INFORMS Journal on Computing

Vol. 18, No. 3, Summer 2006, pp. 348-365
1ssN 1091-9856 | E1ssN 1526-5528 | 06 | 1803 | 0348

1orms})

Dpo110.1287 /ijoc.1040.0123
©2006 INFORMS

The Multilevel Capacitated Minimum
Spanning Tree Problem

Ioannis Gamvros, Bruce Golden, S. Raghavan

The Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742-1815, USA
{igamvros@rhsmith.umd.edu, bgolden@rhsmith.umd.edu, raghavan@umd.edu}

In this paper, we consider the multilevel capacitated minimum spanning tree (MLCMST) problem, a gener-
alization of the well-known capacitated minimum spanning tree (CMST) problem, that allows for multiple
facility types in the design of the network. We develop two flow-based mixed integer programming formula-
tions that can be used to find tight lower bounds for MLCMST problems with up to 150 nodes. We also develop
several heuristic procedures for the MLCMST problem. First, we present a savings-based heuristic. Next, we
develop local search algorithms that use exponential size, node-based, cyclic and path exchange neighborhoods.
Finally, we develop a hybrid genetic algorithm for the MLCMST. Extensive computational results on a large
set of test problems indicate that the genetic algorithm is robust and, among the heuristics, generates the best
solutions. They are typically 6.09% from the lower bound and 0.25% from the optimal solution value.

Key words: networks; tree algorithms; heuristics; local search; multiexchange neighborhood; genetic algorithms

History: Accepted by Prakash Mirchandani, Area Editor for Telecommunications and E-Commerce; received
June 2003; revised August 2004, September 2004, October 2004; accepted November 2004.

1. Introduction

The topological design of local access communica-
tion networks involves many analytical challenges
(see Gavish 1991 for an overview). One of the prob-
lems that deals with the design of communication
networks is the terminal layout problem, which is
typically referred to as the capacitated minimum
spanning tree (CMST) problem. In the CMST prob-
lem, we are given a set of terminal nodes, each with
its own traffic requirements, that we wish to transport
to a given location (i.e., the central node). Furthermore,
a facility (communications link) with a fixed capacity
is available for installation between any two nodes.
We wish to design a feasible minimum-cost tree net-
work to carry the traffic from the terminal nodes to
the central node.

In practice, it seems unreasonable to assume that
only a single facility type is available to the net-
work planner. In this paper, we deal with a gener-
alization of the CMST that addresses many of the
practical concerns associated with local access net-
work design. Specifically, we consider the multi-
level capacitated minimum spanning tree (MLCMST)
problem, in which there are multiple types of facil-
ities (with different capacities and costs) that can
be installed between two nodes in the network.
This problem arises at telecommunications companies
building fiber-optic based local access networks.

The MLCMST problem can be formally defined as
follows. We are given a graph G = (N, E), with node
set N and edge set E. One of the nodes in N is the
central node, which we will denote by c, and the rest

348

are terminal nodes. W; is the (integer) traffic require-
ment (or weight) of node i to be transported to the
central node c. We are also given a set of facility types
A={0,1,..., L} with capacities Z, < Z; <--- < Z; and
cost functions C}; denoting the cost of a facility of
type [installed between nodes i and j. We wish to
find a minimum-cost tree network on G to carry the
traffic from the terminal nodes to the central node.

Figure 1 gives an example of the MLCMST prob-
lem. In Figure 1(a), the square node in the center is
the central node to which traffic must be transported.
There are three types of facilities with capacities
Zy=1,72,=3, and Z, =10, and each node generates
one unit of traffic. Figure 1(b) shows a feasible multi-
level capacitated spanning tree. Notice that the topol-
ogy of the network is a tree, and traffic on any link
is less than or equal to the capacity of the facility
installed on the link.

In general, the traffic requirements for each of the
terminal nodes can be different. However, in this pa-
per, we restrict our attention to unit-demand prob-
lems (i.e., problems with W; =1 for all terminal
nodes). We discuss extensions of our work to the
nonunit demand case in §7. Additionally, we restrict
our attention to (realistic) cost functions that exhibit
strict economies of scale that are typical in commu-
nication networks. In other words, the cost of each
facility satisfies the relationship

Z
Y Y x
Cij < Z_YCU

for every edge {i, j} €E, and x <.

