Gt = (V ∪D,Et)).

Notice that Gt is bipartite, and Et only contains edges between the nodes in V and D. Figure 4(c)

shows the transformed graph of the example in Figure 3 based on this procedure. Dummy nodes

are represented by rectangles. Figure 4(d) shows the influence direction by directed arcs in the

transformed graph of the optimal solution shown in Figure 3(b).

By splitting an edge, the role of an outgoing arc from node i is played by arc (i, d), and the role of

an incoming arc to node j is now played by arc (d, j). Specifically, applying this to constraint (11),

xi ≤ yij, yields constraint (14), xi ≤ yid. Similarly, constraint (9), xi ≥ yij, yields constraint (13),

xi ≥ ydj. Additionally,
!

j∈n(i) yji becomes
!

d∈a(i) ydi, where a(i) denotes the set of node i’s neigh-

bors in the transformed Gt, giving rise to constraints (15) and (16) from constraints (6) and (7) in

MIP1L. From Observation 2, we can write yid+ ydi = 1, i.e., constraint (17), ensuring that on each

edge influence is propagated in exactly one direction. We write it in the equality form (instead of

the inequality form) because it is possible to explicitly direct every edge in Gt, without violating

any other constraint. A second benefit of the equality form (as we will see later) is that we can

remove constraint (17) and substitute out all yid by 1− ydi to improve the computing efficiency

by reducing |Et| constraints and |Et| variables in the computational experiment. Putting all of the

above observations together, we obtain the compact extended formulation MIP2.

(MIP2) Min
!

i∈V pi +
!

i∈V bixi (12)

Subject to xi ≥ ydj, ∀i∈ V, j ∈ n(i), (13)

xi ≤ yid, ∀i∈ V,d∈ a(i), (14)

pi + bixi + fi
!

d∈a(i) ydi ≥ bi, ∀i∈ V, (15)
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pi + ligixi + li
!

d∈a(i) ydi ≥ ligi, ∀i∈ V, (16)

yid + ydi = 1, ∀{i, d}∈Et, (17)

pi ≥ 0, xi ∈ {0,1} , ∀i∈ V, (18)

yid, ydi ∈ {0,1} , ∀{i, d}∈Et. (19)

MIP2 results in a stronger formulation. Its LP relaxation obtains integral solutions for the

example in Figure 3. In fact, MIP2 is the strongest possible formulation for the PIDS-PP problem

on trees. Theorem 1 proves this result. First, we note in Proposition 2 that on trees the PIDS-PP

problem can be solved in linear time via dynamic programming (DP). The proof to Theorem 1

uses the integral primal feasible solution to LP2 obtained by the DP algorithm in Appendix EC.2

of the electronic companion. Then, it constructs a dual feasible solution for the dual problem to

LP2 and shows that this pair of primal and dual solutions satisfies the complementary slackness

(CS) conditions.

Proposition 2. The PIDS-PP problem on trees can be solved in O(|V |) time.

Proof: See Appendix EC.2 of the electronic companion. □

Theorem 1. For trees, LP2 provides optimal solutions with x variables binary.

Proof: See Appendix EC.3 of the electronic companion. □

4. A Strong Formulation on the Payment Space via Projection

In this section, the feasible region of the extended formulation LP2 is projected onto the space of

the payment (i.e., p and x) variables by projecting out all arc (i.e., y) variables. This allows us to

derive a strong formulation with p and x variables only. As will be evident in our computational

experiments, this formulation has great advantages in computational efficiency (in terms of scaling

up), compared to MIP2.

Using yid + ydi = 1 in LP2, we first project out all yid variables, setting them by 1− ydi, and

obtain the following formulation, referred to as LPd and whose feasible region is denoted as Pd.

(LPd) Min
!

i∈V pi +
!

i∈V bixi (20)

Subject to xj − ydi ≥ 0, ∀j ∈ V, i∈ n(j), (21)

−xi − ydi ≥−1, ∀i∈ V,d∈ a(i), (22)

pi + bixi +
!

d∈a(i) fiydi ≥ bi, ∀i∈ V, (23)

pi + ligixi +
!

d∈a(i) liydi ≥ ligi, ∀i∈ V, (24)

pi, xi ≥ 0, ∀i∈ V, (25)

ydi ≥ 0, ∀{i, d}∈Et. (26)
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We define a projection cone W , described by (t,u,v,w), which satisfies the following linear

inequalities:

−tdi −uid + fivi + liwi ≤ 0, ∀i∈ V,d∈ a(i), (27)

tdi, uid, vi, wi ≥ 0, ∀i∈ V,d∈ a(i). (28)

Here, tdi, uid, vi and wi are dual multipliers corresponding to constraints (21), (22), (23) and (24),

respectively. If Pd is written in matrix notation as {(x,p,y) : Ax+Bp+Gy ≥ b, (x,p,y)≥ 0},
based on Balas and Pulleyblank (1983), then any feasible vector (t,u,v,w) to W , defines a valid

inequality: (t,u,v,w)
T
(Ax + Bp) ≥ (t,u,v,w)

T
b to the projection of Pd (in the space of the

payment (p and x) variables). Furthermore, the projection of Pd is defined by the valid inequalities

projected by the extreme rays of W . In Theorem 2, we identify the extreme rays of W . First,

we provide some additional definitions. Recall that a polyhedral cone C is the intersection of a

finite number of half-spaces through the origin, and a pointed cone is one in which the origin is

an extreme point. A ray of a cone C is the set R(r) of all non-negative multipliers of some r ∈C,

called the direction (vector) of R(r). A vector r∈C is extreme, if for any r1,r2 ∈C, r= 1
2
(r1+ r2)

implies that r1, r2 ∈R(r). A ray R(r) is extreme if its direction vector r is extreme.

Theorem 2. The vector r= (t,w,u,v) ∈W is extreme if and only if there exists a positive α

such that one of the following four cases holds:

1. tdi = α for one {i, d}∈Et. All other t,w,u, v are 0.

2. uid = α for one {i, d}∈Et. All other t,w,u, v are 0.

3. vi = α for one i∈ V . Then for d∈ a(i), either tdi = fiα or uid = fiα. All other t,w,u, v are 0.

4. wi = α for one i∈ V . Then for d∈ a(i), either tdi = liα or uid = liα. All other t,w,u, v are 0.

Proof: Sufficiency. Let r ∈W be of the form Case 1, and assume that r= 1
2
(r1 + r2) for some

r1, r2 ∈W. Then, except for t1di and t2di, all of the other components are 0. Then, r1, r2 are in R(r).

Thus, r is extreme.

Case 2 is similar to Case 1.

For Case 3, let r∈W be of the form Case 3, and assume that r= 1
2
(r1+r2) for some r1, r2 ∈W.

Thus, for any components of r with a value of 0, its corresponding components in r1 and r2 are

also 0. Given i and d, let qkid, k= 1,2, represent the positive element between tkdi and uk
id, k= 1,2,

(since only one of the two can be positive in the four cases). Then, we have v1i + v2i = 2α and

q1id + q2id = 2fiα, for all d ∈ a(i). For a pair d1 and d2, we have q1id1 > q1id2 if and only if q2id1 < q2id2 .

However, constraint (27) stipulates that fiv
k
i ≤min{qkid1 , q

k
id2

} for k= 1,2. Thus, qkid1 = qkid2 = fiαk,

k = 1,2, for all d1, d2 ∈ a(i). Otherwise, either constraint (27) would be violated or we could only

have v1i + v2i < 2α. Therefore, r1, r2 are in R(r). Thus, r is extreme.
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Figure 6 When |Sv ∪Sw|> 1, r Is Not Extreme.

Case 4 is similar to Case 3.

Necessity. Let r be an extreme vector of W. Let St = {{i, d} ∈ Et : tdi > 0}, Su = {{i, d} ∈ Et :

vid > 0}, Sv = {i ∈ V : vi > 0}, and Sw = {i ∈ V : wi > 0} based on this r. In the following proof,

to prove that a given ray r is not extreme, we construct two feasible rays, r1 and r2, which are

different in at least one component. After constructing r1, r2 is set as 2r−r1. Then, r= 1
2
(r1+r2)

by design.

First, we consider extreme rays, where v=w= 0, meaning that Sv ∪ Sw = ∅. If |St|+ |Su|> 1,

let r1 contain all but one positive component in St∪Su with their values doubled (then r2 contains

the one positive component omitted by r1, with its value doubled). Thus, if |St|+ |Su| > 1, r is

not extreme, contrary to the assumption. We conclude that if Sv ∪ Sw = ∅, then |St|+ |Su| = 1

and thus, r must be of form Case 1 or Case 2. Figure 5 illustrates this situation. The bold line

represents the positive t and u components in a vector r and the positive components are shown

below the pictures.

Now, we consider extreme rays with positive v and w. First consider the case where Sv∪Sw ∕= ∅.

If |Sv ∪ Sw| > 1, without loss of generality, let i ∈ Sv ∪ Sw. Then, r1 has the value of v1i = 2vi,

w1
i = 2wi, t

1
di = 2tdi, u

1
id = 2uid for all d∈ a(i) and 0s for the other components. Thus, if |Sv∪Sw|> 1,

r is not extreme. Figure 6 illustrates this situation. The shaded nodes represent the positive v and

w components in a vector r.

Now consider the case where |Sv∪Sw|= 1. If Sv∩Sw ∕= ∅, it means that there is a single node i in

both Sv and Sw. Then, r1 can be set with a value of v1i = 2vi, t
1
di = 2min{tdi, fivi}, u1

id = 2fivi− t1di



14

1

3 4

2

5

! " #

$ 1

3 4

2

5

! " #

$ 1

3 4

2

5

! " #

$

%&:()* = 2-),	
01)* = 2-* − 	2min !*,6)-7 ,	
8)1* = 2-9 − (26)-7− 01)7 ).

%7:=)7 = 2-7,01)7 = 2min{!*,6)-7}.
8)17 = 26)-7 − 01)7

%:=) = -7, 01) = !*
() = -),8)1 = -9.

Figure 7 When |Sv ∪Sw|= 1 and Sv ∩Sw ∕= ∅ (Both vi and wi Have Positive Values for Some Node i), r Is Not

Extreme.

1

3 4

2

5

! " #

$ 1

3 4

2

5

! " #

$ 1

3 4

2

5

! " #

$

%:'( = *+,-.( = !/,0(. = *(,
0+1 = *2.45 = {{1,$}}. 

%9:'(+ = 2*+,-.(+ = 2!/,0(.+ = 2*(, %/:0+1/ = 2!2.

Figure 8 When |Sv ∪Sw|= 1, |Sv ∩Sw|= 0 and Sq ∕= ∅ (Some t’s and u’s Not Adjacent to Node i Have Positive

Values), r Is Not Extreme.

for all d ∈ a(i) and 0s for the other components. Thus, if |Sv ∪ Sw|= 1 and Sv ∩ Sw ∕= ∅, r is not

extreme. Figure 7 illustrates this situation.

