
Rapid Influence Maximization on Social Networks: The Positive
Influence Dominating Set Problem
S. Raghavan,a Rui Zhangb,*
aRobert H. Smith School of Business & Institute for Systems Research, University of Maryland, College Park, Maryland 20742; bLeeds School
of Business, University of Colorado, Boulder, Colorado 80309
*Corresponding author
Contact: raghavan@umd.edu, https://orcid.org/0000-0002-9656-5596 (SR); rui.zhang@colorado.edu,

https://orcid.org/0000-0002-4029-6585 (RZ)

Received: December 7, 2020
Revised: July 10, 2021; October 1, 2021
Accepted: October 9, 2021
Published Online in Articles in Advance:
February 8, 2022

https://doi.org/10.1287/ijoc.2021.1144

Copyright: © 2022 INFORMS

Abstract. Motivated by applications arising on social networks, we study a generalization
of the celebrated dominating set problem called the Positive Influence Dominating Set
(PIDS). Given a graph G with a set V of nodes and a set E of edges, each node i in V has a
weight bi, and a threshold requirement gi. We seek a minimumweight subset T of V, so that
every node i not in T is adjacent to at least gi members of T. When gi is one for all nodes, we
obtain the weighted dominating set problem. First, we propose a strong and compact ex-
tended formulation for the PIDS problem. We then project the extended formulation onto
the space of the natural node-selection variables to obtain an equivalent formulation with
an exponential number of valid inequalities. Restricting our attention to trees, we show that
the extended formulation is the strongest possible formulation, and its projection (onto the
space of the node variables) gives a complete description of the PIDS polytope on trees. We
derive the necessary and sufficient facet-dening conditions for the valid inequalities in the
projection and discuss their polynomial time separation. We embed this (exponential size)
formulation in a branch-and-cut framework and conduct computational experiments using
real-world graph instances, with up to approximately 2.5 million nodes and 8million edges.
On a test-bed of 100 real-world graph instances, our approach finds solutions that are on av-
erage 0.2% from optimality and solves 51 out of the 100 instances to optimality.
Summary of Contribution: In influence maximization problems, a decision maker wants
to target individuals strategically to cause a cascade at a minimum cost over a social net-
work. These problems have attracted significant attention as their applications can be
found in many different domains including epidemiology, healthcare, marketing, and poli-
tics. However, computationally solving large-scale influence maximization problems to
near optimality remains a substantial challenge for the computing community, which thus
represent significant opportunities for the development of operations-research based mod-
els, algorithms, and analysis in this interface. This paper studies the positive influence
dominating set (PIDS) problem, an influence maximization problem on social networks
that generalizes the celebrated dominating set problem. It focuses on developing exact
methods for solving large instances to near optimality. In other words, the approach results
in strong bounds, which then provide meaningful comparative benchmarks for heuristic
approaches. The paper first shows that straightforward generalizations of well-known for-
mulations for the dominating set problem do not yield strong (i.e., computationally viable)
formulations for the PIDS problem. It then strengthens these formulations by proposing a
compact extended formulation and derives its projection onto the space on the natural
node-selection variables, resulting in two equivalent (stronger) formulations for the PIDS
problem. The projected formulation on the natural node-variables contains a new class of
valid inequalities that are shown to be facet-defining for the PIDS problem. These theoreti-
cal results are complemented by in-depth computational experiments using a branch-and-
cut framework, on a testbed of 100 real-world graph instances, with up to approximately
2.5 million nodes and 8 million edges. They demonstrate the effectiveness of the proposed
formulation in solving large scale problems finding solutions that are on average 0.2%
from optimality and solving 51 of the 100 instances to optimality.

History: Accepted by David L. Alderson, Area Editor for Network Optimization: Algorithms &
Applications.

Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoc.2021.1144.

Keywords: rapid influence maximization • social networks • dominating set • facets • integer programming • strong formulation

1345

INFORMS JOURNAL ON COMPUTING
Vol. 34, No. 3, May–June 2022, pp. 1345–1365

ISSN 1091-9856 (print), ISSN 1526-5528 (online)http://pubsonline.informs.org/journal/ijoc

mailto:raghavan@umd.edu
https://orcid.org/0000-0002-9656-5596
mailto:rui.zhang@colorado.edu
https://orcid.org/0000-0002-4029-6585
https://doi.org/10.1287/ijoc.2021.1144
https://orcid.org/0000-0002-9656-5596
https://orcid.org/0000-0002-4029-6585
http://pubsonline.informs.org/journal/ijoc

1. Introduction
A recent report (Shearer and Matsa 2018) shows that
in the United States, people recognize online social
networks as one of the most effective ways for dissem-
inating information, and two-thirds of the population
use their online social networks as one of the channels
for receiving information and news. Not surprisingly,
people’s decisions are affected by the information
they receive through social media. As pointed out in
Valente (2012), online social media provide unique
opportunities in comparison with other communica-
tion channels to monitor, respond to, amplify and in-
tervene in people’s behavior. In a 61-million-person
experiment on Facebook, Bond et al. (2012) showed
that direct targeting can change people’s behavior;
they also report that this influence can be transmitted
to their friends. Matz et al. (2017) report on the results
of three field experiments that reached more than 3.5
million individuals via advertising tailored to individ-
uals’ psychological characteristics. They found that
tailored advertising that matched with people’ psy-
chological characteristics resulted in up to 40% more
clicks and up to 50% more purchases than their coun-
terparts who didn’t receive tailored advertising. Given
this large shift of information dissemination to the on-
line forum and the effectiveness of tailored targeting
strategies in the online environment, the social media
influencer marketing segment has taken off and be-
come a thriving industry. This segment is estimated to
be worth somewhere between $5 billion to $16 billion
in 2020 (Schmidt 2019) and may be worth up to $15
billion by 2022 (Schomer 2020).

Kempe et al. (2003) initiated the study of influence
maximization problems as optimization problems. In
a probabilistic setting, they considered a budgeted
version of the problem (i.e., given a budget k, identify
the k individuals to directly target so as to maximize
the number of nodes influenced in the social network).
Their seminal work has inspired a large research com-
munity studying influence maximization problems
and their variants. One stream of work, initiated by
Chen (2009), has focused on influence maximization
problems in a deterministic setting with a cost mini-
mization, which is called the target set selection (TSS)
problem. In the TSS problem, given a connected undi-
rected graph, each node has associated with it a
threshold value gi, which takes values between one
and the degree of the node, denoted by deg(i). All
nodes are inactive initially. A selected subset of nodes,
the target set, are activated (i.e., switched to an active
state or influenced). Next, the states of the nodes are
updated step by step with respect to the following
rule: an inactive node i becomes active if at least gi of
its neighbors are active in the previous step. The goal
is to find the minimum cardinality target set while

ensuring that all nodes are active by the end of this in-
formation diffusion process. Raghavan and Zhang
(2019) discuss the weighted TSS (WTSS) problem
where each node i ∈ V has a weight bi to model the
fact that different nodes may cost the decision maker
differing amounts to become active in practice.

An important issue that is not considered in these
previous works is the difference between the “direct
influence” received from a node that has been selected
for targeting and the “indirect influence” received
from a node that has not been selected for targeting.
In practice, there is a significant difference regarding
the magnitude of effects of direct and indirect influ-
ence. For instance, Goel et al. (2015) investigated the
diffusion of nearly a billion news stories, videos, pic-
tures, and petitions on the microblogging service
Twitter and observed that the vast majority of cas-
cades (more than 99%) terminate within a single time
period (indicating that almost all of the diffusion
consists of direct influence). Zhang et al. (2018) con-
sidered the diffusion of technology adoption in the
context of caller ringback tones (CRBT) on a data set
of 200 million calls between 1.4 million users and
found that the measured effects of direct and indirect
influence are markedly different. Specifically, they
found that the adoption of CRBT is consistently pre-
dicted by direct peer influence, indicating that the dif-
ference between the magnitude of direct influence
and indirect influence is in the orders of magnitude.

When we consider the WTSS problem and restrict
our attention to direct influence, we obtain the positive
influence dominating set (PIDS) problem. Formally, we
define the PIDS problem as follows: Given an undi-
rected graph G � (V,E), each node i in V has a weight
bi and a threshold requirement gi taking values be-
tween one and its degree deg(i); we seek a subset T of
V such that every node i not in T is adjacent to at least
gi members of T, while minimizing the total weight of
the nodes in T (denoted by ∑

i∈T bi). When gi � 1 for all
nodes i ∈ V, we obtain the classic dominating set prob-
lem that has applications in many different areas,
including social networks (Haynes et al. 1998a, b).

Our definition of the PIDS problem is slightly more
general than that previously studied in the literature
in two ways. First, we consider the weighted version.
Second, a node can require any positive number of
neighbors to be in T (as opposed to a fixed number or
a fixed proportion of neighbors that is the same for all
nodes in the graph). This reflects the situation where
different people require different amounts of peer in-
fluence to adopt a behavior in practice. One can also
view the PIDS problem as a rapid influence maximiza-
tion problem. One where all influence propagation
must take place in one step (or time period) to
completely influence the network, compared with
the WTSS problem where long chains of influence

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
1346 INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS

propagation are permitted, and no limits are placed
on the number of time periods taken to completely in-
fluence the network.

1.1. Related Literature
Optimization problems in social network analytics
have been a vital part of the operations research
community. There have been several papers focused
on optimization for classic social network structures:
for example, the clique problem (Verma et al. 2015,
Walteros and Buchanan 2020), the k-plex problem
(Balasundaram et al. 2011), and the 2-club problem
(Pajouh et al. 2016). However, such structures do not
explicitly model differences in user behavior or the
influence propagation process.

In a seminal paper, Kempe et al. (2003) initiated the
study of influence maximization problems as network
optimization problems. They proposed a general class
of influence propagation models that includes both the
linear threshold (in this model a node i is influenced/
activated if the sum of the influences from it’s active
neighbors exceeds node i’s threshold) and independent
cascade (in this model a freshly activated node i has a
one-time probability pij to activate an inactive neighbor
node j) models. In a probabilistic setting, given a bud-
get of k seed products, they try to identify the k indi-
viduals to directly target to maximize the number of
nodes activated in the social network. They show that
it is NP-hard to find the optimal seed set. Relying on
the submodularity property of the objective function
(which is because of the particular nature of the proba-
bilistic assumptions on the threshold values), they de-
veloped a (1− 1=e)-approximation algorithm for the
problem. Chen (2009) initiated another stream of work
by focusing on influence maximization problems in a
deterministic setting. They proposed the TSS problem,
which has a cost minimization aspect (i.e., instead of
the decision maker being given a budget k, the desire
is to find the minimum number of nodes to target in
the network so that the entire network is influenced),
and the influence propagation follows a linear thresh-
old model. However, the submodularity property is no
longer possessed in a deterministic setting. In fact,
Chen (2009) shows that the TSS problem is APX-hard.
The comprehensive reviews by Chen et al. (2013), Li
et al. (2018), and Banerjee et al. (2020) nicely summa-
rize the most relevant work (that has appeared in the
computer science literature) on this topic.

More recently, there are a stream of papers in the
operations research literature focused on developing
optimization models and solution algorithms that ex-
plicitly accounts for differences in the individual be-
havior of the nodes and the influence propagation
process in the network. Wu and Küçükyavuz (2018),
Güney (2019a, b), and Ghayour-Baghbani et al. (2021)
focus on influence maximization problems in a

probabilistic setting from a maximization perspective.
It is worth noting that Güney (2019a) shows that the
randomized algorithm based on their proposed Linear
Programming (LP) formulation has a constant worst-
case bound, which is as good as the current state of
the art (1− 1=e). Güney et al. (2021) present a branch-
and-cut algorithm for the influence maximization
problem under the independent cascade model by
modeling it as a stochastic maximal covering location
problem. There are a growing number of papers on
the deterministic side as well, all focusing on the cost
minimization aspect. Raghavan and Zhang (2019,
2021b) study the WTSS problem. Günneç et al. (2020a,
b) study the least cost influence problem (LCIP),
which broadens the scope of the WTSS problem by al-
lowing for partial payments to nodes that are not di-
rectly targeted. The LCIP seeks to minimize the sum
of the costs of direct targeting and partial payments
provided to influence the entire network. Fischetti
et al. (2018) further generalized the LCIP to allow for a
nonlinear influence structure. They proposed a novel
set covering based formulation, which has both an ex-
ponential number of variables and an exponential
number of constraints. Using this formulation, they
described an exact approach and a heuristic approach
on arbitrary graphs.

The PIDS problem falls in the category of influence
maximization problems in a deterministic setting with
a cost minimization aspect. It has typically been con-
sidered in the literature with the assumption that a
node i in the graph not selected in the PIDS needs at
least half its neighbors in the PIDS. Zou et al. (2009)
first considered the problem under the name “fast in-
formation propagation problem.” They proved it to be
NP-hard. Wang et al. (2009) coined the name positive
influence dominating set problem. They also presented
and tested an iterative greedy selection algorithm for
the PIDS with a real-world online social network data
set. Zhu et al. (2010) further showed the PIDS problem
to be APX-hard and described a greedy approximation
algorithm with a performance ratio O(lnδ), where δ
is the maximum degree in the given graph. Several
greedy constructive methods have been proposed for
the PIDS problem by Wang et al. (2011) and Dhawan
and Rink (2015). Khomami et al. (2018) proposed a
learning automation-based meta-heuristic algorithm
for the PIDS problem. Furthermore, they considered a
well-known budgeted version of the TSS problem in-
troduced by Kempe et al. (2015) (here, the goal is to
choose a seed set of nodes to maximize the number
of activated nodes at the conclusion of the influence
propagation process) and empirically showed that re-
stricting the choice of seed nodes to be a subset of a
PIDS provides better results than six existing well-
known algorithms for the problem. Lin et al. (2018)
presented an integer LP based memetic algorithm.

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS 1347

Dinh et al. (2014) considered a slightly more general
version of the PIDS problem, where a node i in the
graph not selected in the PIDS needs at least �ρdeg(i)�
of its neighbors in the PIDS, where 0 < ρ < 1 (note that
the value of ρ is identical for all nodes). They showed
that the PIDS problem is hard to approximate within
lnδ−O(ln lnδ). In power-law graphs, they showed
that the greedy method targeting the highest degree
node has a constant factor approximation ratio. They
also presented an algorithm for trees with a time com-
plexity of O(|V|).

The dominating set problem has a long history and
a tremendous amount of literature (Haynes et al.
1998a, b). However, there is limited work from the
polyhedral perspective. Saxena (2004) presented the
dominating set polytope for trees and cycles. His for-
mulation used only variables associated with nodes in
the graph. Baïou and Barahona (2014) showed an ex-
tended formulation via the concept of the facility loca-
tion problem (it used both node and arc variables)
and proved that the projection of this formulation
onto the node-selection space describes the polytope
for cactus graphs. In a cactus graph, each edge is con-
tained in at most one cycle. Thus, both trees and cycles
are examples of cactus graphs.

Overall, all previous work on the PIDS problem has
focused on its approximability and heuristics. Further-
more, it generally requires ρ � 0:5 or the value of ρ to
be identical for all nodes; moreover, the weighted ver-
sion does not seem to have gotten any attention. Our
research is motivated by the desire to better under-
stand this generalization of the dominating set prob-
lem, which has important and natural applications in
social network analytics; furthermore, our research
seeks to develop practical computational approaches
based upon a better understanding of the underlying
polytopes.