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS 349
o o i ° Table 1 Optimal Combinations of Facilities
[]

° ® . . ° New facility type Facility combination Cost Capacity

. o ° * 0 Z, 1 1

® i ® 1 Z] 2 3

. 2 2. Z, 3 4

. e m . ° 3 2x 7, 4 6

. 4 7y, 2% Z, 5 7

. . ° . 5 Z 6 12

[]
° ® * ° °

o optimal to install a facility of type 0 and two facilities
. ° . of type 1. By creating new facility types with costs
and capacities indicated in columns three and four of
* (a) the table, we obtain a problem where only a single

\ X/'
) ‘ |
\ N s
- \ ~ s (‘
./I(Link type 0, Z=1
Link type 1, Z=3

Link type 2, Z= 10

S
(b)

Multilevel Capacitated Minimum Spanning Tree. (a) Nodes
in the Network. (b) Feasible Multilevel Capacitated Spanning
Tree

Figure 1

We also impose the condition that only a single
facility is installed on a link. This condition is, ac-
tually, not restrictive. If multiple facilities can be
installed on a link, Salman et al. (2001) point out, in
the context of a related problem, that by applying a
dynamic programming algorithm, the problem can be
converted to one where only a single facility type is
installed on a link. This is done by determining the
optimal combinations for all traffic levels, and creat-
ing new facility types, each representing one of the
optimal combinations. For example, assume that three
types of facilities are available for installation, with
capacities Z; =1, Z, =3, and Z, =12 and costs (per
unit of traffic) of 1, 2, and 6, respectively. Then, by
applying dynamic programming, we get the optimal
facility combinations shown in Table 1. (Note that we
calculate facility combinations in this manner up to
the maximum traffic amount carried on any edge in
the network.) Let f represent the traffic on a link.
Then the table indicates that for 0 < f <1, it is optimal
to install a facility of type 0, while for 6 < f <7, it is

facility is installed on a link.

Related Literature

The MLCMST does not appear to have been given
much attention by researchers previously. A closely
related problem that also deals with multiple facil-
ity types is the so-called local access network design
(LAND) problem (Berger et al. 2000, Salman et al.
2001) or the so-called Telpak problem (Rothfarb and
Goldstein 1971). In the LAND problem, as in the
MLCMST, we are given traffic demand from nodes in
a network that needs to be transported to a central
node, several facility types with differing costs and
capacities, and we wish to design a minimum-cost
network to transport this traffic. However, the topol-
ogy of the underlying network is not restricted to be a
tree. Herein lies the distinction between the MLCMST
problem and the LAND problem.

Berger et al. (2000) propose a tabu search proce-
dure for the LAND problem to obtain good heuris-
tic solutions for problems with up to 200 nodes and
9 facility types. In their problem, the demand from a
node must travel to the central node along the same
path (i.e., demand splitting is not allowed). Salman
et al. (2001) study the version of the LAND problem
in which demand splitting is allowed, and propose a
branch-and-bound procedure using a technique called
search by objective relaxation. Using this technique, they
solve problems with ten nodes and up to nine facility
types to optimality.

A generalization of the LAND problem that also
involves discrete facility types to be installed on the
edges of a graph is the network loading problem
(NLP). In this problem, the traffic demands are dis-
tributed (i.e., demands exist between any two nodes
in the network) as opposed to the centralized case
where all demands are directed to a central node.
Magnanti et al. (1993) consider the NLP with a single
facility type and describe the convex hull of two core
subproblems of the NLP. In a sequel paper Magnanti
et al. (1995) provide two approaches—Lagrangian
relaxation and a cutting plane approach—to solve

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

350

INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS

the NLP with two facility types. With this approach
they are able to solve to integer optimality prob-
lems with up to 10 nodes and 23 edges. Bienstock
et al. (1998) also consider the NLP with a single facil-
ity type. They describe two formulations, one based
on metric inequalities and the other an aggregated
multicommodity formulation. They develop cutting
plane algorithms for both formulations, adding addi-
tional strong valid inequalities, and achieve compa-
rable results with both formulations on two sets of
real-world problems. Bienstock and Giinliik (1996)
study a generalization of the NLP called the capac-
ity expansion problem (CEP). Here, an existing capac-
itated network is provided and the objective is to
minimize the cost of additional facilities necessary
to route the traffic. If there are no existing facilities
this problem is identical to the NLP. They study the
polyhedral structure of a mixed-integer programming
formulation of this problem, with two facility types,
and develop a cutting plane algorithm using facet
defining inequalities. Dahl and Stoer (1998) consider
the CEP with additional survivability requirements,
and present a cutting plane algorithm that they test
on a set of real-world problems.