Suppose that |Sv ∪ Sw| = 1, |Sv ∩ Sw| = 0 and i ∈ Sv ∪ Sw (i.e., there is a single node i with

either vi or wi positive); define Sq = {{j, d}∈Et : qjd > 0 & j ∈ V \ i}. Thus Sq contains edges with

positive t and u components that are not adjacent to node i. If Sq ∕= ∅, let r1 have v1i = 2vi, w
1
i = 2wi

and t1di = 2tdi, u
1
id = 2uid for all d ∈ a(i) and 0s in the other components. Thus, if |Sv ∪ Sw| = 1,

|Sv ∩Sw|= 0, and Sq ∕= ∅, r is not extreme. Figure 8 illustrates this situation with Sq = {{1, c}}.
Suppose that |Sv ∪ Sw|= 1 and |Sv ∩ Sw|= 0, without loss of generality, let i ∈ Sv and Sw = ∅;

define S1 = {{i, d} ∈ Et : tdi > 0 ⊕ uid > 0} (where only one of the t and u variables associated

with an edge {i, d} is positive) and S2 = {{i, d} ∈ Et : tdi > 0 & uid > 0} (where both t and u

variables associated with an edge {i, d} are positive). If S2 ∕= ∅ and let {i, d} ∈ S2, then, we define

γ = 2min{vi, tdi
fi
, uid

fi
: {i, d}∈ S2} and make r1 have v1i = γ. For {i, d}∈ S2, we have t1di = fiγ. Also,

for {i, d}∈ S1, if tdi > 0, we have t1di = fiγ. Otherwise, we have u1
id = fiγ. The remaining components

are 0s. Thus, if |Sv ∪Sw|= 1, |Sv ∩Sw|= 0 and S2 ∕= ∅, r is not extreme. Furthermore, |S1|= |a(i)|
because constraint (27) must be satisfied for all d in a(i). Figure 9 illustrates this situation with

S2 = {{3, a}}.
Finally, suppose that |Sv ∪ Sw| = 1, |Sv ∩ Sw| = 0, |S1| = |a(i)|, where i ∈ Sv ∪ Sw and S2 =

∅. Without loss of generality, let i ∈ Sv and Sw = ∅ (the case i ∈ Sw and Sv = ∅ can be done
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Figure 10 When |Sv∪Sw|= 1, |Sv∩Sw|= 0 and S+ ∕= ∅ (Either tdi or uid Is Greater Than α for Some {i, d}∈Et),

r Is Not Extreme.

analogically), let vi = α and define S+ = {{i, d} : qid > fiα}, which has t and u variables whose values

are strictly larger than fiα. When S+ ∕= ∅, without loss of generality, let {i, d} ∈ S+ and uid > 0,

we can make r1 have u1
id = 2(uid − fiα) and 0s in the other components. Thus, if |Sv ∪ Sw| = 1,

|Sv∩Sw|= 0, and S+ ∕= ∅, r is not extreme. Figure 10 illustrates this situation, where S+ = {{3, a}}
and β is a positive value.

Therefore, if Sv ∪ Sw ∕= ∅, we must have |Sv ∪ Sw| = 1, |Sv ∩ Sw| = 0, |S1| = |a(Sv ∪ Sw)|, and
S2 = Sq = S+ = ∅. Thus, r is either in Case 3 or in Case 4. □
Applying Theorem 2 in Balas and Pulleyblank (1983), Case 1 and Case 2’s extreme directions

yield the trivial constraints: 0 ≤ xi ≤ 1 for all i ∈ V . Case 3’s extreme directions generate the

following valid inequality in the original graph G:

pi +(bi − kfi)xi + fi
$

j∈S
xj ≥ bi − kfi, ∀i∈ V, k= 0,1,2, . . . , deg(i), S ∈C

deg(i)−k
i . (29)

Here, we use C
deg(i)−k
i to denote the set of all combinations with deg(i)−k elements from node i’s

neighbors and S is one combination picked from C
deg(i)−k
i .

Similarly, Case 4’s extreme directions generate the following valid inequality in the original graph

G:

pi +(ligi − kli)xi + li
$

j∈S
xj ≥ ligi − kli, ∀i∈ V, k= 0,1,2, . . . , deg(i), S ∈C

deg(i)−k
i . (30)
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For a given i, if k≥ gi, the constraints generated by Case 3 and Case 4’s extreme directions are

redundant. Thus, the projection of Pd onto (p,x) space is the following:

pi + bixi + fi
!

j∈n(i) xj ≥ bi, ∀i∈ V, (31)

pi +(bi − kfi)xi + fi
!

j∈S xj ≥ bi − kfi, ∀i∈ V, k= 1,2, . . . , gi − 1, S ∈C
deg(i)−k
i , (32)

pi + ligixi + li
!

j∈n(i) xj ≥ ligi, ∀i∈ V, (33)

pi +(ligi − kli)xi + li
!

j∈S xj ≥ ligi − kli, ∀i∈ V, k= 1,2, . . . , gi − 1, S ∈C
deg(i)−k
i , (34)

0≤ xi ≤ 1, pi ≥ 0, ∀i∈ V. (35)

Constraints (31) and (33) are obtained from constraints (29) and (30) when k = 0, respec-

tively. We list them separately to emphasize that constraint (31) is identical to constraint (6),

and constraint (33) is equivalent to constraint (7). Constraints (32) and (34) represent the new

inequalities obtained from the projection. For the fractional solution in Figure 3(d), it violates

p3 +11x3 +14x2 ≥ 11 (node 3’s constraint (32) with k= 1 and S = {2}) and p3 +11x3 +11x2 ≥ 11

(node 3’s constraint (34) with k= 1 and S = {2}). After adding these two constraints to LP1L, the

resulting LP yields the integral optimal solution shown in Figure 3(b).

Therefore, based on the projection, we obtain a valid formulation (MIP3) with x and p variables

only for the PIDS-PP problem. We note that for trees, as the x variables are integral in LP2,

constraint (37) can be replaced by its relaxation (35).

(MIP3) Min
!

i∈V pi +
!

i∈V bixi (36)

Subject to (31), (32), (33) and (34),

xi ∈ {0,1}, pi ≥ 0, ∀i∈ V. (37)

Although constraints (32) and (34) are exponentially-sized, Proposition 3 shows that they can

be separated in polynomial time. Let ∆ be the maximum degree number among all nodes (i.e.,

∆=max{deg(i) : i∈ V }).

Proposition 3. The valid inequalities (32) and (34) can be separated in O(|V |∆ log∆) time.

Proof: Given a fractional solution (p∗,x∗), a node i in V and a specific k, where k= 1,2, . . . , gi−
1, the corresponding separation procedure of inequality (32) can be formulated as the following

optimization problem:

Minimize p∗i +(bi − kfi)x
∗
i + fi

!
j∈n(i) x

∗
jzj (38)

Subject to
!

j∈n(i) zj = deg(i)− k, (39)

zj ∈ {0,1} , ∀j ∈ n(i). (40)
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Algorithm 1 Separation Algorithm for Inequality Set (32)

Input: A solution x∗ and a PIDS-PP problem instance.
1: for i∈ V do
2: Let S ← n(i).
3: for k= 1,2, . . . , gi − 1 do
4: let mk = argmax{x∗

j : j ∈ S} and S ← S \mk.
5: if p∗

i +(bi − kfi)x
∗
i + fi

!
j∈S x

∗
j < bi − kfi then

6: Add pi +(bi − kfi)xi + fi
!

j∈S
xj ≥ bi − kfi.

7: end if
8: end for
9: end for

For each node j in n(i), the binary variable zj is 1 if node j is included in the combination S.

Otherwise, it is 0. If the objective value is smaller than bi − kfi, we have a violated constraint.

Otherwise, we either change the value of k or move to another node i. This optimization problem

has one constraint and can be solved by taking the deg(i)−k smallest values of x∗
j among node i’s

neighbors (j ∈ n(i)). We can use Algorithm 1 to separate the whole inequality set (32). For each

node, we sort its neighbors, which takes at most O(∆ log∆) steps and makes at most ∆ compar-

isons. The process is repeated for |V | nodes. Thus, the overall time complexity is O(|V |∆ log∆).

One can similarly separate inequalities (34). The difference is that the objective function of the

optimization problem should be

Minimize p∗i +(ligi − kli)x
∗
i + li

!
j∈n(i) x

∗
jzj. (41)

If the objective value is smaller than ligi − kli, we have a violated constraint. □
Before concluding this section, we compare the four aforementioned formulations in terms of

their LP relaxations. Let LP1, LP1L, LP2 and LP3 denote the LP relaxations of MIP1, MIP1L,

MIP2, and MIP3, respectively. Also, let zLP1, zLP1L, zLP2, and zLP3 be the objective values of LP1,

LP1L, LP2, and LP3, respectively.

Proposition 4. zLP3 = zLP2 ≥ zLP1L ≥ zLP1.

Proof: LP3 is obtained by projecting out y variables in LP2. Thus, they are equivalent, zLP3 =

zLP2. Compared to LP1L, LP3 has constraints (32) and (34) in addition to constraints (2) and (4).

Therefore, LP3 is at least as strong as LP1L, zLP3 ≥ zLP1L. Finally, LP1L is obtained by adding

L-type constraints to LP1. Thus, LP1L is at least as strong as LP1, zLP1L ≥ zLP1. Notice that the

instance in Figure 3 shows that the relationship among these LP relaxations can hold in a strict

sense, i.e., zLP3 = zLP2 > zLP1L > zLP1. □
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Source # of Node # of Edge
Gnutella SNAP 10876 39994
Ning BGU 9727 40570
Hamsterster KONECT 1788 12476
Escorts KONECT 10106 39016
Anybeat N.R. 12645 49132
Advogato N.R. 5042 39277
Facebook BGU 39439 50222
Douban N.R. 154908 327162
Epinions SNAP 75879 508837
Twitter N.R. 465017 835423

Table 1 Structure and Sources of the Social Networks.

5. Computational Study

In this section, we discuss our computational experience with these four formulations on (large)

real-world social networks. Our computational experiments have several goals. We examine the

strength of the formulations empirically (by comparing their LP relaxations), and their effectiveness

in solving the PIDS-PP problem. We make these evaluations on seven large social networks first,

before embarking on solving instances on three very large social networks with up to approximately

465,000 nodes and 835,000 edges. Finally, we evaluate the benefit of partial payments, compared to

a setting where partial payments are not allowed. Our computational experiments are conducted

on a machine with the following specifications: Intel Xeon E5-2630V4, 64 GB ram and Ubuntu.

For our implementation, we use CPLEX 12.9 with the Python API.

5.1. Descriptions of Social Networks

We obtained ten social networks—Gnutella, Ning, Hamsterster, Escorts, Anybeat, Advogato, Face-

book, Douban, Epinions, and Twitter—from four online data repositories. In all of our graphs,

nodes represent users and edges are connections between users. We first transform all graphs to

undirected ones, i.e., replacing an arc (i, j) by an edge {i, j} if there is an arc between node i

and node j. Then, we use the biggest connected component in our computational experiments if

multiple connected components exist in a graph. Table 1 lists each graph with its source and the

number of nodes and edges. The sources SNAP, BGU, KONECT, and N.R., refer to the Stanford

Large Network Dataset Collection (SNAP, see Leskovec and Krevl 2014), the BGU Social Net-

works Security Research Group (BGU, see Lesser et al. 2013), the Koblenz Network Collection

(KONECT, see Kunegis 2017), and the Network Repository (N.R., see Rossi and Ahmed 2015),

respectively.