1.2. Our Contributions and Organization of the
Rest of this Paper

In Section 2, we first discuss formulations that are nat-
ural extensions of formulations for the dominating set
problem. Then, we propose a stronger and compact

extended formulation for the PIDS problem. We also
show (in Section EC.2.1 of the e-companion) that the
extended formulation is the strongest possible formu-
lation for the PIDS problem on trees. As a bonus, we
present a linear time dynamic programming algo-
rithm for the PIDS problem on trees (in Section EC.1
of the e-companion). Although the extended formula-
tion is strong, it needs artificial variables defined on
the edge space. Thus, in Section 3, we project the ex-
tended formulation onto the natural node-selection
variable space. Although the constraints based on the
projection are exponentially many, we present a poly-
nomial time separation algorithm. In Section 4, we
focus on deriving the necessary and sufficient facet-
defining conditions for the set of projected valid
inequalities. Section 5 presents our computational ex-
perience on real-world graphs. We are able to obtain
high-quality solutions for real-world graph instances,
with up to approximately 2.5 million nodes and 8 mil-
lion edges within a one-hour time limit. In fact, on
a testbed of 100 real-world graph instances, our ap-
proach finds solutions that are on average 0.2% from
optimality and solves 51 of the 100 instances to opti-
mality. Finally, Section 6 provides some concluding
remarks.

Table 1 compares our contributions in this paper to
our previous work on the WTSS problem (Raghavan
and Zhang 2019, 2021b) and the LCIP (Günneç et al.
2020a, b). The first two columns focus on problem
characteristics. Both the LCIP and WTSS problem al-
low indirect and direct influence, whereas the PIDS
problem only considers direct influence. Although the
LCIP allows for partial payments to nodes that are not
directly targeted, the WTSS and PIDS problem do not.
The high-level strategy applied to these three prob-
lems is somewhat similar in the sense that we derive
useful results and insights from the special case of a
tree graph, which turns out to be polynomial solvable,
and then apply these insights to arbitrary graphs
where the problem is NP-hard. However, the execu-
tion of this strategy and its manifestations result in
quite distinct outcomes and technical proofs. For the
LCIP on trees, we provide a greedy algorithm that

Table 1. Comparison Between the Current Paper and the Authors’ Previous Works on the WTSS Problem and the LCIP

Indirect
influence

Partial
payment

Formulation
ideas Projection

Facet-defining
conditions Trees Cycles

WTSS Yes No Edge splitting; acyclic propagation
graph

Yes, valid only on trees No DP; polytope DP; polytope

LCIP Yes Yes Influence type; acyclic propagation
graph

No No DP; greedy No

PIDS No No Edge splitting; propagation limited
to immediate neighbors

Yes, valid on AG Yes DP; polytope No

Note. DP, dynamic programming; AG, arbitrary graphs.

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
1348 INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS

solves the problem in polynomial time. We also use
a dynamic programming (DP) framework to provide
linear time algorithms to the solve the LCIP, PIDS,
and WTSS problems on trees. Although conceptually
the dynamic programming paradigm is similar, its
application results in quite different algorithms (as
the resulting subproblems that need to be solved are
quite different). The approach to derive strong (in
fact integral) formulations on trees and extending
them to arbitrary graphs varies. In the LCIP the idea
is to categorize the influence types propagated on
the arcs of the network. On the other hand, in the
WTSS and PIDS problems, the main idea is edge-
splitting to obtain an extended formulation, which is
then projected onto the space of the natural node
variables. Although the edge-splitting idea is simi-
lar, the resulting formulations are quite different
from each other, leading to distinct technical proofs
(and computational results on arbitrary graphs). For
example, the PIDS problem extended formulation
requires constraints to ensure that no indirect influ-
ence is propagated in the graph, which is not neces-
sary for the (LCIP or) WTSS problem. We project the
extended formulations onto the natural node-
selection variable space for both the PIDS and WTSS
problem to obtain their polytope on trees. In contrast
to the PIDS problem, the projected formulation for
the WTSS problem is not valid on arbitrary graphs.
Formulations for the LCIP and WTSS problem on ar-
bitrary graphs take a different approach than the
PIDS problem, where the influence categorization
(for the LCIP) and the edge-splitting (for the WTSS
problem) formulations are augmented with a set of
constraints that ensure that the influence propaga-
tion network is acyclic. Necessary and sufficient
facet-defining conditions for the set of projected
valid inequalities are only derived for the PIDS
problem. Finally, note that, for the WTSS problem,
we are able to build upon the polytope for the tree
case to derive the polytope for the cycle case.

2. Formulations for the PIDS Problem
In this section, we discuss three formulations for the
PIDS problem. The first two are straightforward ex-
tensions of known formulations for the dominating
set problem. However, as we will see later in our com-
putational work, these two formulations are weak. In
other words, the gap between the optimal objective
values of their LP relaxations and that of the optimal
integer solution is large. Next, using an edge-splitting
idea, we develop a stronger compact extended formu-
lation for the PIDS problem.

The first formulation (BIP1) (similar to Saxena 2004,
for the dominating set problem) has a binary variable
xi for each node i in the graph, where x1 � 1 if node i is

in the PIDS and is zero otherwise. Let n(i) denote the
set of node i’s neighbors.

(BIP1) Minimize
∑
i∈V

bixi (1)

Subject to :
∑
j∈n(i)

xj + gixi ≥ gi ∀i ∈ V (2)

xi ∈ 0, 1{ } ∀i ∈ V (3)

BIP1 also encompasses the formulation proposed by
Lin et al. (2018) by including weights (b) in the objec-
tive function. The objective function (1) is to minimize
the total cost of the PIDS. Constraint (2) states that ei-
ther node i is selected in the PIDS or it has at least gi
neighbors in the PIDS.

The second formulation (BIP2) (similar to Baïou
and Barahona 2014 for the dominating set problem)
creates additional variables yij and yji for each edge
{i, j} in the graph. If node i in the PIDS influences its
neighbor j, yij � 1. Otherwise, it is zero.

(BIP2) Minimize
∑
i∈V

bixi (4)

Subject to :
∑
j∈n(i)

yji + gixi ≥ gi ∀i ∈ V (5)

xi − yij ≥ 0 ∀i ∈ V, j ∈ n(i) (6)
xi, yij ∈ 0, 1{ } ∀i ∈ V, j ∈ n(i) (7)

The objective function (4) is to minimize the total
cost of the PIDS. Constraint (5) says that for a node i
in V, either it is selected, or it has at least gi neigh-
bors influencing it. Constraint (6) says that node
i can influence its neighbors only if it is selected in
the PIDS.

When gi and bi are one for all i in V, both BIP1 and
BIP2 are formulations for the dominating set problem.
Although Saxena (2004) and Baïou and Barahona
(2014) show that BIP1 and BIP2 (respectively) are inte-
gral for the dominating set problem on trees, they are
no longer integral for the PIDS problem on trees, as
we demonstrate by the instance in Figure 1.

In Figure 1(a), we have a social network with five
nodes. For each node i, its weight and threshold val-
ues (bi and gi) are listed beside it. For node 1, b1 is 4,
and g1 is 3. By relaxing the binary variables in BIP1
and BIP2, we have their LP relaxations, which are
referred to as LP1 and LP2, respectively. If LP1 and
LP2 are used to solve the instance in Figure 1(a),
both of them return a fractional optimal solution,
x1 � 1

3 , x2 � 0, x3 � 1, x4 � 1 and x5 � 1, with an objec-
tive value of 4 1

3. However, given that this problem
can be solved in polynomial time on trees (as shown
in Section EC.1 of the e-companion), it would be
ideal to find a perfect integer programming formula-
tion so that an integral optimal solution could be
obtained by solving its LP relaxation. More impor-
tantly, such a perfect formulation on trees may yield

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS 1349

a stronger formulation for the PIDS problem on arbi-
trary graphs. Next, we present a stronger and compact
extended formulation, which is indeed the strongest
possible formulation for the PIDS problem on trees.

To obtain our extended formulation, we first create a
transformed graph. From the input graph G, we create
a new graph Gt by subdividing each edge. For each
edge {i, j} ∈ E, insert a dummy node d. Let D denote
the set of dummy nodes. Because the dummy nodes
have effectively split each edge into two, we replace
each of the original edges {i, j} ∈ E by two edges {i, d}
and {d, j} in the new graph Gt. The procedure is shown
in Figure 2, (a) and (b). For a transformed edge {i, d, j},
with a slight abuse of notation, we may only specify
two out of the three indexes because the third one can
be inferred from the two specified indexes. Let Et de-
note the set of edges in Gt (Gt � (V ∪D,Et)). Figure 2(c)
shows the transformed graph of the example in Figure
1(a) based on this procedure. Dummy nodes are repre-
sented by rectangles. This edge-splitting idea has also
been applied to obtain a stronger formulation for the
WTSS problem (Raghavan and Zhang 2019, 2021b).

The idea behind the strengthened formulation is as
follows. For any node selected in the PIDS, we require
that they influence their neighbor (in this case, a
dummy node). Next, we allow (but do not require) this
influence to propagate further onto the other neighbor
of the dummy node. Finally, we require that the influ-
ence propagates only in one direction on an edge in the

graph. We will see that the resulting formulation is
valid and produces a stronger formulation. As before,
for each node i ∈ V (notice that dummy nodes are not
included), we define a binary decision variable xi that
is one if node i is selected in the PIDS and zero other-
wise (these are the node-selection variables). For each
edge {i,d} ∈ Et, where i ∈ V and d ∈D (notice that Gt is
bipartite, and Et only contains edges between the no-
des in V and D), we define two binary arc variables yid
and ydi. They represent the direction of influence. If
node d sends influence to node i, ydi is one and zero
otherwise. For a node i ∈ V ∪D, let a(i) denote the set
of node i’s neighbors in the transformed graph Gt.
Recall that we use n(i) to denote the set of node i’s
neighbors in the original graph G. We now write the
stronger and compact extended formulation for the
PIDS problem and refer to it as BIP3.

(BIP3) Minimize
∑
i∈V

bixi (8)

Subject to : xi ≥ ydj ∀i ∈ V, j ∈ n(i) (9)

xi ≤ yid ∀i ∈ V,d ∈ a(i) (10)
yid + ydi � 1 ∀{i,d} ∈ Et (11)

∑
d∈a(i)

ydi + gixi ≥ gi ∀i ∈ V (12)

xi ∈ 0, 1{ } ∀i ∈ V (13)

yid,ydi ∈ 0, 1{ } ∀{i,d} ∈ Et (14)

Figure 1. An Example Showing That LP1 and LP2 Obtain Fraction Solutions on Trees

(a) (b)

Notes. (a) A PIDS instance. (b) A fractional solution returned by LP1 and LP2.

Figure 2. Illustration of the Graph Transformation Procedure

(a) (b) (c)

Notes. (a) An original edge. (b) A transformed edge. (c) Transformed graph of Figure 1(a).

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
1350 INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS

The objective function (8) is to minimize the total cost
of the PIDS. The first constraint (9) says that if node i
is selected, then node d, which is adjacent to node i,
can send influence to node j for any node j in n(i) (i.e.,
node i’s neighbors in the original graph). Constraint
(10) requires that when a node i is selected, it sends in-
fluence to all of its neighbors. Constraint (11) says that
an edge {i, d} must be directed in one of two direc-
tions. Constraint (12) ensures that for a node i in V, ei-
ther it is selected, or it has at least gi incoming arcs.

Proposition 1. BIP3 is a valid formulation for the PIDS
problem.

Proof. First, given any feasible solution to the PIDS prob-
lem, for any node i inV that is selected in the PIDS, xi � 1
and 0 otherwise. The cost of this solution is correctly cap-
tured by the objective function (8). With this choice of x
variables, we will show that the values of the y variables
can be selected to obtain a feasible solution to BIP3. Ini-
tially, we set all y variables to zero. Consider a node i that
is selected in the PIDS.We set yid� 1 for all d in a(i). Then,
we consider all j ∈ n(i) and set ydj � 1 if node j is not
selected in the PIDS. This is repeated for every node se-
lected in the PIDS. Thus, Constraints (9) and (10) are sat-
isfied. In the procedure described, at most, one of yid and
ydi has a nonzero value for an edge {i, d} in Et. If an edge
{i, d} in Et is not directed yet, set yid � 1 and ydi � 0. Thus,
Constraint (11) is respected. Furthermore, Constraint (12)
is trivially satisfied for any node i in the PIDS and is satis-
fied for any node i not in the PIDS becausewe have a fea-
sible solution; thus, a node i not in the PIDS has at least gi
nodes from its neighbors, n(i), in the PIDS that will set
their associated ydi to one in the procedure described.
Last, only zero-one values are assigned to all variables.
Therefore, Constraints (13) and (14) are respected.We ob-
tain a feasible solution to BIP3.

Second, because of Constraints (9) and (12), the x
variable part of any feasible solution to BIP3 satisfies
the definition of the PIDS problem. w

Next, in Theorem 1, we show that in terms of the
strength of LP relaxation, BIP1 and BIP2 are equiva-
lent; at the same time, BIP3 is a stronger formulation
than BIP1 and BIP2. Let LP3 be the LP relaxations of
BIP3. Then, let zLP1, zLP2 and zLP3 denote the optimal
objective values of LP1, LP2, and LP3, respectively.

Theorem 1. zLP1 � zLP2 ≤ zLP3.

Proof. First, we show that LP1 and LP2 are equiva-
lent. Given any solution of LP1, denoted by x∗, we set
y∗ij � x∗i for each i in V and j in n(i). Thus, we have
∑

j∈n(i)y
∗
ji + gix∗i ≥ gi because x∗ satisfies Constraint (2)

(∑j∈n(i)x
∗
j + gix∗i ≥ gi). Thus, we have a feasible solution

for LP2. Next, given any feasible solution of LP2, de-
noted by (x∗,y∗), the x∗ part is a feasible solution for
LP1 as a result of Constraints (5) and (6).

Second, we show that LP3 is at least as strong as LP1.
Given any feasible solution of LP3, denoted by (x∗,y∗),
the x∗ part is a feasible solution for LP1 because of Con-
straints (9) and (12). However, not all feasible solutions
of LP1 can be converted into a feasible solution for
LP3. Figure 1 provides a counterexample. Recall that
x1 � 1

3 , x2 � 0, x3 � 1, x4 � 1, and x5 � 1 are feasible and
optimal solutions for LP1 with an objective value of 4 1

3.
However, this set of x values is not feasible for LP3 (with
any set of y values). Solving LP3 for the instance after
transformation (as shown in Figure 2(c)), we get an
integral solution x1 � 1, x2 � 0, x3 � 0, x4 � 0, x5 � 1, y1a �
1, y1b � 1, y1c � 1, yc2 � 1, ya3 � 1, ya4 � 1, y2d � 1, y5d � 1,
and the remaining y variables are zeros with an objective
value offive. w

BIP3 is actually the strongest possible formulation
for the PIDS problem on trees. This means that we can
obtain an optimal integral solution by solving LP3 in-
stead of BIP3. Theorem 2 proves this result. It con-
structs an integral primal feasible solution to LP3 us-
ing the dynamic programming algorithm in Section
EC.1 of the e-companion, a dual feasible solution
for the dual problem to LP3, and shows that these
solutions satisfy the complementary slackness (CS)
conditions. Let conv(X) denote the convex hull of
the feasible PIDS vectors x, and let EPIDS denote the
feasible region of LP3.

Theorem 2. For trees, LP3 has an optimal solution with x
variables taking binary values and Projx(EPIDS) � conv(X).
Proof. Included in Section EC.2.1 of the e-companion. w

3. Strong Formulation on the Node
Selection Variables

In this section, we follow a method, proposed by Balas
and Pulleyblank (1983), which is based on a theorem
of the alternatives to project the extended formulation
BIP3 onto the natural node-selection (i.e., x variable)
space by projecting out all arc (i.e., y) variables. As
will be evident in our computational experiments, this
formulation has great advantages in computational ef-
ficiency (in terms of scaling up), compared with BIP3.

Because yid + ydi � 1 in LP3, we first project out all
yid variables, setting them to 1− ydi and obtain the fol-
lowing formulation whose feasible region is denoted
as Pextended.