In a survey paper, Gavish (1982) describes the Tel-
pak problem and restricts it to a tree (thus considering
the MLCMST problem). He presents a formulation for
this problem and also points to the lack of research
attention given to it. In fact, Gavish (1991) states: “The
Telpak problem is a fundamental design problem in
the local distribution of telephone systems. The prob-
lem is especially important in the design of fiber-
based local access networks. It is surprising to find
that in spite of its practical importance, the Telpak
problem has received very little attention in the pub-
lished literature. We are not aware of recent research
on developing exact methods for solving the problem
to optimality, or of the development of new types of
heuristics for this class of problems.” Our paper rep-
resents a step towards rectifying this situation for this
important telecommunications problem.

The rest of this paper is organized as follows. In §2,
we present two flow-based mixed-integer program-
ming formulations that can provide exact solutions
(for smaller problems) and lower bounds (for larger
problems). In §3, we present a heuristic for the
MLCMST. In §§4 and 5, we develop (two) local search
approaches and a genetic algorithm, respectively.
Finally, in §6, we present extensive computational ex-
periments, and, in §7, we suggest directions for future
work.

2. Mathematical-Programming

Formulations
In this section, we describe some flow based mixed-
integer programming formulations for the MLCMST

problem. First, we describe a straightforward single
commodity formulation (SCF), which is equivalent
to the one presented by Gavish (1982) for the Tel-
pak problem restricted to a tree. Next, we strengthen
this formulation in a similar fashion to Gavish (1983)
and Gouveia (1993) for the CMST problem, to obtain
an enhanced single commodity formulation (ESCEF).
Finally, we develop a stronger multicommodity flow
formulation (MCF) for the MLCMST problem.

In both the single commodity and the multicom-
modity formulations, following a common technique
used to build strong formulations for tree problems,
we develop our model on a directed graph. We create
the directed graph by replacing each edge {i, j} € E in
the original graph by two directed arcs(i, j) and (j, i),
and denote the set of directed arcs by A. The cost
of installing a facility of type [on an arc(i, j), C}j, is
identical to the cost of installing a facility of type [on
edge {i, j}. Observe that any feasible multilevel capac-
itated spanning tree can be directed towards the cen-
tral node to obtain a solution of identical cost on the
directed graph. Consequently, on the directed graph,
we wish to find a minimum-cost directed tree where
every node has a directed path to the central node,
and the traffic on every arc on the tree is less than or
equal to the capacity of the facility installed on the arc.
We note that, when a feasible multilevel capacitated
spanning tree is directed towards the central node,
none of its arcs are directed out of the central node.
Consequently, we delete all arcs directed out of the
central node from the arc set A. Also note, that when
directed, (i) the outdegree of each node in the tree is
one, and (ii) a feasible multilevel capacitated tree uses
the single facility installed between two edges in one
direction.

In the single commodity formulation, we create a
single type of commodity and specify a supply of W;
units for each node i € N\{c} and a demand of W, =
Yieny(e) Wi units at the central node (i.e., node c). Note
that in the unit-demand case, W; =1 for i € N\{c} and
W, =|N| - 1. Let f; denote the flow on arc(i, j). Let
y}j be a binary decision variable representing whether
or not a facility of type [is installed on arc(i, j). We
can now state the single commodity formulation as
follows:

Single Commodity Formulation (SCF)

L
min Zcz‘]ﬂ/fj

(i,))eA 1=0

subjectto Y fi— D fim
j:(j,)eA m: (i, m)eA
-W, ifi#c, .
= VieN, (1)
W, ifi=c,

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS

351

L
i< Ziyy; Y,)) €A,)
1=0

> Yyy=1 VieN\(c}, 3)

j: (i, j)eA 1=0

L

Sty <1 V{i,jleE, i j#c, (4)
1=0

y;€{0,1} V(i,j)eA, VIeA, (5)
fi=0 V(i j)eA. (6)

In the above formulation, constraint set (1) ensures
that every node sends its demand to the central node.
Constraint (2) ensures that the flow sent on an arc
is less than the capacity of the facility installed on
that arc. Constraint (3) ensures that there is exactly
one arc, and one facility type, directed out of node i.
Finally, constraint (4) guarantees that no more than
one facility is installed between two nodes, and the
facility is used in only one direction.