Gnutella is a large file sharing peer-to-peer network (the first decentralized peer-to-peer network

of its kind). We considered one snapshot of the Gnutella network collected on August 4th, 2002.

The Gnutella network on August 4, 2002, has 10,876 nodes and 39,994 edges. Ning is an online

platform for people and organizations to create custom social networks. Snapshots of the friendship
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and group affiliation networks from Ning were harvested during September 2012. It has 9,727 nodes

and 40,570 edges. Hamsterster contains friendships between users of the website hamsterster.com.

It has 1,788 nodes and 12,476 edges. Escorts is a bipartite network consisting of 10,106 nodes

and 39,106 edges. Nodes in this bipartite network are buyers and their escorts. An edge denotes

a transaction between a buyer and an escort. Anybeat is an online community, a public gathering

place, where one can interact with people from around one’s neighborhood or across the world.

The data are a friendship network that has 12,645 nodes and 49,132 edges. Advogato is based

on the friendship network of Advogato.org. It has 5,042 nodes and 39,277 nodes. Facebook is a

compound Facebook social network of all participants in the LetsDoIt system, a group decision

support system prototype for leisure actives. It contains 39,439 nodes and 50,222 edges.

We also have three very large social networks. The first one is based on Douban.com. This

website, launched on March 6, 2005, is a Chinese Web 2.0 website providing user interactions for

sharing opinions on movies, books, and music. It is one of the largest online communities in China.

The graph Douban contains the friendship network crawled in December 2010. It has 154,908 nodes

and 327,162 edges. Epinions is a who-trust-whom online social network of the general consumer

review site Epinions.com. Members of the site can decide whether to “trust” one another. Nodes

represent users in the Epinions network topology and edges represent trust relationships among

Epinions users. The Epinions network has 75,879 nodes and 508,837 edges. Twitter is a portion

of the social network of Twitter, and contains information about who follows whom with 465,017

nodes and 835,423 edges. These three graphs are not used until our last experiment.

We created a PIDS-PP problem instance by first randomly generating the node type gi from a

discrete uniform distribution between [1, deg(i)] and the influence factor fi from a discrete uniform

distribution between [1,50]. Then, the threshold for a node i was calculated as bi = di× (gi−1)+s,

where s is generated from a discrete uniform distribution between [1, fi]. In this way, we ensure

that if all neighbors of a node are directly targeted, the node becomes influenced. Then, for each

social network, ten instances are generated. Thus, there are 100 instances in total given that we

have ten social networks. The URL http://dx.doi.org/10.17632/wybgt3wj5x.1 provides these 100

instances.

5.2. Investigating the Strength of the LP Relaxations

We have already shown the relationship between MIP1, MIP1L, MIP2 and MIP3 in terms of their

LP relaxations in Proposition 4. Now, we empirically evaluate how much stronger MIP3, MIP2,

and MIP1L are, compared to MIP1. In our implementation of MIP2, we remove the constraint

yid+ydi = 1 and use only the variable ydi (thus, yid is replaced by 1−ydi in the model). In this way,

we reduce the size of the model by |Et| constraints and |Et| variables. Next, for our implementation

http://dx.doi.org/10.17632/wybgt3wj5x.1
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Figure 11 Relative Improvement of the LP Relaxation of LP1L and LP2/LP3 over That of LP1 on the 70

Instances.

LP1 LP1L LP2 LP3
Avg Min Max Avg Min Max Avg Min Max Avg Min Max

Gnutella 4.7 4.0 5.7 8.5 7.9 9.4 455.7 374.2 569.4 227.5 165.1 290.0
Ning 2.4 1.8 2.7 4.9 3.9 5.8 391.9 304.9 472.3 195.4 74.8 339.5
Hamsterster 0.1 0.1 0.1 0.2 0.2 0.3 45.3 31.8 66.6 22.8 13.2 39.7
Escorts 3.8 2.7 4.5 7.3 5.8 9.8 496.9 348.4 725.1 207.8 118.7 405.8
Anybeat 3.1 1.9 4.4 5.3 4.0 6.7 647.4 465.8 816.1 286.3 146.1 420.1
Advogato 1.0 0.7 1.4 2.2 1.9 2.7 593.2 409.3 852.9 171.5 77.6 379.7
Facebook 7.1 4.7 10.3 4.4 3.0 6.3 23.9 17.9 38.3 23.5 10.6 34.3

Table 2 Running Time in Seconds of LP1, LP1L, LP2 and LP3 on the 70 Instances.

of MIP3, we start with constraints (31) and (33) and use CPLEX’s callbacks to add the violated

constraints (32) and (34) dynamically, given that constraints (32) and (34) are exponentially-sized.

We use 70 instances, based on Gnutella, Ning, Hamsterster, Escorts, Anybeat, Advogato, and

Facebook, to compare the strength of the LP relaxations of the four formulations. Figure 11 plots

the average, minimum and maximum value of the relative improvement of the LP Relaxation. Here,

we present the relative improvement of LP1L over LP1 and that of LP2/LP3 over LP1. They are

calculated as zLP1L−zLP1
zLP1

×100 and zLP2−zLP1
zLP1

×100, respectively. On average, L-type constraints can

improve the LP relaxation by 2.6%. However, the average improvement of LP2/LP3 is about 14%.

Thus, constraints (32) and (34) contribute to more than a 11% relative improvement on average, in

addition to the L-type constraints. The biggest improvement is about 18% for Advogato, and the

smallest about 7% for Facebook. Therefore, we can say that LP2 and LP3 are able to significantly

improve the quality of the LP relaxation, compared to LP1.

However, the improvement does come at some cost. Table 2 reports the running times of LP1,

LP1L, LP2, and LP3 in seconds. For LP3, the running time includes both the separation and
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MIP1 Optimality Gap MIP1L Optimality Gap
Avg Min Max Avg Min Max

Gnutella 10.79% 10.25% 11.21% 9.14% 8.70% 9.53%
Ning 10.04% 9.73% 10.43% 9.07% 8.74% 9.49%
Hamsterster 8.82% 7.55% 10.28% 8.21% 6.78% 9.46%
Escorts 10.98% 10.35% 11.49% 9.45% 8.90% 9.96%
Anybeat 8.90% 7.98% 10.07% 8.55% 7.64% 9.59%
Advogato 11.21% 10.55% 12.14% 10.79% 10.16% 11.90%
Facebook 0.67% 0.44% 0.85% 0.46% 0.28% 0.58%

MIP2 Running Time (s) MIP3 Running Time (s)
Avg Min Max Avg Min Max

Gnutella 996.0 276.3 2226.6 380.0 124.3 761.6
Ning 475.6 199.1 982.4 308.4 97.0 1080.8
Hamsterster 90.3 33.4 293.0 71.8 16.4 328.8
Escorts 515.9 202.0 1219.4 250.2 100.9 589.3
Anybeat 767.8 380.4 1311.5 573.3 191.9 1609.5
Advogato 995.8 329.7 2427.9 485.7 92.1 2268.0
Facebook 58.3 49.3 78.9 27.3 11.1 39.5

Table 3 Results of MIP1, MIP1L, MIP2 and MIP3 on the 70 Instances. (The Optimality Gap Is Reported for MIP1 and
MIP1L Because None of the Instances Is Solved Optimally. Running Times in Seconds Are Reported for MIP2 and MIP3

Because all 70 Instances Are Solved Optimally.)

solving time. Considering the average running time, LP1L usually needs twice the time of LP1,

while LP2 and LP3 need two orders of magnitude more time than LP1. However, LP3 is generally

twice as fast as LP2 in our experiment. While LP1, LP1L, and LP2 are compact formulations, LP2

usually needs much more running time than LP1 and LP1L. This is caused by the much bigger

size of LP2, compared to LP1 and LP1L. LP1 has 2|V | variables and |V | constraints; LP1L has

2|V | variables and 2|V | constraints; and LP2 has 2|V |+2|E| variables and 4|E|+2|V | constraints.

Overall, LP2 and LP3 provide stronger LP bounds than LP1 and LP1L. In the next experiment,

we will evaluate their performance as MIPs.

Before concluding this section, we note that LP1L shows the benefit of the L-type constraints

(2.6% over LP1), and LP2 shows the benefit of combining both the L-type constraints and the

edge-splitting idea (14% over LP1). For completeness, we ran LP2 without the L-type constraints

(constraint (16)) to explicitly quantify the impact of the edge-splitting idea. We found that, on

average, the edge-splitting idea can improve LP relaxation by 12% compared to LP1. Generally,

but not always, the edge-splitting idea generates a bigger improvement than the L-type constraints.

However, combining these two ideas together leads to the largest improvement as demonstrated in

LP2.

5.3. Testing the Efficacy of MIP1, MIP1L, MIP2, and MIP3

In this section, we test the performance of MIP1, MIP1L, MIP2, and MIP3. Given that the graphs

in our experiments have hundreds of thousands of nodes and edges, a large number of violated

constraints (32) and (34) in MIP3 could be found and added in the branch and bound search
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The LP to IP Gap
Avg Min Max

Gnutella 0.0211% 0.0050% 0.0496%
Ning 0.0198% 0.0130% 0.0351%
Hamsterster 0.1062% 0.0155% 0.2950%
Escorts 0.0183% 0.0000% 0.0726%
Anybeat 0.0187% 0.0082% 0.0284%
Advogato 0.0412% 0.0065% 0.0935%
Facebook 0.0047% 0.0000% 0.0150%

Table 4 The LP to IP Gap of LP2/LP3 on the 70 Instances

process. This can slow down the solution time (because over time many of the cuts that are added

may not be of benefit elsewhere in the branch and bound tree) as the size of the model increases. To

address this, we use the “Filter” option for the violated constraints that we add through callbacks.

In this way, CPLEX manages these dynamically added cuts as the cuts created by CPLEX itself.

Then, the cuts that become loose (i.e., that are no longer binding at the optimal solution at a

given branch and bound node) will be removed to maintain the model at a reasonable size. Lastly,

in order to focus on the effect of various formulations, we turn off CPLEX’s own cuts and allow

only one thread. Other than that, we keep the default setting for CPLEX. For each instance, the

running time is capped at 3600 seconds (1 hour), unless stated otherwise.

We test MIP1, MIP1L, MIP2, and MIP3 on the 70 instances, based on Gnutella, Ning, Ham-

sterster, Escorts, Anybeat, Advogato, and Facebook. The running time and optimality gap are

reported for solved and unsolved instances within the time limit, respectively. Let zBFS and lb be

the objective values of the best feasible solution and the lower bound obtained by CPLEX when

the time limit is reached, respectively. The optimality gap is calculated as zBFS−lb

lb
× 100. Table 3

shows the results of the four formulations across all seven graphs. We present the optimality gap in

the columns “MIP1 Optimality Gap” and “MIP1L Optimality Gap” for MIP1 and MIP1L, and the

running times in seconds in columns “MIP2 Running Time” and “MIP3 Running Time” for MIP2

and MIP3, respectively. The average optimality gap is 8.77% and 7.97% for MIP1 and MIP1L,

respectively. Not only does MIP1L improve the overall average optimality gap by 0.80%, it also has

a smaller optimality gap than MIP1 for 69 out of the 70 instances. Although MIP1L is a stronger

formulation than MIP1 (as shown in Section 5.2), it is unable to solve any instance to optimality.