Minimize
∑
i∈V

bixi (15)

Subject to : − ydi + xj ≥ 0 ∀j ∈ V, i ∈ n(j) (16)

−ydi − xi ≥ −1 ∀i ∈ V,d ∈ a(i) (17)∑
d∈a(i)

ydi + gixi ≥ gi ∀i ∈ V (18)

0 ≤ xi ≤ 1,ydi ≥ 0 ∀i ∈ V, d ∈ a(i) (19)

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS 1351

We define a projection cone W, described by (w, u, v),
which satisfies the following linear inequalities.

wi − uid − vid ≤ 0 ∀i ∈ V, d ∈ a(i) (20)
wi ≥ 0,uid ≥ 0,vid ≥ 0 ∀i ∈ V, d ∈ a(i) (21)

Here, uid, vid, and wi are dual multipliers corresponding
to Constraints (16), (17), and (18), respectively. If Pextended
is written in matrix notation as {(x,y) : Ax+Gy ≥ b,
(x,y) ≥ 0}, based on Balas and Pulleyblank (1983), then
any feasible vector (w, u, v) toW defines a valid inequal-
ity: (w,u,v)TAx ≥ (w,u,v)Tb to the projection of Pextended
(in the space of the node-selection (x) variables). Further-
more, the projection of Pextended is defined by the valid
inequalities projected by the extreme rays ofW. In Theo-
rem 3, we identify the extreme rays of W. First, let us
provide some additional definitions. Recall that a poly-
hedral cone C is the intersection of a finite number of
half-spaces through the origin, and a pointed cone is one
inwhich the origin is an extreme point. A ray of a coneC
is the set R(r) of all nonnegative multipliers of some
r ∈ C, called the direction (vector) of R(r). A vector r ∈ C
is extreme, if for any r1, r2 ∈ C, r � 1

2 (r1 + r2) implies
r1, r2 ∈ R(r). A ray R(r) is extreme if its direction vector r
is extreme.

Theorem 3. The vector r � (w,u,v) ∈W is extreme if and
only if there exists a positive α such that one of the follow-
ing three cases holds:

Case 1: uid � α for one {i,d} ∈ Et. All other w,u,v are zero.
Case 2: vid � α for one {i,d} ∈ Et. All other w,u,v are zero.
Case 3: wi � α for one i ∈ V. Then for d ∈ a(i), either uid �

α or vid � α. All other w,u,v are zero.

Proof. Sufficiency. Let r ∈W be of the form Case 1 and
assume that r � 1

2 (r1 + r2) for some r1, r2 ∈W. Then, ex-
cept for u1id and u2id, all other components are zero.
Then, r1, r2 are in R(r). Thus, r is extreme.

Case 2 is similar to Case 1.
For Case 3, let r ∈W be of the form Case 3 and as-

sume that r � 1
2 (r1 + r2) for some r1, r2 ∈W. Thus, for

any component of rwith the value 0, its corresponding
components in r1 and r2 are also zero. Given i and d, let

plid, l � 1, 2, represent the positive element between ulid
and vlid, l � 1, 2 (because only one of the two can be pos-
itive in the three cases). Then, we have w1

i +w2
i � 2α

and p1id + p2id � 2α, for all d ∈ a(i). For a pair d1 and d2, we
have p1id1 > p1id2 if and only if p2id1 < p2id1 . However, Con-
straint (20) stipulates that wl

i ≤min{plid1 ,plid2}, l � 1, 2.
Hence, plid1 � plid2 � αl, l � 1, 2, for all d1, d2 ∈ a(i). Other-
wise, either Constraint (20) would be violated, or we
would have w1

i +w2
i < 2α. Therefore, r1, r2 are in R(r).

Thus, r is extreme.
Necessity. Let r be an extreme vector of W.

Let Sw � {i ∈ V : wi > 0}, Su � {{i,d} ∈ Et : uid > 0} and
Sv � {{i,d} ∈ Et : vid > 0} based on this r. In the follow-
ing proof, to prove that a given ray r is not an ex-
treme one, we construct two feasible rays, r1 and r2,
which are different in at least one component. After
constructing r1, r2 is set as 2r− r1. Then, r � 1

2 (r1 + r2)
by design. We will illustrate the different steps in
the necessity proof with the instance in Figure 2(c).

First, we consider the situation, where Sw � ∅. Sup-
pose that |Su| + |Sv| > 1; let r1 contain all but one of the
positive components in r with their values doubled.
Thus, if |Su| + |Sv| > 1, r is not extreme, contrary to
the assumption. We conclude that if Sw � ∅, then
|Su| + |Sv| � 1, and thus, r is either in the form of Case 1
or Case 2. Figure 3 illustrates this situation. The bold
line represents the positive u and v components in a
vector r, and the positive components of r are dis-
played below the pictures.

Now consider the case when Sw ≠ ∅. Suppose that
|Sw| > 1; without loss of generality, let i ∈ Sw. Then, r1

has the value w1
i � 2wi and u1id � 2uid, v1id � 2vid for all

d ∈ a(i) and zeros for the other components. Thus,
when |Sw| > 1, r is not extreme. Figure 4 illustrates this
situation. The shaded nodes represent the positive
w components in a vector r.

Suppose that |Sw| � 1 and i ∈ Sw; define Sj � {{j,d}
∈ Et : pjd > 0& j ∈ V\{i}}. Thus, Sj contains edges with
positive u or v components that are not adjacent to
node i. When Sj ≠ ∅, let r1 have w1

i � 2wi and u1id �

Figure 3. Sw � ∅ and |Su| + |Sv|> 1

Note. Figure shows that if Sw � ∅, rmust be of the form Case 1 or Case 2.

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
1352 INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS

2uid, v1id � 2vid for all d ∈ a(i) and zeros in the other com-
ponents. Then, r2 contains the positive components in
Sj, whereas r1 does not. Thus, when |Sw| � 1 and Sj ≠
∅, r is not extreme. Figure 5 illustrates this situation
with Sj � {{1,a}}.

Suppose that |Sw| � 1 and i ∈ Sw; define S1 �
{{i,d} ∈ Et : uid > 0 � vid > 0}, where only one of the u
and v variables associated with an edge {i, d} is posi-
tive and S2 � {{i,d} ∈ Et : uid > 0&vid > 0}, where both
u and v variables associated with an edge {i, d} are
positive. Suppose that S2 ≠ ∅; then, we define θ1 �
2min{wi,uid,vid : {i,d} ∈ S2} and make r1 have w1

i � θ1.
For {i,d} ∈ S2, we have u1id � θ1. Also, for {i,d} ∈ S1, if
uid > 0, we have u1id � θ1. Otherwise, we have v1id � θ1.
The remaining components are zero. Then, r1 does not
have any edges that have both u and v variables tak-
ing positive values but r2 does. Thus, when |Sw| � 1
and S2 ≠ ∅, r is not extreme. Therefore, we must have
|S1| � deg(i). Otherwise, Constraint (20) would not be
respected. Figure 6 illustrates this situation. Here, S2 �
{{3,a}} and α1 is less than α2 and α3.

Suppose that |Sw| � 1 and |S1| � deg(i); let wi � α and
define S+ � {{i,d} : pid > α}. When S+ ≠ ∅, without loss
of generality, let {i,d} ∈ S+ and uid > 0; we can make r1

have u1id � 2(uid − α) and zeros in the other compo-
nents. Then, r1 has only one positive component that is
not wi. Thus, when |Sw| � 1, |S1| � deg(i) and S+ ≠ ∅, r
is not extreme. Consequently, we must have S+ � ∅.
Figure 7 illustrates this situation. Here, S+ � {{3,a}}
and β is a positive value.

Therefore, if Sw ≠ ∅, then |Sw| � 1, |S1| � deg(i) and
Sj � S2 � S+ � ∅. Thus, r is in Case 3. w

Applying theorem 2 in Balas and Pulleyblank
(1983), Case 1 and Case 2 extreme directions give the
trivial constraints: 0 ≤ xi ≤ 1 for all i ∈ V. Case 3 ex-
treme directions generate the following valid inequal-
ities in the original graph G:

(gi − q)xi +
∑

j∈Sxj ≥ gi − q ∀i ∈ V,

q � 0, 1, : : : ,deg(i), S ∈ Cdeg(i)−q
i :

(22)

Here, we use Cdeg(i)−q
i to denote the set of all combina-

tions with deg(i) − q elements chosen from node i’s
neighbors. The variable S is one combination picked
from Cdeg(i)−q

i . For a given i, if q ≥ gi, Case 3 extreme di-
rections generate constraints that are redundant.
Thus, the projection of Pextended onto the x space is the
following.

gixi +
∑
j∈n(i)

xj ≥ gi ∀i ∈ V (23)

(gi − q)xi+
∑
j∈S

xj ≥ gi − q ∀i ∈ V,

q � 1, 2, : : : ,gi − 1, S ∈ Cdeg(i)−q
i (24)

0 ≤ xi ≤ 1 ∀i ∈ V (25)

Constraint (23) is obtained from Constraint (22) when
q � 0. We list it separately to emphasize that Constraint
(23) is identical to Constraint (2) in BIP1. Constraint (24)
represents the new inequalities obtained from the pro-
jection. To illustrate this set of valid inequalities, using
node 1 in Figure 1(a) as an example, we have g1 � 3 and
n(i) � {2, 3, 4}. Thus, when q � 1, C3−1�2

1 � {{2, 3}, {2, 4},
{3, 4}}. When q � 2, C3−2�1

1 � {{2}, {3}, {4}}. Except for

Figure 5. When |Sw| � 1 and Sj ≠ ∅ (Some us and vs Not Adjacent to SHave a Positive Value), r Is Not Extreme

Figure 4. When |Sw|> 1, r Is Not Extreme

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS 1353

the lower- and upper-bound constraints, node 1’s cor-
responding constraints in the projection are as follows:

3x1 + x2 + x3 + x4 ≥ 3 for q � 0,
2x1 + x2 + x3 ≥ 2, 2x1 + x2 + x4 ≥ 2,

2x1 + x3 + x4 ≥ 2 for q � 1,
x1 + x2 ≥ 1, x1 + x3 ≥ 1, x1 + x4 ≥ 1 for q � 2:

Among these constraints, x1 + x2 ≥ 1 is violated by the
aforementioned solution with x1 � 1

3 and x2 � 0. Intui-
tively, for a node i and given the q value, the set of In-
equalities (24) can be interpreted as follows: either
node i is selected or at least gi − q nodes are selected
among node i’s (deg(i) − q) neighbors. Because we
now have the projection of EPIDS (feasible region of
LP2) onto the space of the x variables, Theorem 2 im-
plies that Constraints (23), (24), and (25) give the com-
plete description of the polytope for the PIDS problem
on trees. We state this as Theorem 4.

Theorem 4. The polytope for the PIDS problem on trees is
described by Constraints (23), (24), and (25).

When we replace (25) by their binary counterparts,
we obtain a new formulation (that we refer to as BIP4)
for the PIDS problem (Theorem 4 showed that we can
drop the binary restriction for trees).

(BIP4) Minimize
∑
i∈V

bixi

Subject to : (23), (24)
xi ∈ {0, 1} ∀i ∈ V

Let LP4 be the linear relaxation of BIP4. Because the
feasible region of LP4 is the projection of Pextended,
zLP3 � zLP4, where zLP4 denotes the optimal value of the
linear relaxation of BIP4.We note that Constraint (24) is
exponential in size. The following proposition shows
that the separation problem can be solved in polyno-
mial time. Recall that δ denotes the largest degree
among all nodes inV, that is, δ �max{deg(i) : i ∈ V}.
Proposition 2. The valid inequalities (24) can be separated
in O(|V| δlogδ) time.

Proof. Given a fractional solution x∗, a node i in V and
a specific q, where q � 1, 2, : : : ,gi − 1, the correspond-
ing separation procedure of Inequality (24) can be for-
mulated as the following optimization problem:

Minimize (gi − q)x∗i +
∑
j∈n(i)

x∗j zj, (26)

Subject to :
∑
j∈n(i)

zj � deg(i) − q, (27)

zj ∈ 0, 1{ } ∀j ∈ n(i): (28)

For each node i in V, if node i is in the set S, the binary
variable zi is one. Otherwise, it is zero. If the optimal
objective value is smaller than gi − q, we have a vio-
lated constraint. Otherwise, we change either the
value of q or the value of i. This optimization problem
has one constraint and can be solved by taking the
smallest deg(i) − q values of x∗j among node i’s neigh-
bors (j ∈ n(i)). We can use Algorithm 1 to separate the
whole inequality set (24).

Figure 7. When |Sw| � 1 and S+ ≠ ∅ (Either uid or vid Is Greater Than α for Some Node i ∈ S), r Is Not Extreme

Figure 6. When |Sw| � 1 and S2 ≠ ∅ (uid and vidAre Nonzero for SomeNode i ∈ S), r Is Not Extreme

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
1354 INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS

Algorithm 1 (Separation Algorithm for Inequality
Set (24))

Require: A solution x∗ and a PIDS instance.
1: for i ∈ V do
2: Let S← n(i) and sort nodes in S in descending

order by their x∗i values.
3: for q � 1, 2, : : : ,gi − 1 do
4: letmq � argmax{x∗i : i ∈ S} and S← S\mq.
5: if (gi − q)x∗i +∑

j∈Sx∗j < gi − q then
6: Add (gi − q)x∗i +∑

j∈Sx∗j ≥ gi − q.
7: else
8: Break
9: end if

10: end for
11: end for

First, the solution x∗ satisfies gix∗i +∑
j∈Sx∗j ≥ gi for all

i in V. For the inequality (gi − q)x∗i +∑
j∈Sx∗j < gi − q, as q

increases by one, the left-hand side decreases by
x∗i + x∗mq

, where x∗mq
is the qth largest value of x∗j for all j

in n(i), and the right-hand side decreases by one. For
the current iteration q0, if it is the first time that
(gi − q0)x∗i +∑

j∈Sx
∗
j > gi − q0, then it means x∗i + x∗mq0

< 1.
Then, in a future iteration, we will not find any vio-
lated constraint for this particular i because x∗i + x∗mq

≤
x∗i + x∗mq0

when q > q0. Therefore, in Algorithm 1, we
use Break in line 8. For each node, we sort its neigh-
bors, which takes at most O(δ logδ) steps, and
make at most δ comparisons. The process is repeated
for |V| nodes. Thus, the overall time complexity is
O(|V| δlogδ). w

4. Polyhedral Study of the PIDS Problem
In this section, we conduct a polyhedral study of the
PIDS problem on arbitrary graphs based on BIP4. The
convex hull of the incidence vectors of all PIDSs of G,
denoted by PT(G), is called the PIDS polytope of G.
Thus, the PIDS problem is equivalent to the linear
program min{bTx : x ∈ PT(G)}. Also, let 1 ∈ R

|V| denote
the vector that contains all ones, and ei ∈ R

|V| denote
the vector that has one in ith position but zeros in all
other positions. First we show that PT(G) is full di-
mensional (i.e., the dimension of PT(G) is | V |).
Theorem 5. The term PT(G) is full dimensional.

Proof. We prove this by showing that there are |V| +1
affinely independent points in PT(G). The first point is
x0 � 1. Another |V| points can be obtained as: xi � 1− ei
for all i in V. We obtain | V | linearly independent
points by (xi − x0) � −ei for all i inV. Thus, x0 and xi for
all i in V are affinely independent. Furthermore, all of
these points are feasible in PT(G). First, x0 means that
we pick all nodes. Second, xi means that we pick all no-
des but a node i. Thus, node i’s threshold requirement
is satisfied because all of its neighbors are in the PIDS.