The linear programming relaxation of the SCF
formulation is quite weak. We make the following
observations that allow us to strengthen the single
commodity flow formulation. For any arc(i, j), with
j # ¢, that has a facility of type L installed on it, the
flow on arc(i, j) is less than or equal to Z; — W;. Thus
we may replace constraint (2) by

L1
fi<(Z,— W])]/S + IX: Zlyz!j
=0

when j # c. Additionally, if there is any facility on
arc(i, j), there must be flow on arc(i, j). Further, if the
facility installed on arc (i, j) is of type I > 0, then there
must be at least Z;_; + 1 units of flow on the arc (if
there was less flow on the arc we could lower the cost
of the solution by installing a lower capacity facility).
Consequently, we can add the constraint

L
fi 2]/2-+Z(Z1—1+1)yfj V(i j)eA @)
=1

to the formulation. With these changes, the enhanced
single commodity flow formulation may be stated as
follows.

Enhanced Single Commodity Formulation (ESCF)

L
min) Zciljyfj

(i, heA 1=0
subject to (1), (3), (4), (5), (6), (7)

L
fe=2Zyi V(0 €A, 8)

1=0

L-1

fi <@ =Wyl + 3 Ziy;,
1=0

V(@ j)eA, j#c. (9)

The LP relaxation of ESCF produces much higher
quality lower bounds than SCE. On a set of 200 test
problems reported in §6, the gap (defined as 1 — the
ratio of the optimal LP objective to the optimal IP
objective) between the optimal LP objective and the
optimal IP objective decreased from an average of
17.28% to 6.14% (see Table 3 for additional details).
The increase in running time to solve the LP relax-
ation of ESCF compared to the LP relaxation of SCF
is marginal (an average of 0.23 seconds vs. 0.2 sec-
onds). We also note that we were able to use ESCF
successfully to solve, to integer optimality, problems
with 20 terminal nodes and problems with 30 ter-
minal nodes with the central node in the center of
the graph within four minutes of CPU time, on aver-
age. However, there was a wide variation in the CPU
time (to solve ESCF to integer optimality) with the
longest running time being just under 30 minutes of
CPU time.

We now develop a multicommodity formulation
whose linear programming relaxation provides tighter
lower bounds than ESCF. In this formulation, we cre-
ate a commodity for each terminal node, with a sup-
ply of one at each terminal node, and a demand of
one at the central node. We denote the set of the dif-
ferent commodities by K. In our notation, the origin
of commodity k € K is denoted by O(k) and the des-
tination of commodity k is the central node, c. We
let flf denote the flow of commodity k on arc(i, j).
It represents the fraction of the demand of terminal
node O(k) (i.e., Wy) that is sent on a facility on arc
(i, j). We also introduce two types of arc variables.
x;; is a binary variable denoting whether a facility (of
any type) is installed on arc (i, j), and yfj is a binary
decision variable denoting whether or not a facility of
type [is installed on arc(i, j). We now state the mul-
ticommodity formulation for the MLCMST.

Multicommodity Formulation (MCF)

L
min) Zijyfj

(i,j)eA 1=0
st Y fi- T A
j:(j, i)eA m: (i, m)eA
~1 ifi=0(k),
={ 1 ifi=c,VieN,VkeK, (10)
0 otherwise,
K<x; V(i j)eA, YkeKk, (11)
L
S Wifi <X Ziyi. V(i 0)€A, (12)
keK 1=0

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS

352
L-1

> Wi i;'(=<(Z, - Wj)yz'Lj + Zzlyzzj
keK 1=0

V(i,j)eA, j#c, (13)
jeN
xi+x; <1 V{i,jleE, i j#c, (15)
L
nyj =Xy V(i j)eA, (16)

1=0

L
> kai;‘C z %Qj +> (Zi+ 1)%6‘

keK I=1

V(i,j)eA, (17)
x;€{0,1) Y(i,j) €A, (18)
y;€{0,1} V(i j)eA, VieA, (19)
fE=0 V(i,j)eA, YkeK. (20)

Together, constraints (10), (11), (14), and (15) ensure
that the network topology is a directed tree (directed
into the central node). Constraints (12) and (13) guar-
antee that the total traffic on any arc is less than the
capacity of the facility installed on that arc (with the
strengthening, as in constraint (9)). Constraint (16)
ensures that only one facility is installed on an arc,
and only if the arc is part of the MLCMST tree (i.e.,
x;; = 1). Finally, constraint (17) ensures that if a facility
of type [is installed on arc(i, j), then the total traffic
carried on that facility must be greater than or equal
to Z,_; +1 units.