However, both MIP2 and MIP3 can solve all 70 instances to optimality, indicating that the L-type

constraints together with the edge-splitting idea result in particularly strong formulations for the

PIDS-PP problem.

Table 4 presents the gap between the LP relaxations of MIP2 and MIP3 against the optimal

integer solutions, which is referred to as the LP-to-IP gap. Let z∗ be the objective value of the

optimal MIP solution. The LP-to-IP gap is calculated as (1− zLP2
z∗ )× 100. Among all of the 70
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MIP1L+(32) MIP1L+(34)
Solved Instances Unsolved Instances Unsolved Instances
Running Time (S) Optimality Gap Optimality Gap

# Avg Min Max # Avg Min Max # Avg Min Max
Gnutella 1 2720.5 2720.5 2720.5 9 0.04% 0.02% 0.08% 10 4.85% 4.54% 5.13%
Ning 8 1108.8 828.3 1716.5 2 0.10% 0.02% 0.17% 10 5.94% 4.99% 8.34%
Hamsterster 10 223.1 20.3 1123.6 0 N.A. N.A. N.A. 10 5.88% 4.21% 7.53%
Escorts 8 1940.4 1136.0 3507.4 2 0.06% 0.01% 0.10% 10 6.04% 4.59% 9.18%
Anybeat 8 1849.3 388.8 3221.6 2 0.02% 0.01% 0.02% 10 6.36% 4.43% 8.93%
Advogato 8 1484.0 385.6 3154.1 2 0.78% 0.03% 2.25% 10 7.46% 6.10% 9.74%
Facebook 10 13.8 7.8 20.7 0 N.A. N.A. N.A. 10 0.15% 0.04% 0.25%

Table 5 Results of MIP1L+(32) and MIP1L+(34) on the 70 Instances.

instances, the average LP-to-IP gap is 0.0329%, and the maximum LP to IP gap is 0.2950%. Thus,

it shows that MIP2 and MIP3 are extremely strong in terms of their LP relaxations. Further, it

echoes the important finding that a strong formulation is critical to the computational tractability

(Barnhart et al. 1993, Vielma 2015).

Next, we take a closer look at MIP2 and MIP3. On average, MIP3 is about two times faster than

MIP2 over the 70 instances solved by both MIP2 and MIP3. Thus, as we pointed out earlier, the

much larger size of MIP2 could deteriorate in performance when the size of the instances becomes

larger. The difference becomes rather apparent on the very large scale social networks later. It is

worth noting that MIP2 consumes much more memory than MIP3. We observe that MIP2 can use

more than 30GB memory in the search process, which often is between 10 to 50 times more than

the amount required by MIP3. Further, the number of nodes processed by MIP2 is on average

about 40% fewer than that of MIP3 in the branch and bound search process. Thus, the larger

memory usage in MIP2 is mainly due to the much larger size of MIP2.

Before running tests on the very large scale social networks, given that adding the two sets of

constraints (32) and (34) to MIP1 gives the model MIP3 that yielded such strong results, we want

to evaluate their benefits separately. To that end, we run two settings: MIP1L+(32), obtained by

adding constraint (32) to MIP1L, and MIP1L+(34), obtained by adding constraint (34) to MIP1L.

Table 5 describes the results on the 70 test instances. For MIP1L+(32), the results are broken

out by solved and unsolved instances for each graph (recall there are 10 instances for each graph).

The number of solved instances are provided along with the average, minimum, and maximum

running time in seconds. The number of unsolved instances are also provided, along with their

average, minimum, and maximum optimality gap. Since MIP1L+(34) does not solve any instances

to optimality the results are broken out as unsolved instances and reported in a similar manner to

the unsolved instances for MIP1L+(32). While MIP3 solves all of the 70 instances to optimality,

MIP1L+(32) solves 53 out of the 70 instances optimally, and MIP1L+(34) doesn’t solve any of

them to optimality. Thus, although constraint (32) has a stronger performance than constraint (34)
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Optimality Gap Running Time
Avg Min Max Solved # Avg Min Max

Douban 0.00% 0.00% 0.00% 10 4189.2 3427.1 4955.1
Epinions 3.63% 1.70% 5.58% 0 T.L. T.L. T.L.
Twitter 0.31% 0.21% 0.48% 0 T.L. T.L. T.L.

Table 6 MIP3 on the 30 Very Large Instances. (T.L.: Time Limit 3 Hours)

Influence Greedy Threshold Greedy
w/o w/o Influence Greedy Threshold Greedy

Post Processing Post Processing
Avg Min Max Avg Min Max Avg Min Max Avg Min Max

Gnutella 36% 34% 38% 33% 32% 35% 32% 30% 34% 28% 26% 30%
Ning 33% 31% 37% 31% 28% 35% 30% 28% 33% 26% 24% 29%
Hamsterster 30% 25% 33% 27% 22% 32% 28% 23% 31% 23% 18% 27%
Escorts 37% 33% 38% 33% 30% 35% 33% 30% 34% 28% 25% 30%
Anybeat 34% 26% 38% 30% 25% 35% 29% 23% 33% 26% 21% 31%
Advogato 30% 27% 32% 28% 26% 30% 28% 26% 30% 23% 21% 25%
Facebook 48% 41% 57% 45% 32% 60% 39% 34% 51% 45% 32% 59%
Douban 41% 41% 43% 37% 36% 38% 34% 33% 35% 34% 33% 35%
Epinion 32% 29% 34% 29% 27% 31% 29% 26% 30% 24% 22% 26%
Twitter 43% 41% 45% 40% 39% 43% 35% 33% 38% 39% 37% 42%

Table 7 Relative Gaps of the Cost of Influence Greedy Solution to the Cost of Best Feasible Solution Obtained by MIP3 and
that of the Threshold Greedy Solution

computationally, these two constraints complement each other. Combining them together provides

the best and strongest outcome!

In the next experiment, we focus on the 30 instances based on three very large social networks,

Douban, Epinions and Twitter. Based on our results earlier, only MIP2 and MIP3 are applied to

the 30 instances. Also, the time limit was set as 3 hours for each of the 30 instances. When MIP2

is applied to these instances, it cannot solve the LP relaxation at the root node for any instance.

Needless to say, when the LP relaxation of an MIP formulation cannot be solved, the model is not

viable because the search process is predicated on solving the initial LP relaxation. However, MIP3

is able to find and prove good-quality solutions for these instances. The results are shown under

the column “Optimality Gap” in Table 6. MIP3 solved 10 Douban instances. For the remaining

Epinions and Twitter instances, the optimality gap is less than 2% on average. The running time

on the solved instances are also reported in Table 6. The sub-column “Solved #” presents the

number of solved instances. Based on the above experiments, we conclude that among the four

formulations presented in this paper, MIP3 is the best. MIP3 has 2|V | variables, which is the same

as MIP1. It has both theoretical desirable properties, and is also capable of finding and proving

good-quality solutions for instances with up to 465,000 nodes and 835,000 edges.

5.4. Evaluating the Performance of Greedy Heuristics

Greedy heuristics have served as important benchmarks for influence maximization problems.

Recall, Kempe et al. (2003) show that a simple greedy algorithm is an (1−1/e− ε)-approximation
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ratio for the IMP. Günneç et al. (2020) also describe two greedy heuristics (called influence greedy

threshold greedy) for the LCIP, and find that, on average, influence greedy has a 6% gap, and

threshold greedy has a 14% gap to the optimal solutions. To this end, we evaluate the cost of

the best feasible solution (BFS) obtained by MIP3 against two greedy heuristics for the PIDS-PP

problem on the 100 instances that we now describe.

Recall that bi denotes the threshold for each node i in V . Let ti be the current partial payment

required to influence node i (i.e., initially ti = bi, and if r neighbors of node i are currently directly

targeted then the current partial payment ti =max(0, bi − rfi)), and let δ(i) denote the neighbors

of node i that have yet to be influenced. Influence greedy selects the node (say k) with the smallest

influence factor among the nodes that have not yet been influenced. It then weighs the tradeoff

between paying bk to directly target it, or tk as a partial payment. Compared to paying tk to node k,

paying bk reduces the partial payment tj of each node j in δ(k) by its influence factor fj, if tj > fj,

or reduces its current threshold tj to 0, if tj ≤ fj. Therefore, if bk− tk >
!

j∈δ(k)min{fj, tj}, we pay
the current partial payment tk, and mark node k as being influenced. If bk−tk ≤

!
j∈δ(k)min{fj, tj},

we pay the threshold bk, mark node k as being influenced and directly targeted, and propagate

influence to nodes in δ(k). Then, we select the next node. Threshold greedy is similar to influence

greedy except that it selects the node (say k) with the smallest value of tk among the nodes that

have not yet been influenced. For both greedy heuristics, we apply a post processing step to lower

the partial payments made to nodes that are not directly targeted (this could happen for example

to a node k that is given a partial payment tk in either influence or threshold greedy, if one of

node k’s neighbor is selected for direct targeting later in the greedy algorithm thereby reducing

the partial payment necessary) if possible.

We use zIG, zTH and zMIP3 to denote the cost of influence greedy, that of threshold greedy

and that of the best feasible solution obtained by MIP3, respectively. Table 7 shows the relative

gaps, which are calculated as ( zIG
zMIP3

− 1)× 100 and ( zTG
zMIP3

− 1)× 100 for influence greedy and

threshold greedy, respectively. The first two columns show the gaps without the post processing

step, and the last two columns show the gaps with the post processing step. On average, without

the post processing step, the cost of influence greedy and that of threshold greedy are 36% and 33%

larger than that of the solution obtained by MIP3, respectively. Invoking the post processing step

reduces the gaps to 32% and 30%, respectively. Thus, this post processing step is able to improve

the solution quality by reducing the gap between 3% to 4% on average. Overall, threshold greedy

obtains better solutions for 75 out of the 100 instances, while influence greedy is better for 25 of

them. Although threshold greedy performs better than influence greedy, neither of them is able to

provide outcomes that are as good as the solutions obtained by MIP3. This finding emphasizes the

benefit of well-designed optimization methods for the PIDS-PP problem.
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Avg Min Max
Gnutella 25.02% 23.34% 26.46%
Ning 22.81% 21.22% 25.34%
Hamsterster 19.54% 13.50% 22.10%
Escorts 24.72% 23.61% 26.49%
Anybeat 21.62% 18.03% 24.81%
Advogato 19.78% 16.06% 21.63%
Facebook 14.43% 11.58% 16.09%
Douban 20.80% 20.09% 21.39%
Epinion 8.41% 6.45% 10.93%
Twitter 17.84% 17.30% 18.41%

Table 8 Relative Extra-Cost without Partial Payment.