Therefore, PT(G) has |V| +1 affinely independent
points. w

Knowing the dimension of PT(G), we study the
facet-defining conditions for Constraints (23), (24),
and (25). We start with Constraint (25). We show that
xi ≤ 1 for all i in V are facet defining, and xi ≥ 0 for all i
in V define faces for PT(G). Then, we present the con-
ditions under which xi ≥ 0 for all i in V are facet defin-
ing for PT(G).
Proposition 3. The trivial constraint xi ≤ 1 for all i in V
are facet defining for PT(G).
Proof. Given a node i in V, when xi � 1, we can find
the following |V| affinely independent points: The first
one is x0 � 1. Then, we can have (|V| −1) more points
as xj � 1− ej for all j in V\{i}. From these points, we
can obtain |V| −1 linearly independent points as (xj −
x0) � −ej for all j in V\{i}. Thus, x0 and xj for all j in
V\{i} are affinely independent. They are feasible
points, as shown in Theorem 5. Consequently, xi ≤ 1 is
a facet of PT(G). w

Proposition 4. For a node i in V, its corresponding trivial
constraint xi ≥ 0 is a face of PT(G). Furthermore, xi ≥ 0 is
facet defining for PT(G) if the following conditions are
satisfied:

1. gi ≤ deg(i) − 1.
2. For a node j in n(i), gj ≤ deg(j) − 1 if it does not share

neighbors with node i (i.e., n(j) ∩ n(i) � ∅). Otherwise,
gj ≤ deg(j) − 2.

Proof. The term xi ≥ 0 is satisfied with equality be-
cause of the feasible point xi � 1− ei. Thus, xi ≥ 0 is a
face ofPT(G).WhenConditions 1 and 2 of Proposition 4
are satisfied, we can show that xi ≥ 0 is a facet of PT(G).
Let F(i) � {j ∈ n(i) : gj ≤ deg(j) − 1 if n(i) ∩ n(j) � ∅, gj ≤
deg(j) − 2 if n(i) ∩ n(j)≠ ∅} be the subset of node i’s
neighbors that satisfy Condition 2. We can find the
points: xi � 1− ei, and xj � xi − ej for all j in F(i), and
xk � xi − ek for all k in {V\n(i)+}, where n(i)+ � n(i) ∪ i.
First, xj � xi − ej for all j in F(i) are not feasible if
gi � deg(i). However, they are feasible when gi ≤
deg(i) − 1. Second, xi and xk for all k in {V\n(i)+} are fea-
sible and distinct points in PT(G). Therefore, we have
|V| − |n(i)| −1+ |F(i)| +1 feasible points in PT(G). Also,
xj − xi � −ej for all j in {V\n(i)+ ∪ F(i)} are linearly in-
dependent. Thus, when |F(i)|� |n(i)| (i.e., Condition 2 is
satisfied), we have |V| affinely independent points. w

Next, we study Constraints (23) and (24). Recall
that together, they correspond to Constraint (22),
where Constraint (23) is obtained from Constraint
(22) when q � 0, and Constraint (24) is obtained with
the remaining q values. We will prove the necessary
and sufficient facet-defining conditions for Con-
straint (22). For ease of exposition, for a node i with a
given gi and q value, we will use the notation ai to

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS 1355

refer to gi − q in Constraint (22) (rather than repeat-
edly writing gi − q, we will use ai � gi − q as a short-
hand notation).

Figure 8 provides an example to illustrate the notation
we will use. The number beside a node is its threshold
value. Here, we have gi � 3, q � 1. Thus, ai � 2 and
S � { j1, j2, j3}. LetNall � { j ∈ n(i) : gj � deg(j)} (i.e., the set
of node i’s neighbors whose threshold is equal to their
degree). In Figure 8, we have Nall � { j3, j4}. Let H1 �
{k ∈ n(S)\i : gk > deg(k)− |n(k) ∩ S|}. Here, n(S) denotes
the nodes adjacent to the nodes in S. Thus, H1 contains
nodes that must be selected in the PIDS if no node in
S is selected (because the number of neighbors they have
outside S, that is, deg(k)− |n(k) ∩ S|, is less than their
threshold). In Figure 8, H1 � {k2,k3}. For node k2, gk2 � 2
and deg(k2)− |n(k2) ∩ S|� 1. For node k3, gk3 � 2 and
deg(k3)− |n(k3) ∩ S| � 1. Finally, for a node k in H1, γk �
gk − (deg(k)− |n(k) ∩ S|) calculates the fewest number of
node k’s neighbors in S that must be selected in the PIDS
when node k is not selected in the PIDS.

Our main result is the following theorem.

Theorem 6. Inequality (22) is facet defining if and only if
the following four conditions are satisfied:

1. deg(j)− |n(j) ∩ S| ≥ gj for all j in S.
2.Nall is an empty set.
3. 1 ≤ gi − q ≤|S| −1 if |S| ≥ 2 and gi − q � 1 if |S| � 1.
4. γj ≤ gi − q for each node j in H1.

We first prove several lemmas before proving
Theorem 6. We will largely use approach 2 on p. 144
of Wolsey (1998) to show that Inequality (22) is facet
defining with the previous necessary and sufficient
conditions. First, we need to show that there are at
least |V| feasible points satisfying the given Inequality
(22) with equality. Lemmas 1–3 help us find such fea-
sible points in PT(G) with Inequality (22) binding. The
first lemma states that if xi � 1 and the given inequal-
ity is binding, a node j in Smust have at least gj neigh-
bors that are not in S.

Lemma 1. If Inequality (22) is binding and xi � 1, we
must have: deg(j)− |n(j) ∩ S| ≥ gj for all j in S.

Proof. Included in Section EC.2.2 of the e-companion. w

The second lemma states that if xi � 0 and Inequal-
ity (22) is binding, at most ai nodes in S can have their
threshold equal to their degree. Let Sall � S ∩Nall. In
Figure 8, we have Sall � {j3}.
Lemma 2. If Inequality (22) is binding and xi � 0, we
must have |Sall| ≤ ai.

Proof. Included in Section EC.2.3 of the e-companion. w

In Lemma 3, we show that to find |V| affinely inde-
pendent points that satisfy Inequality (22) at equality
(which is necessary to show that Inequality (22) is
facet defining), we must satisfy the conditions of Lem-
mas 1 and 2.

Lemma 3. If Inequality (22) is facet defining, (i) deg(j)
− |n(j) ∩ S| ≥ gj for all j in S, and (ii) |Sall| ≤ ai.

Proof. Included in Section EC.2.4 of the e-companion. w

Given Lemma 3, we can characterize the feasible
points in PT(G) that satisfy Inequality (22) at equality.
First, when xi � 1, we have xj � 0 for all j in S. Recall
that H1 � {k ∈ n(S)\i : gk > deg(k)− |n(k) ∩ S|}. For a
node k in H1, it has more than deg(k) − gk neighbors in
S. Thus, if all nodes in S are not selected, we must se-
lect node k (i.e., xk � 1) in a feasible point in PT(G).
Thus, we can find T1 � |V| − |S| − |H1| points in PT(G)
that satisfy Inequality (22) at equality as follows. Let
x0 � 1−∑

j∈Sej, (i.e., select all nodes in V\S in the
PIDS;) and xj � x0 − ej for all j in {V\(S+ ∪H1)} (i.e.,
from the solution x0, remove a single node that is not i
or in H1). In the example of Figure 8, x0 has nodes
i, j4, k1, k2,k3,k4, k5. Because H1 � {k2,k3}, we can get
four additional feasible points by removing j4,k1,k3,
and k5 one at a time from x0.

Figure 8. Illustration of Notation in the Facet-Defining Proof of Inequality (22)

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
1356 INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS

Second, when xi � 0, we have xj � 1 for all j in Nall
(because they require all of their neighbors to be se-
lected in order to meet their threshold, and one of
their neighbors, node i, is not selected). Then, to sat-
isfy Inequality (22) at equality, we need to choose ex-
actly ai− |Sall| nodes from the set S\Sall in the PIDS. Let
Cai−|Sall |
S\Sall be the set of all combinations. In Figure 8,

Cai−|Sall |
S\Sall � {{j1}, {j2}}. Then, for a given C ∈ Cai−|Sall |

S\Sall , we

can have xC0 � 1−∑
j∈S+\{C∪Sall}ej (i.e., select all nodes

except those in S+\{C ∪ Sall}). For the instance in Fig-
ure 8, if C � {j1}, xC0 selects all nodes except for i and
j2. If C � {j2}, xC0 selects all nodes except for i and j1.

Next, we can obtain additional feasible solutions (sat-
isfying Inequality (22) at equality) by removing nodes
one at a time from xC0 . However, some nodes should not
be removed. Otherwise, the resulting solution either no
longer satisfies Inequality (22) at equality or becomes in-
feasible to the PIDS. First, we cannot remove any node
in Nall or in S (removing a node in S will cause the in-
equality to no longer be satisfied at equality). Second,
for a node k ∈ n(S)\i, if its threshold is strictly greater
than the number of its neighbors selected in xC0 , remov-
ing node k results in an infeasible solution. Let HC �
{k ∈ n(S)\i : gk > |n(k)\S+| + |n(k) ∩ {C ∪ Sall}|}. In the ex-
ample of Figure 8, given C � {j1} and xC0 as described
previously, HC � {k3}. Thus, we can obtain four addi-
tional feasible points by removing k1,k2,k4, and k5 one at
a time from xC0 . Similarly, if C � {j2}, HC � {k1}. Thus,
we can obtain four additional feasible points by remov-
ing k2,k3, k4, and k5 one at a time from xC0 . Overall, for a
feasible point xC0 associated with a C in Cai−|Sall |

S\Sall , we ob-

tain points xCj � xC0 − ej for all j in {V\(S+ ∪Nall ∪HC)}
(i.e., from the solution xC0 , remove a single node
that is not in C, Nall, HC). Overall, we can find T0 �
∑

C∈Cai−|Sall |
S\Sall

(|V| − |S| − |HC| − |Nall\Sall|) feasible points in

the forms xC0 and xCj in PT(G).
We form a linear equation system based on these

feasible points x0, xj, xC0 and xCj with |V| +1 unknowns
(µ0,m), where m corresponds to the coefficients in the
left-hand side of Inequality (22), and µ0 corresponds
to the right-hand side value. Feasible point x0 yields
Equation (29), feasible point(s) xj yields Equation (30),
feasible point xC0 yields Equation (31), and feasible
point(s) xCj yields Equation (32).

µi +
∑

h∈V\S+
µh � µ0 (29)

µi +
∑

h∈V\S+
µh −µj � µ0 ∀j ∈ {V\(S+ ∪H1)} (30)

∑
k∈C∪Sall

µj +
∑

h∈V\S+
µh � µ0 ∀C ∈ Cai−|Sall |

S\Sall (31)

∑
k∈C∪Sall

µj +
∑

h∈V\S+
µh −µj � µ0 ∀C ∈ Cai−|Sall|

S\Sall ,

j ∈ {V\(S+ ∪Nall ∪HC)}
(32)

Let (π0,p) be a vector whose positions are labeled from
zero to |V|. Following approach 2 on p. 144 of Wolsey
(1998), we need to show that (µ0,m) � λ(π0,p), λ≠ 0;
with (π0,p) with ai in the zeroth and ith positions, one
in the jth position for all j in S, and zeros in all other po-
sitions is the only solution to the linear equation system
(29)–(32). In Lemmas 4 and 5, we show the conditions
under which the vector (π0,p) (as defined previously) is
the only solution to the linear equation system. First, in
Lemma 4, we show the necessary condition leading to
zeros for all positions in V\S+.
Lemma 4. If Inequality (22) is facet defining, we must
have γj ≤ ai for each node j in H1.

Proof. Included in Section EC.2.5 of the e-companion. w

Next, we show the conditions leading to the
uniqueness of (π0,p).
Lemma 5. If Inequality (22) is facet defining, we must
have the following:

1.Nall is an empty set.
2. 1 ≤ ai ≤ |S| −1 if |S| ≥ 2 and ai � 1 if |S|� 1.

Proof. Included in Section EC.2.6 of the e-companion. w

Now, we are ready to present the proof of Theorem 6.

Proof of Theorem 6. Necessity. Proved by Lemmas
3–5.

Sufficiency. First, we show that if Conditions 1–4 of
Theorem 6 are satisfied, we can find at least |V| feasi-
ble points that satisfy Inequality (22) at equality.
We can find T1 �|V| − |S| − |H1| feasible points by set-
ting xi � 1 because of Condition 1. Also, there are T0 �
|Cai

S | (|V| − |S|)−∑C∈Cai
S
|HC| feasible points by setting xi �

0 because of Condition 2. Then,

T0 +T1 � |V| − |S| − |H1| +
∑
C∈Cai

S

(|V| − |S| − |HC|): (33)

Let H0 � {k ∈ n(S)\Nall : gk > deg(k)− |n(k) ∩ S+|}. Ex-
cluding nodes in Nall, H0 contains S’s neighbors that
must be selected in the PIDS if none of the nodes in S+

is selected. In the example of Figure 8, H0 � {k1,k2, k3}.
Thus, for a given C in Cai

S , H0\HC provides the set of
S’s neighbors that can be removed one by one from xC0 .
Given Condition 4, each node j in H1 can be removed
from an xC0 for some C in Cai

S . Thus, H1 ⊆ ∪C∈Cai
S
H0\HC.

Hence, ∑
C∈Cai

S
|H0| − |HC| ≥ |H1| because HC ⊆H0 by

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS 1357

definition. Then, for each C in Cai
S , we add and subtract

|H0| to the right-hand side of (33) as follows:

T0 +T1 � |V| − |S| +∑
C∈Cai

S

(|V| − |S| − |H0|)

+ ∑
C∈Cai

S

(|H0| − |HC|)− |H1| , (34)

≥ |V| − |S| + |Cai
S | (|V| − |S| − |H0|), (35)

≥ |V| − |S| + |Cai
S | , (36)

≥|V| : (37)

We can go from (34) to (35) using the fact that ∑
C∈Cai

S|H0| − |HC| ≥ |H1|. We can go from (35) to (36) by noting
that |V| − |S| − |H0| ≥ 1. This is true because at least node
i is left in V\(S ∪H0). Finally, we can go from (36) to
(37) because Condition 3 of Theorem 6 implies that
|Cai

S | ≥ |S|. (Observe that when |S| � 1 and ai � 1, |Cai
S | � |S|.

When |S| ≥ 2 and 1 ≤ ai ≤ |S| −1, first consider ai ≤ �|S|2 �,
|Cai

S | �
(|S|
ai

)
� |S|!

ai!(|S|−ai)! �
(|S|
ai − 1

) |S|+1−ai
ai

�
(|S|
1

)∏ai
h�2

|S|+1−h
h

� |S| ∏ai
h�2

|S|+1−h
h ≥ |S| because |S|+1−h

h ≥ 1 for all h ≤ ai
≤ �|S|2 �. Next, consider that ai > �|S|2 �; we have |S| − ai

≤ �|S|2 �. Then, |Cai
S | �

(|S|
ai

)
�
(|S|
|S| −ai

)
≥ |S|.) Thus, we have

shown that there are at least |V| feasible points in PT(G)
satisfying Inequality (22) with equality.

Using these T0 +T1 points, we form the linear
equation system as (29) to (32). Arguing in a similar
manner as Lemmas 4 and 5, we show that when Con-
ditions 2, 3, and 4 are satisfied, (µ0,m) � λ(π0,p),
where λ≠ 0, and (π0,p), which has ai in the zeroth
and ith positions, one in the jth position for all j in S,
and zeros in all other positions, is the only solution
for the linear equations system from (29) to (32).
Thus, Inequality (22) is facet defining for PT(G) when
these conditions are satisfied. w

5. Computational Study
In this section, we discuss our computational experi-
ence with these four formulations on some large real-
world social networks. Our computational experiments
have three goals: (i) to examine the strength of the for-
mulations (to evaluate the benefit obtained by BIP3 and
BIP4), (ii) to examine the performance of the four
formulations, and (iii) to solve exactly or to near opti-
mality simulated instances on very large real-world
networks. We make these evaluations on a set of seven
large real-world social networks first, before embarking
on solving instances on three very large real-world so-
cial networks with up to about 2.5 million nodes and
8 million edges. Our computational experiments are on
a machine with the following specifications: Intel
Xeon E5-2630V4 processor, 64 GB RAM, and Ubuntu

operating system. Furthermore, we use CPLEX 12.8
with the Python API.