ESCFLP

(0.75)
-—~< 1 ¢ (1) 1

MCF LP

05! |©.5)
\
_.
2() 3

Facility type 0, Z=1

Facility type 1,Z=3

N -
ML\ Edge Distance
s > {1} 4
{2} 5
{¢,3) 5.83
{1,2} 3
{1,3} 3.16
{2,3} 1

Figure 2 MCF Is Stronger than ESCF

We observe that any feasible solution (f, ¥, X) to the
LP relaxation of MCF can be converted to a feasible
solution (f, §) to the LP relaxation of ESCF, by setting
i =7}, and f; = ¥« W.ff. On the other hand, as
Figure 2 illustrates, there are solutions that are feasi-
ble to the LP relaxation of ESCF but infeasible to the
LP relaxation of MCF, thus showing that MCF is a
stronger formulation than ESCF. In Figure 2, node ¢
is the central node and nodes 1, 2, and 3 have unit
demand. There are two facilities, type 0 with a capac-
ity of 1, and cost equal to the distance, and type 1
with a capacity of 3, and cost equal to twice the dis-
tance. Figure 2 shows the optimal solution to the LP
relaxation of ESCE, the optimal solution to the LP
relaxation of MCF, and the optimal integer solution
to the problem. Observe that the optimal solution to
the LP relaxation of ESCF has 1) =0.75, y{.=0.25,
Y21=05,15, =055, =1, f,,=15, fn =05, =15,
and f;, =1. This solution has a cost of 12.5. The opti-
mal solution to the LP relaxation of MCF has x,. =1,
=1, xp=1, yi.=1, y3 =05, y; =05 y3=1,
fie=L fi=1 fi=1 fn=1 fy=1and f; =1 This
solution has a cost of 13.5 showing that the MCF
formulation is stronger than ESCE. The optimal inte-
ger solution to the problem sets y;, =1, y9, =1, and
¥9, =1 and has a cost of 14.16.

The strengthened formulation MCF obtained by
disaggregating the flow variables comes at a cost in
the size of the formulation. ESCF contains |A|(JA|+1)
variables, and 3|A| 4+ 2|N| — 1 — |E| constraints (other
than the nonnegativity restrictions). MCF contains
|A|(JA| + |N|) variables, and |A||N| + 3|A| + N> —
1 — |E| constraints (other than the nonnegativity con-
straints). Thus, for a 21 node problem on a complete
graph with 3 facility types, ESCF contains 1,600 vari-
ables (of which 1,200 are binary) and 1,031 constraints,
while MCF contains 9,600 variables (of which 1,600
are binary) and 9,830 constraints.

In our computational tests comparing the LP relax-
ation of ESCF and MCF, we found that the gap
between the LP relaxation of MCF and the optimal
MIP solution was on average 0.6% smaller than the
gap between the LP relaxation of ESCF and the opti-
mal MIP solution (see Table 3 for additional details).
On the other hand, the running time to solve the
LP relaxation of MCF was two orders of magni-
tude greater than the running time to solve the LP
relaxation of ESCF (see Table 4). As problem size
gets larger, this difference is costly from a computa-
tional perspective. For example, for 50-node problems
where the central node is in the center of the graph,
we found that the LP relaxation of ESCF solves in 1.37
seconds on average while the LP relaxation of MCF
solves in 536.96 seconds on average. Consequently,
we decided to use ESCF to provide lower bounds for

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS

353

the MLCMST problem (as some of our heuristic tech-
niques worked quite successfully to provide solutions
for problems with up to 150 nodes). We also note that,
due to the size of MCF, we were unable to solve the
MCF formulation to integer optimality for any of the
20-node instances in a reasonable amount of time.