5.5. Evaluating the Impacts of Partial Payment

In the next experiment, we evaluate the impacts of partial payment. To do so, we evaluate the

cost and the solution structure of a PIDS-PP problem instance against a setting, where no partial

payment is allowed (i.e., either a node is paid bi or 0). In other words, we compare the cost and

the solution structure of a PIDS-PP problem instance against the cost and the solution structure

of its PIDS problem counterpart. Recall that in the PIDS problem, nodes must either be directly

targeted (and paid bi) or have at least gi neighbors that are directly targeted.

We convert our instances into their corresponding PIDS problem instances by calculating gi (this

is the number of directly targeted neighbors that a node needs in order to be influenced) for all

nodes i in V . We obtain a lower bound on the optimal solution of the corresponding PIDS problem

by solving the BIP4 formulation described by Raghavan and Zhang (2017). The time limit for

each PIDS problem instance is set to be the same as its PIDS-PP problem counterpart. Let lbpids,

and zpids-pp be the lower bound of the PIDS problem instance and the objective value of the best

feasible solution of the PIDS-PP problem instance, respectively. The relative extra-cost is at least
lbpids−zpids-pp

zpids-pp
× 100. Table 8 shows that the relative extra-cost is around 20% on average across all

instances. The least amount is 6.45% for Epinions and the largest amount is 26.46% for Gnutella.

We also look at the impact of partial payment on the solution structure. Taking the best feasible

solutions of the PIDS problem and the PIDS-PP problem instances, Table 9 compares the average

fraction of nodes being directly targeted (DT), the average fraction of nodes receiving partial

payment (PP), and the average fraction of nodes receiving no payment (Rest) in the solutions.

Thus, compared to the PIDS problem solutions, fewer nodes (approximately 3% fewer nodes in

our experiments) are directly targeted generally in the PIDS-PP problem. On the other hand, 26%

fewer nodes receive no payments in the PIDS-PP compared to the PIDS problem. Overall, partial

payments are able to significantly reduce the overall targeting cost, by slightly reducing the number

of nodes being directly targeted and instead providing partial payments to a fraction (between 10%

and 20% in our experiments) of the nodes in the graph.
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PIDS PIDS-PP
DT Rest DT PP Rest

Gnutella 51.73% 48.27% 48.13% 18.74% 33.13%
Ning 47.48% 52.52% 46.29% 16.28% 37.43%
Hamsterster 51.48% 48.52% 49.47% 20.77% 29.77%
Escorts 50.35% 49.65% 47.64% 18.41% 33.95%
Anybeat 40.24% 59.76% 44.81% 13.32% 41.86%
Advogato 50.10% 49.90% 49.04% 19.53% 31.43%
Facebook 35.27% 64.73% 31.67% 10.47% 57.86%
Douban 40.29% 59.71% 39.88% 11.66% 48.45%
Epinions 43.96% 56.04% 43.37% 15.66% 40.97%
Twitter 41.00% 59.00% 35.99% 9.75% 54.26%

Table 9 Comparison of the Solution Structure between the PIDS Problem and the PIDS-PP Problem. (DT: The Average
Fraction of Nodes Being Directly Targeted, PP: The Average Fraction of Nodes Receiving Partial Payment, Rest: the Average

Fraction of Nodes Receiving No Payment)

6. Conclusions

In this paper, we study the PIDS-PP problem, an NP-hard problem that arises in the context

of direct targeting on social networks, where direct influence plays the dominant role in influ-

ence propagation. In contrast to much of the previous influence maximization literature, partial

payments and latency constraints (of 1) are considered simultaneously in the PIDS-PP problem.

Partial payments are more closely aligned with marketing practice, where it is common to provide

partial payment (e.g., coupons that reduce the price of a product) instead of receiving a product

gratis. As our computational experiments show, they can also save significantly in targeting costs.

Latency constraints arise in many different settings, including technology diffusion, or settings

where rapid influence maximization is desired.

This paper focuses on developing strong MIP formulations for the PIDS-PP problem. We show

that the PIDS-PP problem on trees is polynomially solvable via a linear-time DP algorithm. We

discuss four different formulations for the PIDS-PP problem: MIP1, MIP1L, MIP2, and MIP3.

MIP2 and MIP3 are equivalent as linear programs, and stronger than both MIP1 and MIP1L.

MIP2 is a compact extended formulation that applies several strengthening ideas (including edge-

splitting) to MIP1L. MIP3 is obtained by projecting MIP2 onto the space of the payment variables.

MIP3 and MIP1L lie in the same space, but MIP3 has an exponential set of additional constraints

(obtained by projecting from MIP2). We also show that the extended formulation MIP2 and its

projection MIP3 are the strongest possible ones for trees (i.e., they provide integral solutions

when the underlying graph is a tree). We conduct an extensive computational experiment on real-

world social networks to show the efficacy of MIP3. Our results show that MIP3 finds high-quality

solutions for very large graphs with approximately 465,000 nodes and 835,000 edges.

There is one natural direction for further research. In the PIDS-PP problem, influence is only

allowed to propagate to the neighbors of a directly targeted node (i.e., one step), while in the LCIP,
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influence is allowed to propagate indefinitely (or |V |− 1 steps). These represent two extremes: one

where only direct influence plays a role, and the other, where indefinitely long chains of indirect

influence are permitted. In between lie the general latency constraints. In the event that second

order, third order, and in general nth-order influences play a role, we can formulate an influence

maximization problem with partial payments and latency constraints where we are allowed a

prespecified number of steps/time periods for the influence to propagate through the network.

This is a problem of significant practical relevance, but remains a challenging next step (since the

formulation for the PIDS-PP problem and the LCIP are completely different and cannot be applied

directly to this variant). Our work on the PIDS-PP problem provides a strong first step along this

research pathway.
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Chleb́ık, M. and Chleb́ıková, J. (2008). Approximation hardness of dominating set problems in bounded

degree graphs. Information and Computation, 206(11):1264–1275.



29

Coleman, J., Katz, E., and Menzel, H. (1966). Medical innovation: A diffusion study. Bobbs-Merrill, Indi-

anapolis.
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Electronic Companion

EC.1. Remarks on The PIDS-PP Problem on Trees

The study of the PIDS-PP problem on trees is important for several reasons. First, the information

propagation paths on social networks often resemble trees, as shown by Liben-Nowell and Kleinberg

(2008) on Internet chain-letter data and by Kwak et al. (2010) on Twitter data. Second, from

the perspective of the decomposition, Adcock et al. (2013) empirically demonstrate real social and

information networks possess large-scale tree-like structure. Third, tree graphs are commonly used

in stylized models on social networks to generate insights and obtain a better understanding of the

underlying problem (see Jackson et al. 2020). Fourth, deriving tight and strong models on special

cases can be considered as a starting point for obtaining stronger models on the general case for

many combinatorial optimization problems (see Goemans 1994, Magnanti and Wolsey 1995). Our

interest in trees is due to the fact that trees are the structurally simplest non-trivial graphs. Thus,

a high-level idea is to derive useful results and insights from special cases which are polynomial

solvable, and then apply them to the general case which is NP-hard. The model we derive for the

PIDS-PP problem on trees plays a crucial role in developing our model on arbitrary graphs. The

linear-time algorithm plays an important role in proving the tightness of MIP2 on trees. The rest

of this electronic companion is organized as follows. Section EC.2 presents a linear-time dynamic

algorithm for the PIDS-PP problem on tree. Section EC.3 proves that MIP2 is indeed the strongest

possible formulation for the PIDS-PP problem on trees.

EC.2. Algorithm for The PIDS-PP Problem on Trees

In this section, we present a dynamic programming (DP) algorithm to solve the PIDS-PP problem

on trees. The DP algorithm decomposes the problem into subproblems, starting from the leaves of

the tree. A subproblem is defined on a star network, which has a single central node and (possibly)

multiple child nodes. For each star subproblem, the DP algorithm solves the PIDS-PP problem for

two cases. Consider the link that connects the star to the rest of the tree. We will refer to the node

adjacent to the central node on this link as its parent. In the first case, the parent is not selected

for direct targeting (for brevity, we will simply say that the node is “not selected”), whereas in

the second case, the parent is selected for direct targeting (for brevity, we will simply say that the

node is “selected”). Recall that when a node is selected for direct targeting it receives full payment.

This process of solving star subproblems for two cases, followed by contraction of the star node, is

repeated until we are left with a single star. The last star only requires the solution of one case,

where the parent is not selected. After we exhaust all subproblems, a backtracking method is used
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Figure EC.1 A PIDS-PP Problem Instance.

to combine the solution candidates from the star subproblems and identify a final solution (set of

nodes selected for direct targeting, and the payment amounts to all nodes on the tree).

Algorithm 2 provides the pseudocode of the proposed algorithm. To create an ordering amongst

the subproblems considered in the algorithm, it is convenient (but not necessary) to arbitrarily pick

a root node (which we will denote by r). We will then prioritize the subproblems in order of how

far their central nodes are from the root node of the tree (i.e., at every step among the remaining

subproblems, we consider a subproblem whose central node is farthest from the root node). We call

this a bottom-up traversal of the tree (this ordering can easily be determined a priori by conducting

a breadth-first search (BFS) from the root node and by considering the non-leaf nodes of the tree

in reverse BFS order). The global variable TC has the total cost of the optimal solution.

We now discuss how to solve the PIDS-PP problem on a star. To better illustrate the algorithm,

we consider the instance shown in Figure EC.1. Let L denote the set of all leaf nodes in the original

tree. Let c denote the central node of a star, all of the other nodes in the star are children of the

central node and are denoted by L(c) (notice that L(c) need not be a subset of L), and refer to this

star as star c. There are two cases to consider. First, we consider the case, where the parent of the

central node c is not selected in the optimal solution. Let XNPS
c represent the set of nodes selected

in the solution to star c, let PNPS
c be the payment made to the central node in the solution, and

let CNPS
c be the total cost of the solution for star c. Analogously, we consider the case, where the

Algorithm 2 Algorithm for the PIDS-PP problem on trees

1: Arbitrarily pick a node as the root node of the tree and let TC = 0.
2: Define the order of the star problems based on the bottom-up traversal of the tree
3: For all i∈L (the set of leaf nodes in G), set b1i = bi, and b2i = 0.
4: for each star subproblem do
5: StarHandling
6: end for
7: SolutionBacktrack
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parent of the central node c is selected in the optimal solution with XPS
c representing the set of

nodes selected in the solution to star c, P PS
c being the payment made to the central node in the

solution, and CPS
c denoting the total cost of the solution for star c.

In Figure EC.1, node 8 is selected as the root. Following the bottom-up ordering of the tree we

would consider stars 1,2,3,4 and 5 first. Notice that all of these stars have their children in L.

We will refer to stars, where all children are members of L as “bottom stars”. Notice that because

influence can only propagate to a neighbor of a selected node (and no further), if the parent of any

node i∈L is not selected, then node imust be selected. This allows for a straightforward calculation

to solve a bottom star. Either the central node of the bottom star is selected or all children in the

bottom star are selected with an additional (potentially 0) partial payment to the central node.