5.1. Description of Real-World Social Networks
We have 10 real-world social networks: Gnutella,
Ning, Hamsterster, Escorts, Anybeat, Advogato, Deli-
cious, Youtube, Lastfm, and Flixster. They are taken
from the Stanford Large Network Data set Collection
(SNAP; Leskovec and Krevl 2014), the BGU Social Net-
works Security Research Group (BGU; Lesser et al.
2013), the Koblenz Network Collection (KONECT; Ku-
negis 2017), and the Network Repository (N.R.; Rossi
and Ahmed 2015). In all our graphs, nodes represent
users and edges are connections between users. We
first convert any directed graphs into undirected ones
(i.e., replacing an arc (i, j) by an edge {i, j} if there is an
arc between node i and node j). If multiple connected
components exist in a graph, we use the biggest con-
nected component in our computational experiments.
In Table 2, we list each graph, along with its source re-
pository and the number of nodes and edges of the
largest component it contains.

Our first set of experiments are built on seven large
real-world networks. Gnutella is a large file sharing
peer-to-peer network (the first decentralized peer-to-
peer network of its kind). We consider one snapshot
of the Gnutella network collected on August 4, 2002.
Ning is an online platform for people and organiza-
tions to create custom social networks. Hamsterster
contains friendships between users of the website
hamsterster.com. Escorts is the bipartite network of
buyers and their escorts. Anybeat is the friendship net-
work of an online community. Advogato is based on
the friendship network of Advogato.org. Delicious is a
social bookmarking web service for storing, sharing
and discovering web bookmarks.

Our last experiment focuses on BIP4 and three very
large real-world social networks. Youtube contains the
friendship network crawled on Youtube. An edge
means that a user subscribes to the other users’ con-
tent. Lastfm represents the friendship among the
users on a music social network. Flixster is the social

Table 2. Source and Size of the Largest Components of
Real-World Graphs

Graph name Source No. of nodes No. of edges

Gnutella SNAP 10,876 39,994
Ning BGU 9,727 40,570
Hamsterster Konect 1,788 12,476
Escorts Konect 10,106 39,016
Anybeat N.R. 12,645 49,132
Advogato N.R. 5,042 39,277
Delicious N.R. 536,108 1,365,961
Youtube BGU 1,134,890 2,987,624
Lastfm Konect 1,191,805 4,519330
Flixster N.R. 2,523,386 7,918,801

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
1358 INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS

network of flixster.com, a movie rating site on which
people can meet others with a similar movie tastes.

The threshold value gi associated with a node i in a
given network is generated from a discrete uniform
distribution between [1, deg(i)]. By this method, we
ensure that if all neighbors of a node are active, this
node will become active as well. Additionally, weight
bi is generated from a discrete uniform distribution be-
tween [1, 50]. Then, for each social network, ten in-
stances are generated. Thus, there are 100 instances
in total, given that we have 10 real-world social
networks. The URL http://dx.doi.org/10.17632/ywfg
kk5pky.1 provides these 100 instances.

5.2. Investigating the Strength of the LP
Relaxations

We have already shown that BIP3 and BIP4 are
stronger than BIP1 and BIP2 in Theorem 1. Now, we
empirically evaluate how much stronger BIP3 and
BIP4 are compared with BIP1 and BIP2 in this sec-
tion. In our implementation for BIP3, we remove the
constraint yid + ydi � 1 and use only variables ydi (so
yid is replaced by 1− ydi in the model). In this way,

we reduce the size of the model by |Et| constraints
and |Et| variables.

We use 70 real-world social network instances,
based on the seven graphs, Gnutella, Ning, Hamster-
ster, Escorts, Anybeat, Advogato, and Delicious, to
compare the strength of the LP relaxations of the four
formulations. Recall that LP1, LP2, LP3 and LP4 denote
the LP relaxations of BIP1, BIP2, BIP3, and BIP4, re-
spectively, and zLP1, zLP2, zLP3 and zLP4 denote their ob-
jective values. As we showed earlier, zLP1 � zLP2 and
zLP3 � zLP4. Thus, we consider the relative improve-
ment of LP4 over LP1 calculated as zLP4−zLP1

zLP1
× 100.

Figure 9 plots the average, minimum, and maximum
value of the relative improvement over the 10 instan-
ces for each of the seven real-world graphs. On aver-
age, the improvement is about 20%, with the biggest
improvement being over 30% for Hamsterster and the
smallest being about 11% for Delicious. It is clear that
our formulations (BIP3 and BIP4) are able to improve
the LP relaxation significantly. However, the improve-
ment comes at some cost. Table 3 reports the running
times, and Figure 10 plots the average running time.
For LP4, the running time includes both the separation
and solving time. First, although LP3 and LP4 improve

Figure 9. (Color online) Relative Improvement of the LP Relaxation of LP4 over That of LP1

Table 3. Running Time (in Seconds) of LP1, LP2, LP3, and LP4

LP1 LP2 LP3 LP4

Average Minimum Maximum Average Minimum Maximum Average Minimum Maximum Average Minimum Maximum

G04 2.2 1.9 2.4 2.8 2.4 3.1 556.3 479.3 649.9 164.6 150.3 179.7
Ning 0.4 0.3 0.4 0.4 0.4 0.5 90.0 65.3 151.6 33.9 26.1 40.6
Hamsterster 0.1 0.1 0.1 0.1 0.1 0.1 17.9 15.6 19.6 8.8 6.7 10.9
Escorts 0.6 0.6 0.8 0.7 0.7 0.8 74.0 55.6 100.8 22.5 17.8 28.0
Anybeat 0.3 0.2 0.3 0.5 0.4 0.5 16.3 11.3 26.2 18.9 14.9 24.4
Advogato 0.5 0.4 0.6 0.6 0.5 0.7 190.2 163.9 228.1 57.5 43.0 70.5
Delicious 27.4 24.2 31.9 28.2 24.0 32.1 1,004.8 890.7 1,146.5 718.4 597.7 806.4

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS 1359

http://dx.doi.org/10.17632/ywfgkk5pky.1
http://dx.doi.org/10.17632/ywfgkk5pky.1

the value of the LP relaxation objective significantly,
they need much more time than LP1 (and LP2). LP3
usually needs two orders of magnitude more running
time than LP1. This is caused by the much bigger size
of the formulation. LP1 has |V| variables and |V| con-
straints. However, LP3 has |V| +2 |E| variables and 4 |E|
+ |V| constraints (even after we remove the constraint
yid + ydi � 1 and used only variables ydi). Comparing
LP3 and LP4, LP4 has a faster running time.

Overall, LP3 and LP4 need much more time, while
they are able to provide stronger LP bounds than LP1.
A natural question is whether the extra effort involved
in solving the LP relaxations of BIP3 and BIP4 yields a
computational benefit (against using BIP1 or BIP2)
when solving them as IP problems. We answer this
question in the next experiment.

5.3. Testing the Performance of BIP1, BIP2, BIP3,
and BIP4

In this section, we test the performance of BIP1, BIP2,
BIP3, and BIP4. Recall that in our implementation for
BIP3, we remove the constraint yid + ydi � 1 and use
only variables ydi. Next, in our implementation for
BIP4, we start with Constraint (23) and use CPLEX’s

callbacks to add violated Constraint (24) dynamically
because Constraint (24) is exponentially sized. Given
that the graphs we consider contain millions of nodes
and edges, we only add violated Constraints (24) at
the root node. Although we do not add Constraint
(24) after the root node, the upper and lower bounds
after the root node are still globally valid in the search
process (because all solutions satisfy Constraint (23)).
Last, in order to focus on the effect of the four formu-
lations, we follow common practice in the literature
(Avella et al. 2015, Leitner et al. 2015, Chopra et al.
2017, Leitner et al. 2019, Schmidt et al. 2021) and use a
single thread and turn off CPLEX’s cuts. Other than
that, we keep the default setting for CPLEX. For each
instance, the running time is capped at 3,600 seconds
(one hour), unless stated otherwise.

We consider the four IP formulations on the first set
of 70 real-world social network instances, based on
the seven graphs: Gnutella, Ning, Hamsterster, Es-
corts, Anybeat, Advogato, and Delicious. The optimal-
ity gap is reported in Table 4. The first column has the
identifier for each graph; then, Avg, Min, and Max
give the average, minimum, and maximum values for
each major column, respectively. Let zBFS and lb be the

Figure 10. (Color online) Average Running Time (in Seconds) of LP1, LP2, LP3, and LP4

Table 4. Optimality Gap (%) of BIP1, BIP2, BIP3, and BIP4

BIP1 BIP2 BIP3 BIP4

Average Minimum Maximum Average Minimum Maximum Average Minimum Maximum Average Minimum Maximum

Gnutella 9.01% 8.60% 9.49% 8.97% 8.53% 9.41% 0.17% 0.09% 0.32% 0.11% 0.01% 0.21%
Ning 5.11% 4.28% 6.03% 3.94% 3.56% 4.31% 0.16% 0.06% 0.26% 0.05% 0.00% 0.13%
Hamsterster 12.64% 11.42% 13.86% 10.20% 8.89% 11.65% 0.59% 0.00% 1.45% 0.35% 0.00% 1.04%
Escorts 7.42% 6.90% 8.05% 7.15% 6.75% 7.71% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Anybeat 1.58% 1.17% 2.02% 1.41% 1.23% 1.57% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Advogato 12.38% 10.38% 13.70% 9.57% 8.57% 10.79% 0.69% 0.34% 1.33% 0.51% 0.16% 1.99%
Delicious 2.23% 2.17% 2.31% 2.18% 2.12% 2.26% 0.62% 0.53% 0.71% 0.63% 0.44% 0.90%

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
1360 INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS

objective value of the best feasible solution and the
lower bound obtained by CPLEX when the time limit
is reached, respectively. The optimality gap is calcu-
lated as zBFS−lb

zBFS
× 100. Figure 11 shows the average opti-

mality gap for these four formulations across all seven
graphs. BIP1 cannot solve any instance to optimality.
The optimality gap of BIP1 is much bigger than that of
BIP3 and BIP4. For example, the average optimality gap
of BIP1 is more than 12% for Hamsterster compared
with 0.59% for BIP3 and 0.35% for BIP4. BIP2 behaves
in a similar fashion to BIP1. Given these results, we can
answer the question raised at the end of the last section.
BIP3 and BIP4 outperform BIP1 and BIP2.

At first glance, BIP3 and BIP4 have a similar perfor-
mance in Table 4. Next, we take a closer look at BIP3
and BIP4. Table 5 shows the average optimality gaps
with time limits of 300, 600, 900, and 3,600 seconds.
We can observe that BIP4 is able to close the gap
much faster than BIP3. For example, on the Gnutella
instances, the optimality gap of BIP3 is 98.73%, 1.58%,
0.26%, and 0.17% as the time limit increases, whereas
BIP4 has an optimality gap of 0.21% after 300 seconds.

This is even more dramatic for the Delicious instances.
After 900 seconds, BIP3 has a 98.86% average optimal-
ity gap. In contrast, BIP4 has an average optimality
gap of 0.64% after 300 seconds. The main reason BIP3
takes much longer is because solving the LP relaxa-
tions take much longer, and thus it handles fewer
branch-and-bound nodes (than BIP4 in the same
amount of time).

Furthermore, Table 6 contains the running times of
BIP3 and BIP4 for those solved instances. The column
Solved no. presents the number of solved instances. In
addition to all instances solved by BIP3, BIP4 is able to
solve four more Ning instances. For the instances
solved by both BIP3 and BIP4, BIP4 is much faster
compared with BIP3. This can be seen in Figure 12,
which shows the average running time on instances
solved by both BIP3 and BIP4. For Hamsterster and
Anybeat instances, the minimum running time of
BIP3 is greater than the maximum running time
of BIP4. Thus, as we noted earlier, the larger size of
BIP3 deteriorates the performance as the size of the in-
stances becomes larger. As we will see, the difference

Figure 11. (Color online) Average Optimality Gap (%) of BIP1, BIP2, BIP3, and BIP4

Table 5. Average Optimality Gap (%) of BIP3 and BIP4 with 300-, 600-, 900-, and 3,600-Second Time Limits

Time limit

BIP3 BIP4

300 600 900 3,600 300 600 900 3,600

Gnutella 98.73% 1.58% 0.26% 0.17% 0.21% 0.18% 0.15% 0.11%
Ning 0.40% 0.28% 0.24% 0.16% 0.16% 0.12% 0.10% 0.05%
Hamsterster 1.11% 1.11% 0.96% 0.59% 0.77% 0.61% 0.55% 0.35%
Escorts 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Anybeat 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Advogato 14.22% 1.33% 1.20% 0.69% 0.85% 0.71% 0.65% 0.51%
Delicious 98.86% 98.86% 98.86% 0.62% 0.64% 0.63% 0.63% 0.63%

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS 1361

becomes rather apparent on the very large-scale real-
world social networks.

Next, we consider the 30 instances on the three very
large real-world social networks: Youtube, Lastfm, and
Flixster. Given our results on the first 70 instances dis-
cussed earlier, only BIP3 and BIP4 are applied to these
30 instances. When BIP3 is applied to these instances, it
does not solve the LP relaxation at the root node for
any instance within the time limit. Hence, we cannot
even obtain a dual bound or gap with BIP3. Needless
to say, when the LP relaxation of an IP formulation
cannot be solved, the model is not viable because the
search process is predicated on solving the initial LP re-
laxation. Consequently, BIP3 is not a viable option for
very large instances. However, BIP4 is able to find and
prove good quality solutions for all of these instances.
The results for BIP4 are shown under the column Opti-
mality Gap in Table 7. BIP4 solves 24 of 30 instances
optimally. For the remaining six Youtube instances, the
optimality gap is less than 0.02%. Table 7 reports the
running time on the solved instances.

Based on these experiments, we demonstrated that
BIP4 is a high-quality formulation for the PIDS prob-
lem. It has both theoretical desirable properties, and is
also capable of solving problems with 2.5 million
nodes and 8 million edges.

Before concluding this section, we briefly comment
on the structure of the solutions. Specifically, Table
8 presents for each of the 10 graphs, the average,

minimum, and maximum fraction of nodes selected in
the PIDS across the 10 instances. This fraction is calcu-
lated by dividing the number of nodes selected in the
best feasible solution to a PIDS problem instance by
the total number of nodes. For each graph, one can see
the fraction of nodes selected in the PIDS are close
across the 10 instances. However, there is significant
variation across the 10 different graphs, with the aver-
age value ranging from 3.81% to 36.66% (even for
graphs with similar density there seems to be signifi-
cant variation). Naturally, this leads to the research
question whether there are factors that can explain this
variation? This is not an easy question to answer, and
an interesting research problem in its own right. To
properly analyze this, one needs to work systemati-
cally with a huge number of smaller simulated graph
instances where it is possible to vary graph structures,
consider the various ways of generating a node’s
weight (bi) and its threshold value (gi), the relationship
between them, and control different aspects of the sim-
ulated graphs. The detailed study of this question is
left for future research.

6. Conclusions
In this paper, we studied an influence maximization
problem whereby direct influence plays the dominant
role in influence propagation. This problem, referred
to as the PIDS problem, generalizes the celebrated
dominating set problem and has applications in multi-
ple settings, including technology diffusion, support
social networks, and settings where rapid influence
propagation is desired.