As is evident from our discussion in this section,
the MIP formulations were only able to consistently
solve to optimality unit-demand problems with up to
20 and 30 nodes in a reasonable amount of compu-
tational time. Consequently, in the rest of this paper,
we develop several heuristic solution procedures for
the MLCMST problem.

3. Construction Heuristic

In this section, we describe a savings based construc-
tion heuristic for the MLCMST problem. First we
present some notation. For a given graph G = (N, E),
let T denote a feasible tree for the MLCMST problem.
For each node i in T, we define a set P, that contains
all the nodes on the path from i to the central node
(i.e., including node i, but excluding the central node).
For example, in Figure 3, P, ={2,4} and P, = {7, 8}.
We define the predecessor of node i as the first node
on the path from i to the central node and denote that
node by pred(i). We also use the notation Z(i), where
i € N\{c} to denote the capacity of the link that con-
nects node i to its predecessor, and let A(7) denote its
facility type. In our example, nodes i = {10, 11, 12, 13}
have pred(i) = 16, Z(i) = Z,, and A(i) = 0. Addition-
ally, we define the child-parent relationship between
nodes where node i is the child of pred(i), or equiva-
lently, node pred(i) is the parent of i. For each node i,
we define the set J; that consists of the subtree of i
(i.e., node i, children of i, children of their children,
and so on). Going back to our example,], would be

4 N Facility type 1
3
Figure 3 Example of a MLCMST Tree

{1,2,3,4}. Finally, we refer to the subtrees that are
rooted at the children of the central node as rooted
subtrees.

Our construction heuristic starts with a star net-
work in which all nodes are connected to the central
node with the lowest capacity facilities possible (i.e.,
facility type 0 for the unit-demand case), as shown in
Figure 4(b) for a three-facility example. To improve
upon this solution, we would like to determine for
which nodes it would be beneficial to upgrade their
connections in the star network to facilities of type L.
Obviously, upgrading the capacity of these connec-
tions will increase the cost. However, if we reconnect
some of the other nodes that are directly connected to
the central node to the nodes with upgraded connec-
tions, we might reduce the overall cost.

In order to calculate the savings generated by the
upgrade and the reconnections, we first construct a
savings value d;; that captures the reconnection costs.
We then use this value to evaluate the overall cost D¥
(i.e., the cost of the upgrade to facility type L and
the reconnections). The savings value d;; = C/»AC(] - C/»Ai(]),
where ¢ denotes the central node, represents the sav-
ings in removing the connection from node j to the
central node and reconnecting node j to node i (in
the unit-demand case A(j) =0). We then compute, for
each node i, the overall savings DF in upgrading link
{i, ¢} from a facility of the current type to a facility of
type L. We compute

DF=C}-CL+ max Yd; (1)
{H:HCN, d;>0¥jeH, jp
Zte]iH Wi=Z,}

for each node i € N\{c}. The first two terms in (21)
represent the change in cost from upgrading link {7, c}
to a facility of type L. The third term represents the
greatest savings obtained by removing the connec-
tions {j, c} (since all nodes j were originally connected
to the central node) and introducing the connections
{j, i}, while ensuring that the capacity of facility type
L is not violated. In other words, set H contains
all the nodes that will send their traffic to i, which
together with node i’s traffic must be less than or
equal to the capacity of facility type L. Here we have
used J to denote the set J; that would result if H
was implemented. Once we have computed all D,
we then select the largest and implement the upgrade
and the reconnections corresponding to this choice.
We repeatedly apply this procedure by recomputing
the savings d; and Dj until there are no more pos-
itive savings (i.e., Df < 0). Figure 4(c) illustrates the
network obtained after applying this procedure for a
three-facility example.

At this point, we again seek to determine for which
nodes it would be beneficial to upgrade their connec-
tions to type L —1. The only difference from the previ-
ous step is that, before, all connections considered for

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

354 INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS
1
Te 2.5 ol7 6 7 25 17 p
° 21 21
.12 ® 12
20. 1]. 20 11

24 2 24 2

° 14

4 ° 14
8
) 16 8 16
.5 /
18e 5
] ®)e 18 S 28
9. 30 9 30
L 22 22
(]
9 o ! . . ° C L
’;
27 ° 23 . 23 !
o ° 15 15