Specifically, for the case, where the parent of the central node c of a bottom star is not selected we

compare the cost of bc against the cost of (
!

j∈L(c) bj +max{0, bc− |L(c)|fc}). If bc is greater, then
all of the children in the bottom star are selected and XNPS

c =L(c), PNPS
c =max{0, bc− |L(c)|fc},

and CNPS
c = (

!
j∈L(c) bj +max{0, bc − |L(c)|fc}). Otherwise, the central node c of the bottom star

is selected and XNPS
c = {c}, PNPS

c = bc, and CNPS
c = bc. At the same time, for the case where the

parent of the central node c of the bottom star is selected, we compare the cost of bc against the cost

of (
!

j∈L(c) bj +max{0, bc− (|L(c)+1)|fc}). If bc is greater, then all of the children are selected and

XPS
c =L(c), P PS

c =max{0, bc−(|L(c)+1)|fc}, and CPS
c = (

!
j∈L(c) bj+max{0, bc−(|L(c)+1)|fc}).

Otherwise, the central node c is selected and XPS
c = {c}, P PS

c = bc, and CPS
c = bc.

To illustrate, consider star 1. When node 1’s parent (node 6) is not selected in the optimal

solution, we compare the cost of selecting node 1 with a payment of 23 against the cost of selecting

all of the leaf nodes of star 1 (i.e., nodes 9 and 10) at a cost of 20 units and a partial payment

amounting to 1 unit to node 1 (for a total cost of 21). Thus, the solution is XNPS
1 = {9,10},

PNPS
1 = 1, and CNPS

1 = 21. Now consider the case, where node 1’s parent (node 6) is selected.

In this case, we compare the cost of selecting the central node 1 (with a payment of 23) against

selecting all of the leaf nodes of the star (i.e., nodes 9 and 10) with no additional partial payment

to the central node (for a total cost of 20). Thus, the solution is XPS
1 = {9,10}, P PS

1 = 0, and

CPS
1 = 20. Similarly, for the bottom stars 2, 3, 4, and 5, we find: In star 2, XNPS

2 =XPS
2 = {11,12},

PNPS
2 = P PS

2 = 0, and CNPS
2 =CPS

2 = 2. In star 3, XNPS
3 =XPS

3 = {13,14}, PNPS
3 = P PS

3 = 0, and

CNPS
3 =CPS

3 = 2. In star 4, XNPS
4 =XPS

4 = {4}, PNPS
4 = P PS

4 = 3, and CNPS
4 =CPS

4 = 3. In star 5,

XNPS
5 =XPS

5 = {17,18}, PNPS
5 = P PS

5 = 0, and CNPS
5 =CPS

5 = 2.

Next, once a star’s solution candidates are determined, the star is contracted into a single child

node for its parent’s star subproblem. It may appear that we have considered all possible solution

candidatesXNPS
c andXPS

c for a given star c in the optimal solution. However, that is not necessarily

the case. Consider star 1. Here XPS
1 =XNPS

1 = {9,10}. In both cases, the leaf nodes 9 and 10 are



ec4 e-companion to Raghavan and Zhang: Influence Maximization with Latency Requirements on Social Networks

1
23

9 10

1
1

9 10
10 10

1
0

9 10

%&
'

10 10 0 0

Figure EC.2 (a)XPS
1 = {9,10}, PPS

1 = 0,CPS
1 = 20, (b)XNPS

1 = {9,10}, PNPS
1 = 1,CNPS

1 = 21, (c) selected node 1 and b1 = 23.

Possible Solutions for Star 1 in the Optimal Solution to the Problem.

selected. Although star 1 does not need its central node 1 to be selected in either case, star 6 may

need node 1 to be selected in order to activate its central node 6 because influence only propagates

to the neighbors of the selected nodes. This may not be captured in the solutions XNPS
c and XPS

c

computed so far for a given star. Hence, in addition to CNPS
c and CPS

c , we also use the cost bc of the

solution that selects the central node of star c. Figure EC.2 illustrates the situations for star 1. The

nodes receiving payment are shaded. Among them, the ones with solid border are selected (i.e.,

directly targeted and receiving full payment) and the others with a dotted border receive partial

payment. Figure EC.2(a) displays the solution XPS
1 , Figure EC.2(b) displays the solution XNPS

1 ,

and Figure EC.2(c) displays the solution, where the central node 1 is selected. Observe that the

costs of the three solutions satisfy CPS
c ≤ CNPS

c ≤ bc. Therefore, we must incur a cost of at least

CPS
c for star c in the optimal solution. This amount is added to the total cost TC. The remaining

incremental amounts b1c =CNPS
c −CPS

c and b2c = bc−CNPS
c are computed and are used to solve the

next star subproblem.

Unlike bottom stars, we have (e.g., star 6) stars containing both contracted stars as leaf nodes

(nodes 1, 2, and 3), as well as the leaf nodes in L (node 19). Therefore, we compute b1i = bi, and

b2i = 0 for leaf nodes i∈L. Consider node 19 to explain this calculation. If its parent is not selected,

node 19 must be selected with a cost of 9. If its parent is selected, node 19 gets influenced and its

cost is 0. Thus, b119 = 9, and b219 = 0. Figure EC.3 displays stars 6 and 7 after contracting stars 1, 2,

3, 4 and 5, respectively. At this point TC = 29 and the calculated values of (b1i , b
2
i ) are shown for

all leaf nodes.

We are now ready to discuss how to solve the PIDS-PP problem on a star (earlier our discussion

was limited to solving the problem on the bottom stars; the ensuing discussion applies to all stars).

Consider a star c and the case, where the parent of node c is not selected in the optimal solution.

We have two alternatives. Either we select the central node c with cost bc to influence the entire

star (if the central node c is selected then all children i∈L(c) follow the solution XPS
i whose cost is

already included in TC) or we select a subset of nodes in L(c) as cheaply as possible that influences

the entire star (the nodes i in L(c) that are not selected would then follow the solution XNPS
i ).
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Figure EC.3 (a) Star 6 after Contracting Stars 1, 2, and 3. (b) Star 7 after Contracting Stars 4 and 5.

We need to compute the cost of the alternative, where a minimum cost subset of nodes in L(c)

are selected to influence the entire star. If the central node c of the star is not selected, we must

at least incur the cost BNPS
c =

!
i∈L(c) b

1
i , given that all of the children i∈L(c) must at least incur

the cost of CNPS
i when their parent is not selected. The influence factor fc of the central node c is

used as a filter. Any child i∈L(c) with b2i ≥ fc will never be selected. When b2i ≥ fc, paying b2i units

to a child node i sends fc influence to node c, thus, the decrease in the threshold of the central

node is less than what we spend. We could be better off by paying the central node directly and

using the XNPS
i solution for such children. Therefore, we collect the nodes i∈L(c) with b2i < fc in

set Sc and sort them in ascending order of their b2i values. The set S0
c ⊆ Sc denotes the set of nodes

i∈ Sc with b2i = 0 (i.e., these nodes are essentially free to select). The cost of the solution depends

on the size of the set Sc. Let gc = ⌈ bc
fc
⌉ and lc = bc − (gc − 1)fc.

Case 1 (|Sc|< gc): All nodes in the set Sc are selected, and the payment to the central node c is

determined as lc + fc(gc − 1− |Sc|) for a total cost of BNPS
c + lc + fc(gc − 1− |Sc|)+

!
i∈Sc

b2i .

Case 2 (|Sc|≥ gc and |S0
c |≥ gc): All nodes in the set S0

c are selected, and no additional payment to

the central node is necessary, resulting in a total cost of BNPS
c .

Case 3 (|Sc| ≥ gc and |S0
c |< gc): We select the first gc nodes in Sc in ascending order of their b2i

value (we denote this set as Sgc) if the threshold for the gc-th node is less than or equal to lc for

a total cost of BNPS
c +

!
i∈Sgc

b2i . Otherwise, we select the first (gc − 1) nodes in Sc in ascending

order of their b2i values (we denote this set as Sgc−1) and pay lc to node c, resulting in a total cost

of BNPS
c + lc +

!
i∈Sgc−1

b2i .

Comparing bc, the cost of selecting the central node c against the cost of the solution just obtained

from one of the three above cases (and selecting the one with a lower cost) provides us with the

solution to the PIDS-PP problem on the given star.

Now, we consider star c and the case, where the parent of node c is selected in the optimal

solution. Again, we have two alternatives. Either we select the central node c with cost bc to

influence the entire star, or we select a subset of nodes in L(c) as cheaply as possible that influences

the entire star. The cost of the alternative, where a minimum cost subset of the nodes in L(c)
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are selected to influence the entire star, is calculated identically as the above three cases with the

change that gc is updated to gc− 1 (to account for the fact that star c’s parent has been selected),

and is thus able to influence it.

Algorithm 3 provides the pseudocode associated with this calculation procedure. At its core is

the function SolveStar, which finds the optimal solution for a given star. When the procedure

is applied to star 6, we start with S6 = {19,1,3,2}, S0
6 = {19} and BNPS

6 = 10. We get XNPS
6 =

{19,1,3}, PNPS
6 = 4, and CNPS

6 =BNPS
6 +PNPS

6 +
!

i∈XNPS
6

b2i = 21; and XPS
6 = {19,1}, P PS

6 = 4,

and CPS
6 =BNPS

6 +P PS
6 +

!
i∈XPS

6
b2i = 16. Contracting star 6 gives b16 = 5 and b26 = 10. Similarly for

star 7, we start with S7 = {4,20}, S0
7 = {4,20} and BNPS

7 = 5 (notice that node 5 is not in S7 because

b25 = 4> f7 = 3). We get XNPS
7 = {4,20}, PNPS

7 = 4 and CNPS
7 = 9; and XPS

7 = {4,20}, P PS
7 = 1,

and CPS
7 = 6. Contracting star 7 gives b17 = 3 and b27 = 1. Now, TC is 51. After contracting stars

6 and 7, we only have one star left, as shown in Figure EC.4. Here, S8 = {21,22,7}, S0
8 = {21,22}

and BNFS
8 = 10. We find that it is cheapest to select central node 8 (because its cost of 8 is less

than BNFS
8 = 10) than any of its children. Hence, XNPS

8 = {8}, PNPS
8 = 8 and CNPS

8 = 8. Thus,

TC is 59.