We propose a strong and compact extended formu-
lation for the PIDS problem. Then, we project it onto
the node variable space. We also show that the ex-
tended formulation is the strongest possible formula-
tion for the PIDS problem on trees. Thus, its projection
on the natural node variable space gives a complete
description of the polytope for the PIDS problem on
trees. We derive a new set of valid inequalities for the
PIDS problem and provide a polynomial-time separa-
tion procedure for it. Facet-defining conditions of the
proposed valid inequalities are derived for arbitrary
graphs. We conduct an extensive computational study
on real-world graphs to show the efficacy of the

Table 6. Running Time (in Seconds) of BIP3 and BIP4 on Solved Instances

BIP3 BIP4

Solved no. Average Minimum Maximum Solved no. Average Minimum Maximum

Ning 0 NA NA NA 4 2,553.9 1,536.3 3,272.0
Hamsterster 3 1,524.7 908.3 2,450.9 3 376.2 213.3 487.5
Escorts 10 35.3 22.1 47.8 10 14.8 10.6 24.5
Anybeat 10 191.6 55.6 444.6 10 22.6 19.1 26.4

Note. NA,Not Applicable.

Figure 12. (Color online) Average Running Time (in Sec-
onds) of BIP3 and BIP4 on Solved Instances

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
1362 INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS

proposed formulations. On a testbed of 100 real-world
graph instances, our results show that our approach
can find and prove high-quality solutions quickly for
very large graphs (up to approximately 2.5 million
nodes and 8 million edges). We find solutions that are
on average 0.2% from optimality and solve 51 of the
100 instances to optimality.

We now discuss several variants and extensions of
the PIDS problem. In the PIDS problem, influence is
only allowed to propagate one step, while in the WTSS
problem, influence is allowed to propagate indefinitely
(or |V| −1 steps). These represent two extremes: one
where only direct influence plays a role or where rapid
influence is desired, and the other, where indefinitely
long chains of indirect influence are permitted or
where rapid influence is not a requirement. In between
these lies the idea of general latency constraints. In the
event that second order, third order, and in general nth
order influences play a role, we can formulate an influ-
ence maximization problem with latency constraints
where we are allowed a prespecified number of steps/
time periods for the influence to propagate through
the network. This is a problem of significant practical
relevance, but remains a challenging next step (because
the formulation for the PIDS problem and the WTSS
problem cannot be applied directly).

Another variant of the PIDS problem is the
positive-influence target-dominating set (PITD) prob-
lem (proposed by Tong et al. 2017). In the PITD

problem, it is desirable to influence a particular subset
of nodes called the target (instead of the entire graph),
and the goal is to find a PIDS that influences the tar-
get. Our BIP4 formulation applies in this setting, with
the proviso that Constraints (23) and (24) are only de-
fined for the nodes in the target.

One extension of the PIDS problem is to consider a
settingwhere partial payments to a node are permitted
(similar to Fischetti et al. 2018, Günneç et al. 2020b). In-
stead of having two ways that nodes are influenced, (i)
either the entire amount bi is paid to a node i that is di-
rectly influenced or (ii) nothing is paid (to a node that
is not directly influenced) and the node i requires gi
neighbors to be in the PIDS; it is also possible to influ-
ence a node with a partial payment (between 0 and bi)
and a correspondingly fewer number of neighbors (be-
tween 1 and gi) required to be directly influenced (i.e.,
in the PIDS). Raghavan and Zhang (2021a) study this
problem and refer to it as the PIDS with partial pay-
ments (PIDS-PP) problem. They develop a strong
formulation for the PIDS-PP problem by effectively
characterizing influence types propagated on the net-
work (along with edge splitting). They discuss the pro-
jection of this strong formulation onto a payment space
and their computational experiences on a large set of
real-world networks with these formulations. All of
the variants discussed here are rich avenues for future
research. Our work on the PIDS problem provides the
first step along this research pathway.

Table 8. Fraction of Nodes Selected in the PIDS

Gutella Ning Hamsterster Escorts Anybeat Advogato Delicious Youtube Lastfm Flixster

Average 36.66% 31.58% 33.44% 32.74% 16.98% 32.94% 15.28% 23.31% 6.53% 3.81%
Minimum 36.38% 31.18% 32.72% 32.55% 16.77% 32.59% 15.27% 23.29% 6.52% 3.81%
Maximum 36.89% 31.95% 34.28% 32.92% 17.30% 33.56% 15.31% 23.33% 6.54% 3.82%

Table 7. Performance of BIP4 on Very Large Real-World Instances

Optimality gap Running time on solved instances

Average Minimum Maximum Solved no. Average Minimum Maximum

Youtube 0.01% 0.00% 0.02% 4 1253.1 960.1 1551.1
Lastfm 0.00% 0.00% 0.00% 10 330.1 293.1 395.3
Flixster 0.00% 0.00% 0.00% 10 366.3 338.9 447.7

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS 1363

Acknowledgments
This paper is partly based on the third chapter of the au-
thor’s doctoral dissertation (Zhang 2016).

References
Avella P, Boccia M, Wolsey LA (2015) Single-item reformulations

for a vendor managed inventory routing problem: Computa-
tional experience with benchmark instances. Networks 65(2):
129–138.

Baïou M, Barahona F (2014) The dominating set polytope via facility
location. Proc. Combinatorial Optimization: 3rd Internat. Sympos.
(Springer, New York), 38–49.

Balas E, Pulleyblank W (1983) The perfectly matchable subgraph
polytope of a bipartite graph. Networks 13(4):495–516.

Balasundaram B, Butenko S, Hicks IV (2011) Clique relaxations in
social network analysis: The maximum k-plex problem. Oper.
Res. 59(1):133–142.

Banerjee S, Jenamani M, Pratihar DK (2020) A survey on influence
maximization in a social network. Knowledge Inform. Systems 62:
3417–3455.

Bond RM, Fariss CJ, Jones JJ, Kramer AD, Marlow C, Settle JE,
Fowler JH (2012) A 61-million-person experiment in
social influence and political mobilization. Nature 489(7415):
295–298.

Chen N (2009) On the approximability of influence in social net-
works. SIAM J. Discrete Math. 23(3):1400–1415.

Chen W, Castillo C, Lakshmanan LV (2013) Information and Influence
Propagation in Social Networks (Morgan & Claypool Publishers,
San Rafael, CA).

Chopra S, Filipecki B, Lee K, Ryu M, Shim S, Van Vyve M (2017)
An extended formulation of the convex recoloring problem on
a tree. Math. Programming 165(2):529–548.

Dhawan A, Rink M (2015) Positive influence dominating set genera-
tion in social networks. Proc. Internat. Conf. on Comput. and Net-
work Comm. (IEEE, New York), 112–117.

Dinh TN, Shen Y, Nguyen DT, Thai MT (2014) On the approxim-
ability of positive influence dominating set in social networks.
J. Combinatorial Optim. 27(3):487–503.

Fischetti M, Kahr M, Leitner M, Monaci M, Ruthmair M (2018) Least
cost influence propagation in (social) networks. Math. Program-
ming: Ser. B 170(1):293–325.

Ghayour-Baghbani F, Asadpour M, Faili H (2021) MLPR: Efficient in-
fluence maximization in linear threshold propagation model us-
ing linear programming. Soc. Network Anal. Mining 11(1):1–10.

Goel S, Anderson A, Hofman J, Watts DJ (2015) The structural viral-
ity of online diffusion. Management Sci. 62(1):180–196.

Güney E (2019a) An efficient linear programming based method for
the influence maximization problem in social networks. Inform.
Sci. 503:589–605.

Güney E (2019b) On the optimal solution of budgeted influence
maximization problem in social networks. Oper. Res. 19(3):
817–831.

Güney E, Leitner M, Ruthmair M, Sinnl M (2021) Large-scale influ-
ence maximization via maximal covering location. Eur. J. Oper.
Res. 289(1):144–164.

Günneç D, Raghavan S, Zhang R (2020a) A branch-and-cut ap-
proach for the least cost influence problem on social networks.
Networks 76(1):84–105.

Günneç D, Raghavan S, Zhang R (2020b) Least-cost influence
maximization on social networks. INFORMS J. Comput. 32(2):
289–302.

Haynes T, Hedetniemi S, Slater P (1998a) Domination in Graphs: Ad-
vanced Topics (CRC Press, Boca Raton, FL).

Haynes T, Hedetniemi S, Slater P (1998b) Fundamentals of Domination
in Graphs (CRC Press, Boca Raton, FL).

Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of in-
fluence through a social network. Proc. 9th ACM SIGKDD Inter-
nat. Conf. on Knowledge Discovery and Data Mining (ACM, New
York), 137–146.

Kempe D, Kleinberg J, Tardos E (2015) Maximizing the spread of in-
fluence through a social network. Theory Comput. 11(4):105–147.

Khomami MMD, Rezvanian A, Bagherpour N, Meybodi MR (2018)
Minimum positive influence dominating set and its application
in influence maximization: A learning automata approach.
Appl. Intelligence 48(3):570–593.

Kunegis J (2017) KONECT network data set. Accessed December 5,
2020, http://konect.cc.

Leitner M, Ljubić I, Sinnl M (2015) A computational study of exact
approaches for the bi-objective prize-collecting Steiner tree
problem. INFORMS J. Comput. 27(1):118–134.

Leitner M, Ljubić I, Riedler M, Ruthmair M (2019) Exact approaches
for network design problems with relays. INFORMS J. Comput.
31(1):171–192.

Leskovec J, Krevl A (2014) SNAP Datasets: Stanford large network
data set collection. Accessed December 5, 2020, http://snap.
stanford.edu/data.

Lesser O, Tenenboim-Chekina L, Rokach L, Elovici Y (2013) Intruder
or welcome friend: Inferring group membership in online social
networks. Social Computing, Behavioral-Cultural Modeling and Pre-
diction (Springer, New York), 368–376.

Li Y, Fan J, Wang Y, Tan K-L (2018) Influence maximization on so-
cial graphs: A survey. IEEE Trans. Knowledge Data Engrg. 30(10):
1852–1872.

Lin G, Guan J, Feng H (2018) An ILP based memetic algorithm for
finding minimum positive influence dominating sets in social
networks. Phys. A 500:199–209.

Matz SC, Kosinski M, Nave G, Stillwell DJ (2017) Psychological tar-
geting as an effective approach to digital mass persuasion. Proc.
National Acad. Sci. USA 114(48):12714–12719.

Pajouh FM, Balasundaram B, Hicks IV (2016) On the 2-club poly-
tope of graphs. Oper. Res. 64(6):1466–1481.

Raghavan S, Zhang R (2019) A branch-and-cut approach for the
weighted target set selection problem on social networks. IN-
FORMS J. Optim. 1(4):304–322.

Raghavan S, Zhang R (2021a) Influence maximization with latency
requirements on social networks. INFORMS J. Comput., ePub
ahead of print November 9, https://doi.org/10.1287/ijoc.2021.
1095.

Raghavan S, Zhang R (2021b) Weighted target set selection on trees
and cycles. Networks 77(4):587–609.

Rossi RA, Ahmed NK (2015) The network data repository with in-
teractive graph analytics and visualization. Bonet B, Koenig S,
eds. Proc. 29th AAAI Conf. on Artificial Intelligence (AAAI Press,
Palo Alto, CA), 4292–4293.

Saxena A (2004) On the dominating set polytope of a cycle. Working
paper, Carnegie Mellon University, Pittsburgh, PA.

Schmidt M (2019) Calculating the true size of the influencer market-
ing industry. Accessed December 5, 2020, https://www.forbes.
com/sites/forbestechcouncil/2019/02/13/calculating-the-true-
size-of-the-influencer-marketing-industry/#28b76073658d.

Schmidt D, Zey B, Margot F (2021) Stronger MIP formulations
for the steiner forest problem. Math. Programming 186(1):
373–407.

Schomer A (2020) Influencer marketing: State of the social media in-
fluencer market in 2020. Accessed December 5, 2020, https://
www.businessinsider.com/influencer-marketing-report.

Shearer E, Matsa KE (2018). News use across social media platforms
2018. Technical report, Pew Research Center. Accessed Decem-
ber 5, 2020, https://www.pewresearch.org/journalism/2018/
09/10/news-use-across-social-media-platforms-2018/.

Stein C, Cormen T, Rivest R, Leiserson C (2009) Introduction to Algo-
rithms (MIT Press, Cambridge, MA).

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
1364 INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS

http://konect.cc
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1287/ijoc.2021.1095
https://doi.org/10.1287/ijoc.2021.1095
https://www.forbes.com/sites/forbestechcouncil/2019/02/13/calculating-the-true-size-of-the-influencer-marketing-industry/#28b76073658d
https://www.forbes.com/sites/forbestechcouncil/2019/02/13/calculating-the-true-size-of-the-influencer-marketing-industry/#28b76073658d
https://www.forbes.com/sites/forbestechcouncil/2019/02/13/calculating-the-true-size-of-the-influencer-marketing-industry/#28b76073658d
https://www.businessinsider.com/influencer-marketing-report
https://www.businessinsider.com/influencer-marketing-report
https://www.pewresearch.org/journalism/2018/09/10/news-use-across-social-media-platforms-2018/
https://www.pewresearch.org/journalism/2018/09/10/news-use-across-social-media-platforms-2018/

Tong G, Wu W, Pardalos PM, Du D-Z (2017) On positive-influence
target-domination. Optim. Lett. 11(2):419–427.

Valente TW (2012) Network interventions. Science 337(6090):
49–53.

Verma A, Buchanan A, Butenko S (2015) Solving the maximum
clique and vertex coloring problems on very large sparse net-
works. INFORMS J. Comput. 27(1):164–177.

Walteros JL, Buchanan A (2020) Why is maximum clique often easy
in practice? Oper. Res. 68(6):1866–1895.

Wang F, Camacho E, Xu K (2009) Positive influence dominating set
in online social networks. Proc. Internat. Conf. on Combinatorial
Optim. and Applications (Springer, New York), 313–321.

Wang F, Du H, Camacho E, Xu K, Lee W, Shi Y, Shan S (2011) On
positive influence dominating sets in social networks. Theoretical
Comput. Sci. 412(3):265–269.

Wolsey LA (1998) Integer Programming (Wiley, New York).
Wu H-H, Küçükyavuz S (2018) A two-stage stochastic program-

ming approach for influence maximization in social networks.
Comput. Optim. Appl. 69(3):563–595.

Zhang R (2016) Mathematical programming models for influence
maximization on social networks. PhD thesis, University of
Maryland, College Park.

Zhang B, Pavlou P, Krishnan R (2018) On direct vs. indirect peer influ-
ence in large social networks. Inform. Systems Res. 29(2):292–314.

Zhu X, Yu J, Lee W, Kim D, Shan S, Du D-Z (2010) New
dominating sets in social networks. J. Global Optim. 48(4):
633–642.

Zou F, Zhang Z, Wu W (2009). Latency-bounded minimum influential
node selection in social networks. Proc. Internat. Conf. onWireless Al-
gorithms, Systems, andApplications (Springer,NewYork), 519–526.

Raghavan and Zhang: Rapid Influence Maximization: The PIDS Problem
INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1345–1365, © 2022 INFORMS 1365

e-companion to : Rapid Influence Maximization: The PIDS Problem ec1

Electronic Companion

EC.1. Algorithm for the PIDS Problem on Trees

In this section, we present a dynamic programming (DP) algorithm to solve the PIDS problem on

trees. The DP algorithm decomposes the problem into subproblems, starting from the leaves of the

tree. A subproblem is defined on a star network, which has a single central node and (possibly)

multiple child nodes. For each star subproblem, the DP algorithm solves the PIDS problem for two

cases. Consider the link that connects the star to the rest of the tree. We will refer to the node

adjacent to the central node on this link as its parent. In the first case, the parent is not selected,

whereas in the second case, the parent is selected. This process of solving star subproblems for two

cases, followed by contraction of the star node, is repeated until we are left with a single star. The

last star only requires the solution of one case; where the parent is not selected. After we exhaust

all subproblems, a backtracking method is used to combine the solution candidates from the star

subproblems and identify a final solution for the tree.