° 10 4 2 10 4 26

3 3
[)
29 29
(a) (b)
7 25 17
6
21
12
20 1
24 2
14
8
16
18 5
9 B30
22
19 1
3
27 23 1
15
10 : 26
3 3 10 4 Facility type 0, Z =1
29 Facility type 1, Z=3
29 ememmm——-——
©) (d) Facility type 2, Z= 10
Figure 4 Construction Heuristic for a Three-Facility Unit-Demand Example

upgrading were directed to the central node but now
there are some links directed to other nodes as well.
We take this into account when calculating the sav-
ings value d;;. In general d; = C]')‘;E];)ed(/) - C]-'t-(j). We now
calculate the overall savings DF~! by upgrading the

connection of node i to link type L —1 by computing

L—-1 A(D) L-1
Di = Cipred(i) - Cipred(i)
max > dy. (22)

{H: HCN, d;>0 V jeH, jeH
Yo WesZia,
"W, <Z(pred(i)}

tTpred
Notice that, in (22), we are interested in upgrading
the connection between node i and its predecessor.
Also, we consider reconnecting some set of nodes H
to node i only if the capacity of link {7, pred(i)}
and the capacity of link {pred(i), pred(pred(i))} are
not violated. These two conditions are expressed as
Yiegp Wy =7, and ngflﬁedm W, < Z(pred(i)). We then

select the largest D! and implement the upgrade
and the reconnections. We keep doing this until there
are no more positive savings.

In general, the steps of the construction procedure
are shown in Figure 5. After the initial solution is gen-
erated, the algorithm calculates the savings generated
when upgrading connections to facility type L. When
no more savings can be achieved by these upgrades,
we look at savings generated by upgrading connec-
tions to facility type L —1, then facility type L —2, and
so on, until we consider savings with facility type 0
(if facility type 0 has capacity Z; =1, facility type 0
need not be considered). The savings in all cases can
be computed from

I _ M) !
Di - Cipred(i) - Cipred(i)
max > di (23)
(H:HCN, ;=0 VjeH, iop
Xien Wes2y,

iept WesZ(m), ¥ mePpreq(p)

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS

355

Begin
Generate initial star solution
<L
while (I >0) do
exit < false;
while (exit = false) do
for every i not in the final solution do
Compute D!
end for
If (largest D! > 0)
Select largest D!, implement upgrade and reconnections
Add i in the final solution
else (exit <« true)
end while
l<—1-1
end while
end

Figure 5 Steps of Construction Heuristic

The first two terms in (23) refer to the change in cost
that comes by upgrading the link from i to its prede-
cessor to a type ! facility. The third term computes the
best set of nodes H to connect to node i to maximize
the savings achieved while ensuring that no facil-
ity capacity is exceeded along the path from node i
to the central node (ie, Y, n W, = Z), Yy W, <
Z(m), Vm € Pyeq;))- Figure 4(d) shows the final solu-
tion obtained by this procedure on a three-facility
example.

We now discuss the worst-case running time of
this heuristic for the unit-demand case. Observe that
in (23), to find D! we have to compute the set H
that maximizes the savings in upgrading the connec-
tion from i to pred(i). We discuss this optimization
in further detail. To facilitate the computation of the
set H, we keep track of the following three variables
at each node of the current tree: slack(i) = Z(i) —
> tej Wi, which keeps track of the amount of unused
capacity on the facility between i and pred(i), res(i) =
min,,.p(; slack(m), the capacity of the path from i to
the central node, and subnet(i), which is the last node
on the path from i to the central node (this identi-
fies all nodes in the same rooted subtree). We observe
that for a given tree all three quantities can be com-
puted on the tree in linear (9(|N|)) time by making
an upward pass from the leaf nodes to the central
node (computing slack(i)) and a downward pass from
the central node to the leaves (computing res(7) and
subnet(i)).

To compute the set H that maximizes D!, we first
sort all d; > 0 in decreasing order. This takes
G(IN|log|N]) time. Next, we consider the d; > 0 in
sorted order connecting j to i if it is feasible to do
so (i.e., the path from i to the central node has suf-
ficient capacity). Observe that if the connection from
node i is upgraded, then initially res(i) = min(Z, — 1,
res(pred(i))). It may appear that we need only con-
sider the first min(Z, — 1, res(pred(i))) nodes on the