After we obtain the solution of the last star, which has the root node as its central node, we invoke

a backtracking procedure to choose the solution from the candidates for each star subproblem

and piece them together to obtain the final solution for this tree. Once the last star subproblem

is solved, for each child node in this star, we know if it is selected or not and if its parent node

is selected or not. For instance, if the central node is selected, all stars with the central node in

{L(c) \ L} will pick the Parent-Selected candidate. Otherwise, first, if a node i in {L(c) \ L} is

selected, we can proceed to the nodes in L(i) and pick the Parent-Selected candidate. Second, if

a node i in {L(c) \L} is not selected, star i will pick the NoParent-Selected candidate. With this

information, we can now proceed down the tree, incorporating the solution candidate at a node

based on the solution of its parent star. This backtracking procedure is described in Algorithm 4

SolutionBacktrack. Let r denote the root of the tree (as determined by Algorithm 2), x∗ be a binary

vector indicating the nodes selected with a value of 1s, and p∗ be the vector of payment. Note

that this p∗ payment vector is slightly different from the p variables in the MIP formulations, as it
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Algorithm 3 StarHandling

Input: star c.
1: (XNPS

c , PNPS
c ,CNPS

c )← SolveStar(star c, NoParent-Selected).
2: if star c is the last star then
3: TC = TC +CNPS

c

4: else
5: (XPS

c , PPS
c ,CPS

c )← SolveStar(star c, Parent-Selected).
6: The contracted node has b1c =CNPS

c −CPS
c and b2c = bc −CNPS

c .
7: TC = TC +CPS

c

8: end if
9: function SolveStar(a star c, Flag)

10: BNPS
c =

!
i∈L(c) b

1
i , gc =

"
bc
fc

#
, lc = bc − (gc − 1)fc, Sc = {i ∈ L(c) : b2i < fc} and S0

c = {i ∈ L(c) : b2i =

0}.
11: if Flag == Parent-Selected then
12: gc = gc − 1.
13: end if
14: if |Sc|< gc then
15: C =min

$
bc, B

NPS
c +

!
i∈Sc

b2i + lc + fc(gc − 1− |Sc|)
%

16: else
17: if |S0

c |≥ gc then
18: C =min{bc, BNPS

c }
19: else
20: Let Sgc and Sgc−1 be the sets of the cheapest gc and (gc − 1) nodes in Sc by b2, respectively.

21: C =min
&
bc, B

NPS
c +

!
i∈Sgc

b2i , B
NPS
c +

!
i∈Sgc−1

b2i + lc

'

22: end if
23: end if
24: X ← c and P = bc if C is bc.
25: X ← Sc and P = lc + fc(gc − 1− |Sc|) if C is BNPS

c +
!

i∈Sc
b2i + lc + fc(gc − 1− |Sc|).

26: X ← S0
c and P = 0 if C is BNPS

c .
27: X ← Sgc and P = 0 if C is BNPS

c +
!

i∈Sgc
b2i .

28: X ← Sgc−1 and P = lc if C is BNPS
c +

!
i∈Sgc−1

b2i + lc.
29: return X,P,C.
30: end function

includes both full and partial payments. Figure EC.5 shows the final solution. The nodes receiving

payment are shaded. Among them, the ones with a solid border are selected (i.e., directly targeted

and receiving full payment), and the others with a dotted border receive partial payment.

Proof of Proposition 2: The correctness of the algorithm can be established via induction, using

identical arguments to the preceding discussion. We now discuss the running time. There are at

most |V | stars. For each star c, we need to find gc cheapest children that takes O(deg(c)) time.

Finding the gcth order statistics can be done in O(deg(c)) time by the Quickselect method in

Chapter 9 of Cormen et al. (2009); thus, it takes O(deg(c)) time to go through the list to collect the

gc cheapest normal children. For the whole tree, this is bounded by O(|V |) time. In the backtracking

procedure, we pick the final solution for each node, which takes O(|V |) time over the tree. Therefore,

the running time for the dynamic algorithm is linear on the number of nodes. □
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Algorithm 4 SolutionBacktrack

1: Let x∗ = 0 and p∗ = 0. Then, call Piecing(r, x∗, p∗, NoParent-Selected) for the root node r.
2: function Piecing(c, x∗, p∗, Flag)
3: if Flag= Parent-Selected then
4: X

′ ←XPS
c , xi = 1 ∀i∈X

′
, and P

′
= PPS

c .
5: else
6: X

′ ←XNPS
c , xi = 1 ∀i∈X

′
, and P

′
= PNPS

c .
7: end if
8: if c∈X

′
then

9: ∀i∈ {L(c) \L} call Piecing(i, x∗, p∗, Parent-Selected).
10: else
11: p∗

c = P
′
and ∀i∈ {L(c) \ (X ′ ∪L)} call Piecing(i, x∗, p∗, NoParent-Selected).

12: for i∈X
′
do

13: ∀j ∈ {L(i) \L} call Piecing(j, x∗, p∗, Parent-Selected).
14: end for
15: end if
16: return x∗ and p∗.
17: end function

Figure EC.5 The Solution Obtained by Our DP Algorithm. Nodes 1, 4, 7, 8 11, 12, 13, 14 17, 18, 19, and 20

are Selected (i.e., Directly Targeted and Receive Full Payment). Nodes 6 and 7 Receive Partial

Payment.

EC.3. Proof of Theorem 1: MIP2 is Tight for The PIDS-PP Problem
on Trees

The linear relaxation of MIP2 is the following LP problem:

(LP2) Min
!

i∈V pi +
!

i∈V bixi (EC.1)

Subject to (sid) −yid − ydi =−1, ∀{i, d}∈Et, (EC.2)

(tij) xi − ydj ≥ 0, ∀i∈ V, j ∈ n(i), (EC.3)

(uid) yid −xi ≥ 0, ∀i∈ V,d∈ a(i), (EC.4)

(vi) pi + bixi +
!

d∈a(i) fiydi ≥ bi, ∀i∈ V, (EC.5)

(wi) pi + ligixi +
!

d∈a(i) liydi ≥ ligi, ∀i∈ V, (EC.6)
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pi, xi ≥ 0, ∀i∈ V, (EC.7)

yid, ydi ≥ 0, ∀{i, d}∈Et. (EC.8)

We refer to this LP problem as LP2. We have sid, tij, uid, vi, and wi as dual variables for the

constraints (EC.2), (EC.3), (EC.4), (EC.5), and (EC.6) respectively. The dual to LP2, which is

referred to as DLP2 is as follows:

(DLP2) Max
!

i∈V bivi +
!

i∈V ligiwi −
!

{i,d}∈Et
sid (EC.9)

Subject to (yid) −sid +uid ≤ 0, ∀i∈ V,d∈ a(i), (EC.10)

(ydi) −sid − tji + fivi + liwi ≤ 0, ∀d∈D, i∈ a(d), (EC.11)

(xi)
!

j∈n(i) tij −
!

d∈a(i) uid + bivi + ligiwi ≤ bi, ∀i∈ V, (EC.12)

(pi) vi +wi ≤ 1, ∀i∈ V, (EC.13)

sid free, ∀{i, d}∈Et, (EC.14)

tij ≥ 0, ∀i∈ V, j ∈ n(i), (EC.15)

uid ≥ 0, ∀i∈ V,d∈ a(i), (EC.16)

vi, wi ≥ 0, ∀i∈ V. (EC.17)

First, based on this pair of primal and dual problems, we have the complementary slackness

(CS) conditions:

(−sid +uid)yid = 0, ∀i∈ V,d∈ a(i), (EC.18)

(xi − ydj)tij = 0, ∀i∈ V, j ∈ n(i), (EC.19)

(yid −xi)uid = 0, ∀i∈ V,d∈ a(i), (EC.20)

(pi + bixi +
!

d∈a(i) fiydi − bi)vi = 0, ∀i∈ V, (EC.21)

(pi + ligixi +
!

d∈a(i) liydi − ligi)wi = 0, ∀i∈ V, (EC.22)

(−sid − tji + fivi + liwi)ydi = 0, ∀d∈D, i∈ a(d), (EC.23)

(
!

j∈n(i) tij −
!

d∈a(i) uid + bivi + ligiwi − bi)xi = 0, ∀i∈ V, (EC.24)

(vi +wi − 1)pi = 0, ∀i∈ V. (EC.25)

The solution vector x∗, p∗ obtained in the dynamic programming algorithm (Algorithm 2 in

Appendix EC.2) can be transferred into a feasible solution for LP2. For any node i that is selected

node set xi = 1 and pi = 0. Then, set ydi = 0 and yid = 1 for all d in a(i). For all other nodes i that

are not selected, set xi = 0 and pi = p∗i . Next, let Sd
i = {d ∈ a(i) ∩ a(j) : xj = 1 ∀j ∈ n(i)}. For all

d∈ Sd
i , set ydi = 1 and yid = 0. For all d∈ a(i) \Sd

i , set ydi = 0 and yid = 1.
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Figure EC.6 (a) t Variables. (b) Condition (EC.19) when xi ∕= ydh. (c) Case 1: A Leaf Node i pi = 0 and xi = yid.

With this primal feasible solution in hand, a dual feasible solution will be constructed in the

following proof, and we show that the CS conditions are satisfied by this pair of primal and dual

solutions. Throughout the proof, we always have uid = sid. Thus, the CS condition (EC.18) is

satisfied. We can focus on the remaining CS conditions.

In DLP2, only t variables interact between two nodes in V . If their values are fixed, we can

isolate each node in V and assign values to s, u, v and w variables. Following the bottom-up

order as defined in Algorithm 2, we start with the bottom level of the original tree. Let node i

be the current node and node h be its parent node in the original tree G. Recall that b1i , b
2
i , Si,

XNPS
i , PNPS

i , XPS
i , and P PS

i are obtained in Algorithm 2. We set tih = b2i and thi = b1i , as shown in

Figure EC.6(a). For condition (EC.19), it requires tih = 0 when xi = 1 and ydh = 0. This means that

the corresponding xh = 1. Given that node h and node i are both selected, it implies that CPS
i = bi.

Thus, b1i = b2i = 0 because CPS
i ≤CNPS

i ≤ bi. Thus, tih = 0 and thi = 0, as shown in Figure EC.6(b).

For other situations, we have xi = ydh. Thus, condition (EC.19) is satisfied.

Now, three cases are considered to assign associated dual variables for a node i in V . All s, u, v

and w variables are initialized as zeros. Then, in the following proof, we only change those variables

that need to be non-zeros.

Case 1: Suppose that node i is a leaf node and node h is its parent node in G. When node i is

selected, pi = 0, xi = 1, and yid = 1. Otherwise, pi = 0, xi = 0 and yid = 0. This means that pi = 0,

and xi = yid, as shown in Figure EC.6(c). Also, tih = 0 and thi = bi because b1i = bi and b2i = 0.

Set vi = 1. All primal and dual constraints are binding for conditions (EC.20), (EC.21), (EC.22)

(EC.23), (EC.24), and (EC.25) given that bi = fi. Thus, they are satisfied.

Next, we consider the non-leaf nodes in G. There are two cases for them.

Case 2: Suppose that node i is not a leaf node in G and xi = 0. Let Sj
i = {j ∈ n(i) : xj = 1}, a

subset of node i’s neighbors in the original tree G receiving full payment. We have two situations.

First, when pi = 0, it means that node i has gi or more incoming arcs, as shown in Figure EC.7(a).