Algorithm 2 provides the pseudocode of the proposed algorithm. To create an ordering amongst

the subproblems considered in the algorithm, it is convenient (but not necessary) to arbitrarily

pick a root node (which we will denote by r). We will then prioritize the subproblems in order

of how far their central nodes are from the root node of the tree (i.e., at every step among the

remaining subproblems, we consider a subproblem whose central node is farthest from the root

node). We call this a bottom-up traversal of the tree. This ordering can easily be determined a

priori by conducting a breadth-first search (BFS) from the root node and considering the non-leaf

nodes of the tree in reverse BFS order. The global variable TC has the total cost of the optimal

solution.

We now discuss how to solve the PIDS problem on a star. To better illustrate the algorithm, we

consider the instance in Figure EC.1. Let L be the set of all leaf nodes in the original tree. Let

c denote the central node of a star (all of the other nodes are child nodes) and refer to this star

as star c. L(c) denotes the set of all children of node c. There are two cases to consider. First, we

consider the case where the parent of the central node c is not selected in the optimal solution. Let

Algorithm 2 Algorithm for the PIDS problems on trees

1: Arbitrarily pick a node as the root node of the tree and let TC = 0.
2: Define the order of the star problems based on the bottom-up traversal of the tree.
3: Let L be the set of leaf nodes in G and b1i = bi and b2i = 0 for all i in L.
4: for each star subproblem do
5: StarHandling
6: end for
7: SolutionBacktrack

ec2 e-companion to : Rapid Influence Maximization: The PIDS Problem

7

6 5 4

81

11 12

92

13 14

103

15 16

1
1

1
1

1
1

1
1

1
1

1
1

3
1

2
1

3
2

2
1

1
3

1
1

4
2

1
2

2
3

4
3

!
"#
$#

Figure EC.1 A PIDS problem instance.

XNPS
c represent the set of nodes selected in the solution to star c, and let CNPS

c denote the total

cost of the solution for star c. Analogously, we consider the case where the parent of the central

node c is selected in the optimal solution with XPS
c representing the set of nodes selected in the

solution to star c and CPS
c denoting the total cost of the solution for star c.

In Figure EC.1, node 7 is selected as the root. Following the bottom-up ordering of the tree, we

consider star 1, 2 and 3 first. Notice that all of these stars have their children in L. We will refer

to stars where all children are members of L as “bottom stars”. Because the influence diffusion

process only takes place for one time period, if the parent of any node i ∈ L is not selected, then

node i must be selected. This allows for a straightforward calculation to solve the bottom stars.

Either the central node of the bottom star must be selected or all children in the bottom star must

be selected. Specifically, for the case where the parent of the central node c of a bottom star is not

selected, we compare the cost of bc against the cost of
!

j∈L(c) bj. If |L(c)|≥ gc and bc >
!

j∈L(c) bj,

then all of the children in the bottom star are selected with XNPS
c =L(c) and CNPS

c =
!

j∈L(c) bj.

Otherwise, the central node c of the bottom star is selected with XNPS
c = {c} and CNPS

c = bc.

While, for the case where the parent of the central node c of a bottom star is selected, we compare

the cost of bc against the cost of
!

j∈L(c) bj. If bc is greater, all of the children are selected with

XPS
c = L(c) and CPS

c =
!

j∈L(c) bj. Otherwise, the central node c is selected with XPS
c = {c} and

CPS
c = bc.

To illustrate, consider star 1. When node 1’s parent (node 6) is not selected in the optimal

solution, we compare the cost of node 1 (with a payment of 3, which will also activate its children

nodes 11 and 12) against the cost of selecting all of the leaf nodes of the star (i.e., nodes 11 and

12) for a cost of 2 units. Also, |L(1)|> g1. Thus, the solution is XNPS
1 = {11,12} and CNPS

1 = 2.

When node 1’s parent (node 6) is selected, we make the same comparison. Thus, the solution is

XPS
1 = {11,12} and CNPS

1 = 2.

Next, once a star’s solution candidates are determined, the star is contracted into a single child

node for its parent’s star subproblem. It may appear that we have considered all possible solution

e-companion to : Rapid Influence Maximization: The PIDS Problem ec3

6 5 4

81 92 103

(0,1) (2,0) (0,1)

4
2

1
2

2
3

(2,0) (1,0)(0,0)

(!"#, !"$)

%
!"
&"

7

6 5 4
(1,1) (1,0)

4
3

(0,0)
(!"#, !"$)

%
!"
&"

Figure EC.2 (a) Star 4, 5 and 6. (b) The last star.

candidatesXNPS
c andXPS

c for a given star c in the optimal solution. However, that is not necessarily

the case. Consider star 2. Here XPS
2 =XNPS

2 = {13,14}. In both cases, the leaf nodes 13 and 14

are selected. Although star 2 does not need its central node 2 to be selected in either case (because

influence only propagates to the neighbors of the selected nodes), star 5 may need node 2 to be

selected in order to activate its central node 5. This may not be captured in the solutions XNPS
c and

XPS
c computed so far for a given star. Hence, in addition to CNPS

c and CPS
c , we also use the cost

bc of the solution that selects the central node of star c. Notice that CPS
c ≤CNPS

c ≤ bc. Therefore,

in the optimal solution, we must incur a cost of at least CPS
c for star c. This amount is added to

the total cost TC. The remaining incremental amounts b1c =CNPS
c −CPS

c and b2c = bc −CNPS
c are

computed and used to solve the next star subproblem. Thus, b11 = 0 and b21 = 1. It is similar to stars

2 and 3. In star 2, we have XPS
2 =XNPS

2 = {13,14}, CPS
2 =CNPS

2 = 2 and b12 = 0, b22 = 1. In star 3,

we have XPS
3 =XNPS

3 = {3}, CPS
3 =CNPS

3 = 1 and b13 = 0, b23 = 0. So far, TC = 5.

Unlike bottom stars, the star we consider now contains both contracted stars as leaf nodes (nodes

1, 2 and 3), as well as the leaf nodes in L (nodes 8, 9 and 10). For convenience, we can also compute

b1i and b2i for any leaf node i ∈L. Take node 8 as an example. If its parent is not selected, node 8

must be selected with the cost 2. If its parent is selected, the cost is 0 because a leaf node requires

one neighbor. Then, b18 = 2, and b28 = 0. Thus, b1i = bi, and b2i = 0 for a leaf node i in the original

tree. After contracting stars 1, 2 and 3, we obtain a smaller tree and need to consider three stars,

as shown in Figure EC.2(a).

We are now ready to discuss how to solve the PIDS problem on a star (earlier, our discussion

was limited to solving the problem on the bottom stars; the ensuing discussion applies to all stars).

Consider a star c and the case where the parent of node c is not selected in the optimal solution.

We have two alternatives. Either we select the central node c with cost bc to activate the entire

star (if the central node c is selected, all children i∈ {L(c)\L} follow the solution XPS
i whose cost

is already included in TC) or select a subset of nodes in L(c) as cheaply as possible that activates

the entire star.

We need to compute the cost of the alternative, where a minimum cost subset of the nodes in

L(c) are selected to activate the entire star. If the central node c of the star is not selected, we

must at least incur the cost BNPS
c =

!
i∈L(c) b

1
i , since all of the children i∈L(c) must at least incur

ec4 e-companion to : Rapid Influence Maximization: The PIDS Problem

the cost of the solution XNPS
i when their parent is not selected. Then, we must select gc nodes

in L(c). Therefore, we sort nodes in L(c) in ascending order of their b2i values. The cost of the

solution depends on the size of the set L(c): Case 1 (|L(c)|< gc): Node c must be selected. Case

2 (|L(c)|≥ gc): We select the first gc nodes in L(c) in ascending order of their b2i value (we denote

this set as Sgc) and total cost of BNPS
c +

!
i∈Sgc

b2i . Comparing bc, the cost of selecting central node

c, against the cost of the solution just obtained provides us the solution to the PIDS on the given

star.

Now, we consider star c and the case where the parent of node c is selected in the optimal

solution. Again, we have two alternatives. Either we select the central node c with cost bc to activate

the entire star or select a subset of nodes in L(c) as cheaply as possible that activates the entire

star. The cost of the alternative, where a minimum cost subset of nodes in L(c) are selected to

activate the entire star, is calculated identically as the above two cases with the change such that

gc is updated to gc − 1 (to account for the fact that star c’s parent has been selected), and is thus

able to influence it.

Algorithm 3 provides the pseudocode associated with this calculation procedure. At its core is the

function SolveStar that finds the optimal solution for a given star. When the procedure is applied

to star 6, we have |L(6)| = 2 and BNPS
6 =

!
i∈L(6) b

1
i = 2. For NoParent-Selected, XNPS

6 = {1,8},
and CNPS

6 = 3. For Parent-Selected, XPS
6 = {8}, and CPS

6 = 2. Thus, TC = 7. Contracting star 6

gives b16 = 1 and b26 = 1. For star 5, |L(5)|= 2. First, b5 = 1< 2 = BNPS
5 . Thus, we select node 5.

Then, XNPS
5 =XPS

5 = {5}, and CNPS
5 = CPS

5 = 1. Thus, TC = 8. Contracting star 5 gives b15 = 0

and b25 = 0. For star 4, |L(4)|= 2. First, b4 = 2> 1 =BNPS
1 . Thus, we consider two cases. For the

case where no parent is selected, we select node 4. The cost is 2. Thus, XNPS
4 = {4}, and CNPS

4 = 2.

For the case of parent selected, the solution of not selecting node 4 is to select node 3 and 10. The

cost is 1. Then, XPS
4 = {3,10}, and CPS

4 = 1. Thus, TC = 9. Contracting star 7 gives b14 = 1 and

b24 = 0. Now, we only have one star left, as shown in Figure EC.2(b). Star 7 has |L(7)| = 3 and

BNPS
7 = 2< 4. Then, we only need to consider the case of no parent selected. Thus, the solution of

not selecting node 7 is to select nodes 4, 5 and 6. The cost is 3, which is a smaller cost than node

7. Thus, XNPS
7 = {4,5,6},and CNPS

7 = 3. Thus, TC = 12.

After we obtain the solution of the last star, which has the root node as its central node, we invoke

a backtracking procedure to choose the solution from the candidates for each star subproblem

and piece them together to obtain the final solution for this tree. Once the last star subproblem

is solved, for each child node in this star, we know if it is selected or not and if its parent node

is selected or not. For instance, if the central node is selected, all stars with the central node in

{L(c) \ L} will pick the Parent-Selected candidate. Otherwise, first, if a node i in {L(c) \ L} is

selected, we can proceed to the nodes in L(i) and pick the Parent-Selected candidate. Second, if

e-companion to : Rapid Influence Maximization: The PIDS Problem ec5

Algorithm 3 StarHandling

Require: star c.
1: (XNPS

c ,CNPS
c)← SolveStar(star c, NoParent-Selected).

2: if star c is the last star then
3: TC = TC +CNPS

c

4: else
5: (XPS

c ,CPS
c)← SolveStar(star c, Parent-Selected).

6: The contracted node has b1c =CNPS
c −CPS

c and b2c = bc −CNPS
c .

7: TC = TC +CPS
c

8: end if
9: function SolveStar(a star c, Flag)

10: if Flag == Parent-Selected then
11: gc = gc − 1.
12: end if
13: BNPS

c =
!

i∈L(c) b
1
i and let Sgc be the set of the cheapest gc nodes in L(c) by b2.

14: if |L(c)|< gc then
15: C = bc
16: else
17: C =min

"
bc, B

NPS
c +

!
i∈Sgc

b2i

#
.

18: end if
19: If C is bc, let X ← b.
20: If C is BNPS

c +
!

i∈Sgc
b2i , let X ← Sgc

21: return X,C.
22: end function

7

6 5 4

81

11 12

92

13 14

103

15 16

1
1

1
1

1
1

1
1

1
1

1
1

3
1

2
1

3
2

2
1

1
3

1
1

4
2

1
2

2
3

4
3

!
"#
$#

Figure EC.3 The solution obtained by our DP algorithm. Shaded nodes are selected in the PIDS.

a node i in {L(c) \L} is not selected, star i will pick the NoParent-Selected candidate. With this

information, we can now proceed down the tree, incorporating the solution candidate at a node

based on the solution of its parent star. This backtracking procedure is described in Algorithm 4

SolutionBacktrack. Let r denote the root of the tree (as determined by Algorithm 2), and let a

binary vector x∗ denote the selected nodes with a value of 1s. The final solution is in Figure EC.3.

The nodes selected in the PIDS are shaded.

Proposition EC.1. The PIDS problem on trees can be solved in O(|V |) time.

ec6 e-companion to : Rapid Influence Maximization: The PIDS Problem

Algorithm 4 SolutionBacktrack

1: Let x∗ = 0. Then, call Piecing(r, x∗, NoParent-Selected) for the root node r.
2: function Piecing(c, x, Flag)
3: If Flag == ParentSelected, X

′ ←XPS
c . Otherwise, X

′ ←XNPS
c .

4: X ←X ∪X
′
and xi = 1 ∀i∈X

′
.

5: if c∈X
′
then

6: ∀j ∈ {L(c) \L} call Piecing(j, x, Parent-Selected).
7: else
8: ∀j ∈ {L(c) \ (X ′ ∪L)} call Piecing(j, x, NoParent-Selected).
9: for i∈ {X ′ \L} do

10: ∀j ∈ {L(i) \L} call Piecing(j, x, Parent-Selected).
11: end for
12: end if
13: return x.
14: end function

Proof. Correctness of the algorithm can be established via induction, using identical arguments

to the preceding discussion. We now discuss the running time. There are at most |V | stars in a

tree. For each star c, let deg(c) denote its degree. We need to find the gc cheapest children, and it

takes time O(deg(c)) (Finding the gcth order statistics can be done in O(deg(c)) by the Quickselect

method in Chapter 9 of Stein et al. (2009). Then, it takes O(deg(c)) to go through the list to

collect the gc cheapest children.). For the whole tree, this is bounded by O(|V |). In the backtracking

procedure, we only pick the final solution, and it takes time O(|V |). Therefore, the running time

for the dynamic algorithm is linear with respect to the number of nodes. □

EC.2. Technical Proofs
EC.2.1. Proof of Theorem 2

By relaxing the binary variables, the LP relaxation of BIP3 is referred to as LP3 and is given

below:

(LP3) Minimize
!

i∈V bixi (EC.1)

Subject to: (tij) xi − ydj ≥ 0 ∀i∈ V, j ∈ n(i) (EC.2)

(uid) yid −xi ≥ 0 ∀i∈ V,d∈ a(i) (EC.3)

(vid) −yid − ydi =−1 ∀{i, d}∈Et (EC.4)

(wi)
!

d∈a(i) ydi + gixi ≥ gi ∀i∈ V (EC.5)

xi ≥ 0 ∀i∈ V (EC.6)

yid, ydi ≥ 0 ∀{i, d}∈Et (EC.7)

The dual of LP3 is as follows:

(DLP3) Maximize
!

i∈V giwi −
!

{i,d}∈Et
vid (EC.8)

e-companion to : Rapid Influence Maximization: The PIDS Problem ec7

Figure EC.4 (a) t variables. (b) Condition (EC.16) when xi ∕= ydh.

Subject to: (xi)
!

j∈n(i) tij −
!

d∈a(i) uid + giwi ≤ bi ∀i∈ V (EC.9)

(yid) uid − vid ≤ 0 ∀i∈ V,d∈ a(i) (EC.10)

(ydi) −tji − vid +wi ≤ 0 ∀d∈D, i∈ a(d) (EC.11)

tij ≥ 0 ∀i∈ V, j ∈ n(i) (EC.12)

uid ≥ 0 ∀{i, d}∈Et (EC.13)

wi ≥ 0 ∀i∈ V (EC.14)

We have t, u, v and w as dual variables for the constraint sets (EC.2), (EC.3), (EC.4), and (EC.5),

respectively. We refer to the dual linear program as DLP3.