Let δi =max{tji : j ∈ Sj
i }. It is the biggest tji value among the nodes in Sj

i . Now, if Sj
i only contains

the child nodes of node i, then, each of them must have b2j = tji ≤ li, given that pi = 0. If Sj
i

contains node i’s parent (node h), it implies that |XPS
i | ≥ |gi| − 1, and XPS

i only contains the
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Figure EC.7 Case 2: (a) |Sj
i |≥ gi and δi =max{tji : j ∈ Sj

i }. (b) |Sj
i |< gi and γi =min{fi, min{tji : j ∈ n(i)\Sj

i }}.

child nodes of node i. We can infer the solution for node i when its parent is not selected. When

|XPS
i |> |gi|− 1, no extra payment is needed (PNPS

i = 0). When |XPS
i |= |gi|− 1, either node i is

paid li (P
NPS
i = li), or a child node j with b2j ≤ li is selected in XNPS

i , compared to XPS
i . Thus,

b1i =CNPS
i −CPS

i ≤ li. As a result, we have δi ≤ li. Set wi =
δi
li
. Then, set sid = uid = δi − tji for all

j in Sj
i and d in Sd

i . Condition (EC.20) is satisfied because yid = xi = 0 for all d in Sd
i , and uid = 0

for all d in a(i) \ Sd
i . Condition (EC.21) is satisfied because vi = 0. Condition (EC.22) is satisfied

because constraint (EC.6) is binding when there are exactly gi incoming arcs, and wi = δi = 0 when

there are more than gi incoming arcs. Condition (EC.23) is satisfied because constraint (EC.11) is

binding for all d in Sd
i , and ydi = 0 for all d in a(i) \Sd

i . Constraint (EC.12) is satisfied because its

left-hand side is

BNPS
i + b2i −

$

j∈S
j
i

(δi − tji)+ giδi (Note:
$

j∈n(i)

tij =BNPS
i + b2i , uid = δi − tji,wi =

δi
li
)

=

%
BNPS

i +
!

j∈XNPS
i

b2j + b2i − (|Sj
i |− gi)δi if h /∈ Sj

i

BNPS
i +

!
j∈XPS

i
b2j + b1i + b2i − (|Sj

i |− gi)δi if h∈ Sj
i

= CNPS
i + b2i − (|Sj

i |− gi)δi ≤ bi. (Note: |Sj
i |≥ gi, δi ≥ 0)

Constraint (EC.13) is respected because wi =
δi
li
≤ 1. Thus, conditions (EC.24) and (EC.25) are

satisfied because xi = pi = 0.

Second, when pi > 0, it means that node i has less than gi incoming arcs, as shown in Fig-

ure EC.7(b). Let γi =min{fi, min{tji : j ∈ n(i) \ Sj
i }}. We set vi and wi by solving the following

equations:

fivi + liwi = γi,

vi +wi = 1.

Then, set sid = uid = γi − tji for all j in Sj
i and all d in Sd

i . Condition (EC.20) is satisfied because

yid = xi = 0 for all d in Sd
i , and uid = 0 for all d in a(i) \ Sd

i . When pi ≥ li + fi, |Sj
i |< gi − 1, con-

straint (EC.5) is binding and constraint (EC.6) is satisfied. It has γi = fi, vi = 1 and wi = 0. When
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(a) XPS
i ∕= {i} and |XPS

i |≥ gi (b) XPS
i ∕= {i} and |XPS

i |≤ gi − 1 (c) XPS
i = {i}

Figure EC.8 Case 3.

pi = li, |Sj
i |= gi−1 and both constraints (EC.5) and (EC.6) are binding. Thus, conditions (EC.21)

and (EC.22) are satisfied. Condition (EC.23) is satisfied because constraint (EC.11) is binding for

all d in Sd
i and ydi = 0 for all d in a(i)\Sd

i . Analogous to the previous situation, constraint (EC.12)

is binding. The left-hand side of constraint (EC.12) is:

BNPS
i + b2i −

$

j∈S
j
i

(γi − tji)+ bivi + ligiwi

=

&
''''(

'''')

BNPS
i +

!
j∈XNPS

i
b2j + bi − |XNPS

i |fi + b2i if h /∈ Sj
i and pi ≥ li + fi

BNPS
i +

!
j∈XPS

i
b2j + bi − (|XPS

i |+1)fi + b1i + b2i if h∈ Sj
i and pi ≥ li + fi

BNPS
i +

!
j∈XNPS

i
b2j + bivi + ligiwi − (gi − 1)γi + b2i if h /∈ Sj

i and pi = li

BNPS
i +

!
j∈XPS

i
b2j + bivi + ligiwi − (gi − 1)γi + b1i + b2i if h∈ Sj

i and pi = li

= CNPS
i + b2i = bi.

Thus, Condition (EC.24) is satisfied because xi = 0. Condition (EC.25) is satisfied because con-

straint (EC.13) is binding.

Case 3: Suppose that node i is not a leaf node in G and xi = 1. This means that pi = 0, yid = 1

and ydi = 0 for all d in a(i). Then, CS conditions (EC.20), (EC.21), and (EC.22) are satisfied

because those corresponding primal constraints are satisfied and binding. Constraints (EC.11) and

(EC.13) are satisfied. Thus, conditionss (EC.23) and (EC.25) are satisfied because ydi = 0 and

pi = 0. Because xi = 1, constraint (EC.12) must be binding. Let LHS denote the value of the left-

hand side of constraint (EC.12). So far, LHS =
!

j∈n(i) tij =BNPS
i + b2i . If LHS = bi, we are done.

Otherwise, the idea of the following proof is to show that a dual solution can first be constructed

to ensure that LHS ≥ bi and then it can be adjusted to have LHS = bi. Recall that X
PS
i is a set of

nodes selected in the Parent-Selected case for node i in the DP. Based on XPS
i , we consider three

situations. First, suppose that XPS
i ∕= {i} and |XPS

i |≥ gi, as shown in Figure EC.8(a). This means

that the size of node i’s child nodes with a zero b2 value is at least gi (|S0
i |≥ gi) and XPS

i =XNPS
i .

Thus, LHS =
!

j∈n(i) tij =BNPS
i + b2i =CPS

i + b1i + b2i = bi because b1i = 0 and BNPS
i =CPS

i .



e-companion to Raghavan and Zhang: Influence Maximization with Latency Requirements on Social Networks ec13

t1,9 = 10 t7,20 = 5 v18 = 1
t1,10 = 10 t6,8 = 10 v19 = 1
t2,11 = 1 t8,6 = 5 v20 = 1
t2,12 = 1 t8,21 = 1 v21 = 1
t3,13 = 1 t8,22 = 1 v22 = 1
t3,14 = 1 t7,8 = 1 w1 = 1
t4,15 = 10 t8,7 = 3 s1,a = 1
t4,16 = 10 v9 = 1 s1,b = 1
t5,17 = 1 v10 = 1 s4,g = 17
t5,18 = 1 v11 = 1 s8,r = 2
t1,6 = 2 v12 = 1 v6 = 0.2
t6,1 = 1 v13 = 1 w6 = 0.8
t2,6 = 7 v14 = 1 s6,k = 3
t6,19 = 9 v15 = 1 s6,m = 5
t3,6 = 5 v16 = 1 v7 = 1
t5,7 = 4 v17 = 1 s7,o = 3

s7,q = 3

Figure EC.9 (a) Primal Solution for the PIDS-PP Problem Instance from Figure EC.1. (b) Non-Zero Dual

Variable Values Except for u.

Second, suppose that XPS
i ∕= {i} and |XPS

i |≤ gi − 1, as shown in Figure EC.8(b). This implies

that XPS
i ∕=XNPS

i . Set wi = 1 if |XPS
i |= gi − 1. Set vi = 1 if |XPS

i |< gi − 1. Then, set uid = sid =

fivi + liwi − tji = fivi + liwi − b2j for all j in XPS
i and d in a(i)∩ a(j). Then,

LHS =
$

j∈n(i)

tij −
$

d∈a(i)

uid + bivi + ligiwi

=
$

j∈n(i)

tij +
$

j∈XPS
i

b2j − |XPS
i |(fivi + liwi)+ bivi + ligiwi

=

%
BNPS

i + b2i +
!

j∈XPS
i

b2j + li if wi = 1 and |XPS
i |= gi − 1

BNPS
i + b2i +

!
j∈XPS

i
b2j +(gi − 2− |XPS

i |)fi + li + fi if vi = 1 and |XPS
i |< gi − 1

≥CPS
i + b1i + b2i = bi

The last inequality holds because CPS
i =BNPS

i +
!

j∈XPS
i

b2j and b1i ≤ li when |XPS
i |= gi − 1, and

bi = (gi−1)fi+ li, C
PS
i =BNPS

i +
!

j∈XPS
i

b2j +(gi−2− |XPS
i |)fi+ li and b1i ≤ fi when |XPS

i |< gi−1.

Lastly, suppose that node i is selected in the Parent-Selected solution (XPS
i = {i}), as shown in

Figure EC.8(c). This implies that XNPS
i =XPS

i . Let DSi = Si initially. If |Si|≥ gi, let DSi = Sgi−1.

Set vi = 1 and uid = sid = fi − tji = fi − b2j for all j in DSi and d in a(i) ∩ a(j). Thus, LHS =

BNPS
i +

!
j∈DSi

b2j− |DSi|fi+bi =BNPS
i +

!
j∈DSi

b2j+(gi−1− |DSi|)fi+li > bi as bi = (gi−1)fi+li,

b2i = 0 and node i is selected by the DP algorithm. At this point, we ensure that LHS ≥ bi. Then,

if LHS > bi, set uid̃ = sid̃ = uid̃ + LHS − bi for a d̃ in a(i). Thus, condition (EC.24) is satisfied

because constraint (EC.12) is binding by construction. □
Figure EC.9(a) is the transformed graph, and its solution is based on the instance in Figure EC.1.

We use it to illustrate the procedure for setting the dual variables. The non-zeros dual variables

are displayed in Figure EC.9(b), except for u variables, which have the same value as s variables.
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For clarity, we use a comma to separate the two subscripts in uij, tij, and sij (i.e., we write them

as ui,j, ti,j, and si,j).

First, we assign values for t variables. Their values are in the first two columns of the table

in Figure EC.9(b) and are displayed in Figure EC.9(a) as well. For Case 1, we have nodes 9, 10,

11, 12, 13, 15, 16, 17, 18, 19, 20, 21, and 22. Set their associated v as 1. For Case 2, we have

nodes 2, 3, 5, 6, and 7. For nodes 2, 3, and 5, δ2 = δ3 = δ5 = 0. Thus, no variables need to be

changed. For node 6, it has Sj
6 = {1,8,19}, p6 = 4, and γ6 =min{9, min{5,7}}= 5. Thus, v6 = 0.2,

w6 = 0.8, s6,k = u6,k = 5− 2 = 3, and s6,m = u6,m = 5. For node 7, it has Sj
7 = {4,8,20}, p7 = 1, and

γ7 = min{3, min{4}} = 3. Thus, v7 = 1, s7,o = u7,o = 3, and s7,q = u7,q = 3. For Case 3, we have

nodes 1, 4, and 8. For node 1, set w1 = 1, s1,a = u1,a = 1, and s1,b = u1,b = 1 because XPS
1 = {9,10}.

For nodes 4 and 8, set s4,g = u4,g = 20− 3 = 17 and s8,r = u8,r = 10− 8 = 2. The objective value is

59, which is exactly the same as that of the solution obtained by Algorithm 2 in Appendix EC.2.