It should be clear that the solution of the DP algorithm in Section EC.1 provides a feasible

solution to BIP3, and thus LP3. Recall that a(i) is the set of node i’s neighbors in Gt, and n(i)

is that in G. For x variables, if a node i is in the PIDS, xi = 1. Otherwise, xi = 0. To obtain y

variables’ values, if xi = 1, set yid = 1 for all d in a(i). Then, for all j in n(i), if xj = 0, set ydj = 1,

where d is the dummy node inserted in between node i and node j. For the remaining undecided

edges {i, d}, we set yid = 1 and ydi = 0. Thus, we obtain a feasible solution for LP3 based on the

solution returned by the DP algorithm. In this proof, we show that we can construct a dual feasible

solution to DLP3, and this pair of primal and dual solutions satisfies the complementary slackness

(CS) conditions as follows:

(uid − vid)yid = 0 ∀i∈ V,d∈ a(i) (EC.15)

(xi − ydj)tij = 0 ∀i∈ V, j ∈ n(i) (EC.16)

(yid −xi)uid = 0 ∀i∈ V,d∈ a(i) (EC.17)

(gi −
!

d∈n(i) ydi − gixi)wi = 0 ∀i∈ V (EC.18)

(bi −
!

j∈n(i) tij +
!

d∈a(i) uid − giwi)xi = 0 ∀i∈ V (EC.19)

(−tji − vid +wi)ydi = 0 ∀d∈D, i∈ a(d) (EC.20)

First of all, we always have uid = vid for all {i, d} in Et to satisfy the dual constraint (EC.10)

and CS condition (EC.15). Second, in DLP3, only t variables interact between two nodes in V . If

ec8 e-companion to : Rapid Influence Maximization: The PIDS Problem

Figure EC.5 (a) Case 1: A leaf node i has xi = yid. (b) Case 2: xi = 0.

we fix their values first, we can isolate each node i in V and assign values to the corresponding

uid, vid and wi variables. Following the bottom-up order in the execution of the DP algorithm in

Section EC.1, we first assign values for all t variables. Starting from the bottom of the tree, let

node i be the current node and node h be its parent node in the original tree G. Recall that b1i , b
2
i ,

XNPS
i , CNPS

i , XPS
i , and CPS

i are obtained in the DP in Section EC.1. We set tih = b2i and thi = b1i ,

as shown in Figure EC.4(a). For condition (EC.16), it requires tih = 0 when xi = 1 and ydh = 0. It

means that the corresponding xh = 1. Given that node h and node i are both in PIDS, it implies

that CPS
i = bi. Thus, b

1
i = b2i = 0. Therefore, tih = 0 and thi = 0, as shown in Figure EC.4(b). For

other situations, we have xi = ydh. Thus, condition (EC.16) is satisfied. Consequently, we can focus

on the remaining CS conditions (EC.17), (EC.18), (EC.19), and (EC.20).

Now, three cases are considered to assign the associated dual variables for a node i in V . All

u, v and w variables are initialized as zeros. Then, in the following proof, we only change those

variables that need to be non-zeros.

Case 1: Suppose that node i is a leaf node and node h is its parent node in G. It means that

xi = yid, as shown in Figure EC.5(a). Also, tih = 0 and thi = bi because b1i = bi and b2i = 0. Set

wi = bi. All primal and dual constraints are binding for conditions (EC.17), (EC.18), (EC.19), and

(EC.20). Thus, they are satisfied.

Next, we consider the non-leaf nodes in G. There are two cases for them.

Case 2: Suppose that node i is not a leaf node in G and xi = 0, as shown in Figure EC.5(b). Let

Sj
i = {j ∈ n(i) : xj = 1}, which denotes the set of nodes that are selected and adjacent to node i

in the original graph, and Sd
i = {d ∈ a(i) ∩ a(j) : j ∈ Sj

i }, which denotes the set of dummy nodes

adjacent to node i and the nodes in Sj
i . Then, let wi =max{tji : j ∈ Sj

i }, which is the biggest tji value

among the nodes in Sj
i . Then, let uid = vid =wi− tji for all j in Sj

i and d in Sd
i . Condition (EC.17)

is satisfied because yid = xi = 0 for all d in Sd
i and uid are zero for all d in a(i) \ Sd

i . When there

are exactly gi incoming arcs, constraint (EC.5) is binding. When there are more than gi incoming

arcs, wi = 0 because only nodes with zero tji are included in Sj
i . When |Sj

i | > gi, nodes with

e-companion to : Rapid Influence Maximization: The PIDS Problem ec9

Figure EC.6 Case 3: (a) XPS
i ∕= {i} and |XPS

i |= gi − 1. (b) XPS
i = {i}.

positive tji can be removed from Sj
i to obtained a better solution. A contradiction exists here. Thus,

condition (EC.18) is satisfied. Recall that BNPS
i =

!
L(i) b

1
j . In constraint (EC.9), its left-hand side

is:

BNPS
i + b2i −

"

j∈S
j
i

(wi − tji)+ giwi (Note:
"

j∈n(i)

tij =BNPS
i + b2i , uid =wi − tji)

=

&
BNPS

i +
!

j∈XNPS
i

b2j + b2i − (|Sj
i |− gi)wi =CNPS

i + b2i − (|Sj
i |− gi)wi, if h /∈ Sj

i (Note: Sj
i =XNPS

i)

BNPS
i +

!
j∈XPS

i
b2j + b1i + b2i − (|Sj

i |− gi)wi =CPS
i + b1i + b2i , if h∈ Sj

i (Note: Sj
i =XPS

i ∪ {h})

=

&
bi (Note: |Sj

i |= gi or wi = 0 when |Sj
i |> gi)

bi (Note: bi =CPS
i + b1i + b2i based on the definitions of b1i and b2i)

= bi.

Thus, condition (EC.19) is satisfied because constraint (EC.9) is respected and xi = 0. Condi-

tion (EC.20) is satisfied because constraint (EC.11) is binding for all d in Sd
i and ydi = 0 for all d

in a(i) \Sd
i .

Case 3: Suppose that node i is not a leaf node in G and xi = 1. It means that yid = 1 and ydi = 0 for

all d in a(i). Then, CS conditions (EC.17), and (EC.18) are satisfied because those corresponding

primal constraints are binding. Because xi = 1, constraint (EC.9) must be binding. Let LHS denote

the value of the left-hand side of constraint (EC.9). So far, LHS =
!

j∈n(i) tij = BNPS
i + b2i . If

LHS = bi, we are done. Otherwise, the idea of the following proof is to show that a dual solution

can be first constructed to ensure that LHS ≥ bi, and then the dual solution can be adjusted to

have LHS = bi. Recall that XPS
i is the Parent-Selected solution for node i in the DP. Based on

XPS
i , we consider two situations. First, suppose that XPS

i ∕= {i} and |XPS
i |= gi − 1, as shown in

Figure EC.6(a). It implies that XPS
i ∕=XNPS

i because XNPS
i is {i} or has |XNPS

i |= gi. Set wi as

the gith smallest tji value for all j in n(i). Then, set uid = vid =max{wi − tji, 0} for all d in a(i).

Thus,

−
"

d∈a(i)

uid + giwi =

&!
j∈XNPS

i
b2j if XNPS

i ∕= {i}
!

j∈XPS
i

b2j + b1i if XNPS
i = {i}

Then,

LHS =

&
BNPS

i + b2i +
!

j∈XNPS
i

b2j if XNPS
i ∕= {i}

BNPS
i + b2i +

!
j∈XPS

i
b2j + b1i if XNPS

i = {i}
=CNPS

i + b2i = bi

ec10 e-companion to : Rapid Influence Maximization: The PIDS Problem

7

6
5

1 8 2

0

1

0 1

0

0
4

3

0

9
0 10

11 12 13 14 15 16

0

0 0 0 0 0

$%

& ℎ ()
* +

,0 - . / 0 1
1

1

1
1

2 2

1 1

10

11

1
0
0

(

)

/
345
354

t1,10 = 1 t6,7 = 1 u3,e = 1
t1,11 = 1 t7,6 = 1 w4 = 1
t1,6 = 1 t7,4 = 1 u4,k = 1
t2,13 = 1 w8 = 2 u4.l = 1
t2,14 = 1 w9 = 2 u5,i = 1
t2,5 = 1 w10 = 1 w6 = 1
t3,15 = 1 w11 = 1 u6,h = 1
t3,16 = 1 w12 = 1 w7 = 1
t3,4 = 1 w13 = 1 u7,n = 1
t4,10 = 1 w14 = 1 u7,o = 1
t5,9 = 2 w15 = 1
t6,8 = 2 w16 = 1

Figure EC.7 (a) A PIDS problem instance for Theorem 2. (b) Non-zero dual variable values except v.

The second to the last equality holds because CNPS
i =BNPS

i +
!

j∈XNPS
i

b2j when |XNPS
i |= gi and

CPS
i =BNPS

i +
!

j∈XPS
i

b2j and CNPS
i =CPS

i + b1i when XNPS
i = {i}. The last equality follows from

the definition of b2i .

Second, suppose that node i is selected in the Parent-Selected solution (XPS
i = {i}, as shown in

Figure EC.6(b). It implies that XNPS
i =XPS

i . If LHS < bi, let wi =max{tji : j ∈ Sgi−1}. Set uid =

vid =wi−tji =wi−b2j for all j in Sgi−1 and d in a(i)∩a(j). Thus, LHS =BNPS
i +

!
j∈Sgi−1

b2j +wi >

bi, as node i is selected in XPS
i by the DP algorithm. At this point, we ensure that LHS ≥ bi.

Then, if LHS > bi, select a d̃ in a(i) and increase its uid̃ and vid̃ by LHS − bi, i.e., uid̃ = vid̃ =

uid̃ + LHS − bi . Thus, conditions (EC.19) is satisfied because constraint (EC.9) is binding by

construction. Conditions (EC.20) is satisfied because ydi = 0 and constraint (EC.11) is respected.

□

Figure EC.7(a) is the transformed graph and its solution based on the instance in Figure EC.3.

On the right part of Figure EC.7, it has non-zero dual variables, except for v variables because uid =

vid. First of all, we set up all t variables. They are shown in the first two columns in Figure EC.7(b).

For Case 1, we have nodes 8, 9, 10, 11, 12, 13, 14, 15, and 16. Thus, set w8 = 2, w9 = 2, w10 =

w11 = w12 = w13 = w14 = w15 = w16 = 1. For Case 2, we have nodes 1, 2 and 7. For node 1, |Sj
1|=

3 > 1 = g1. Thus, w1 = 0. For node 2, |Sj
2| = 3 > 2 = g2. Thus, w2 = 0. For node 7, |Sj

7| = 3 = g7.

Thus, w7 =max{t4,7, t5,7, t6,7} = 1, and u7,m = 0, u7,n = u7,o = 1. For Case 3, we have nodes 3, 4,

5 and 6. For node 3,
!

j∈n(3) t3,j = 2 = b3. For node 4,
!

j∈n(4) t4,j = 1< 2 = b4. Set w4 = 1 = t7,4,

u4,k = 1− t3,4 = 1 and u4,l = 1− t10,4 = 1. For node 5,
!

j∈n(5) t5,j = 2> b5. Set u5,i = 1. For node 6,
!

j∈n(6) t6,j = 3< 4 = b6. Set w6 = 1 and u6,h = 1. The total objective value is 12, which is exactly

the same as that of the solution obtained by the DP.

e-companion to : Rapid Influence Maximization: The PIDS Problem ec11

EC.2.2. Proof of Lemma 1

Assume that this is not true. Given that xi = 1 and the inequality is binding, we cannot select

any node j in S. Furthermore, to satisfy node j’s threshold requirement, at least gj of node j’s

neighbors should be selected because xj = 0. However, given deg(j)− |n(j)∩S|< gj, we must select

some nodes in S. A contradiction is found. □

EC.2.3. Proof of Lemma 2

Assume that this is not true. Given that xi = 0 and |Sall|>ai, we must have xj = 1 for all j in Sall.

Then, aixi +
!

j∈S xj ≥
!

j∈Sall
xj >ai. A contradiction is found. □

EC.2.4. Proof of Lemma 3

First, if for a given i and S, inequality (22) violates both Lemmas 1 and 2, it cannot be facet defining

because inequality (22) cannot be satisfied as an equality. Second, if it only satisfies Lemma 1, we

can only have the inequality binding when xi = 1. Then, at most, |V |− |S| affinely independent

points in PT (G) can be found because xj = 0 for all j in S. Third, if it only satisfies Lemma 2, we can

only have the inequality binding when xi = 0. Thus, at least one node in S, denoted by j, violates

the condition that deg(j)− |n(j)∪S|≥ gj. Then, if node j is not selected, at least one other node

in S must be selected. That means we can find at most |V |− 1 affinely independent points. Taken

together, this means that in order to obtain |V | affinely independent points that satisfy inequality

(22) at equality, we must satisfy both the requirement of Lemma 1 (deg(j)− |n(j)∩S|≥ gj for all

j in S) and Lemma 2 (|Sall|≤ ai). □

EC.2.5. Proof of Lemma 4

Equation (29) minus the jth equation from the equation set (30) yields uj = 0 for all j in {V \
(S+∪H1)}. If inequality (22) is facet defining, we must also have the coefficients uj = 0 for j ∈H1.

Notice, for a given C in C
ai−|Sall|
S\Sall

, equation (31) minus the jth equation from the equation set (32)

yields uj = 0 for all j in {V \ (S+ ∪Nall ∪HC)}. If a node j ∈H1 does not belong to HC for some

C ∈ C
ai−|Sall|
S\Sall

, then j ∈ V \ (S+ ∪Nall ∪HC) for that particular C, and we can establish that its

coefficient uj = 0.

We claim that if a node j ∈ H1 does not belong to HC for some C ∈ C
ai−|Sall|
S\Sall

, then γj ≤ ai.

Otherwise, if γj > ai it cannot be removed from any xC
0 because we can only select ai nodes from

S if xi = 0 (i.e., j is in all sets HC for C ∈C
ai−|Sall|
S\Sall

). □

EC.2.6. Proof of Lemma 5

Given Lemma 4, we have 0s for all positions in V \S+. It means that Nall = Sall. We can simplify

the equation system of (29) to (32) as:

µi = µ0 (EC.21)
!

j∈Sall
µj +

!
j∈C µj = µ0 ∀C ∈C

ai−|Sall|
S\Sall

(EC.22)

ec12 e-companion to : Rapid Influence Maximization: The PIDS Problem

We know that C
ai−|Sall|
S\Sall

is the set of all combinations for choosing ai − |Sall| nodes from the

set S \ Sall. Thus, µj =
µ0
ai

for all j in S is a solution to (EC.21) and (EC.22). However, it is not

the unique solution. Depending on the value of
!

j∈Sall
µj, we can have infinitely many solutions

by setting uj =
µ0−

!
j′∈Sall

µj′

ai−|Sall|
for all j in S \ Sall . For the uniqueness of the desired (π0,π), we

need two things. First, Sall = ∅. Thus, the solution does not depend on the value of
!

j∈Sall
µj

anymore. Second, when |S|≥ 2, we need ai ≤ |S|− 1. Then, from C
ai−|Sall|
S\Sall

, we can take any two

combinations C1 and C2: they have the same nodes, except for nodes j1 and j2 such that one has

node j1 but not node j2, and one has node j2 but not node j1 (i.e., C1 \ j1 = C2 \ j2, C1 \C2 = j1

and C2 \C1 = j2). Take their corresponding (EC.22)s and subtracting one from the other. That

gives uj1 = uj2 . Repeating this process, we have uj1 = uj2 for any two distinct j1 and j2 in S. When

|S|= 1, we have uj = µ0 because ai = 1. Then, uj =
µ0
ai

for all j in S. Thus, πi = π0 = ai and πj = 1

for all j in S. □

	s1
	s1A
	s1B
	T1
	s2
	s3
	s4
	s5
	s5A
	s5B
	s5C
	s6
	TF1