sorted d;; list and connect them to node i. However,
this is not true. When subnet(j) # subnet(i), connect-
ing node j to node i reduces the available capacity on
the path from node i to the central node by one. When
subnet(j) = subnet(i) (i.e., nodes i and j are in the
same rooted subtree of the central node) let ¢+ denote
the node at which the path from node i to the central
node and the path from node j to the central node
intersect. If slack(k) > res(k) for all k on the path from
node i to t, connecting node j to node i leaves res(i)
unchanged (i.e., the available capacity on the path
from node i to the central node remains unchanged).
In other words, it may be possible to connect some
nodes in i’s rooted subtree (i.e., the rooted subtree to
which i belongs) to node i to obtain savings, even if
res(i) = 0. Consequently, to compute the maximizing
set H we need to take into account whether or not the
node j is in i’s rooted subtree. When the node is from
a different rooted subtree, we simply check that the
residual capacity at node i is greater than 0. When the
node is in the same rooted subtree we need to check
res(k) and slack(k) for nodes k on the path P(i), which
takes @(min(|A|, [N|)) time. The maximum number of
nodes in a subtree is Z;, and thus the time to com-
pute the maximizing set H is @(|N|log|N| + |[N| +
Z, min(|Al, |N|)) or ¢(|N|log N[+ Z,|N]).

With this discussion, we may now derive the worst-
case running time as follows. Since we compute D! in
each iteration for all nodes that are not in the final
solution and there are at most [N| — 1 such nodes,
computing D! takes at most @(|N|*log|N| + Z,|N|?)
time. The number of iterations is bounded by |N|+
|A]. Thus, the overall running time of the construction
heuristic is @(IN[*(log |N| + Z,)(IN|+ |A])).

4. Local Search

We now describe two local search procedures for the
MLCMST problem. Our local search procedures use
a “node-based, multiexchange neighborhood struc-
ture” originally proposed by Ahuja et al. (2001) for
the CMST problem. With this neighborhood struc-
ture, Ahuja et al. were able to achieve results that
improved upon the previously best known solutions
for CMST problems (specifically, improvements of
3.2% on average and 18% maximum were reported).
As the MLCMST problem is a generalization of the
CMST problem, it is likely that this neighborhood
structure will prove effective in a local search tech-
nique for the MLCMST problem.

For the purposes of our presentation, we will use
notation that is similar to that in Ahuja et al. (2001)
except when it conflicts with our own. Recall from §3
that we denote the spanning tree that provides a solu-
tion to the MLCMST as T. For each node i in T, we
denote by T[i] the rooted subtree of T that contains

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

356

INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS

node i. We also denote by S[i] the set of nodes that are
contained in T[i]. Note that we define S[i] to contain
node 7 as well. For example, in Figure 3, for T[5] =T},
S[5]=1{5,6,7,8,9} (in fact for all j € S[5], T[j]=Tp
and S[j] = S[5]). We say that S[i] is feasible if and
only if > ;s W; < Z, where W, is the traffic of node i
and Z; is the largest available capacity to us. If S[7] is
feasible, we denote by ‘6(S[i]) the cost of a minimum-
cost multilevel capacitated tree spanning the node set
S[i]U{c}, where c is the central node. Also, a subtree
T[] is feasible only if the associated set S[i] is feasible
and a tree T is feasible only if T[{] is feasible for every
ie N\{c}.

4.1. Neighborhood Definition

We now present two types of node-based, multi-
exchange neighborhood structures (described in
Ahuja et al. 2001 for the CMST)—cyclic exchanges and
path exchanges—as applied to the MLCMST problem.

Cyclic Exchanges. A cyclic exchange is denoted as
, — 1; and represents the followmg
changes: node i; moves from T[i;] to T[i,], node i,
moves from T[i,] to T[i;], and so on, and finally
node i, moves from T[i,] to T[i;]. A cyclic exchange
is defined only if all nodes in the exchange belong
originally to different rooted subtrees. Also a cyclic
exchange is feasible only if the tree T’ obtained after
the exchange is feasible. We can compute the cost of a
feasible exchange by calculating

11—12—.-_1

CTY = E(T) = 3 (€(li 1) USTi, M)

m=1

—€(S[i,]),
(24)

where i, is defined as i,. The cyclic exchange is called
profitable if €(T") — €(T) < 0 and nonprofitable other-
wise. In Figure 6(a) we present a tree T and denote
the cyclic exchange 10 — 14 — 6 — 3 — 10 with arrows.
Figure 6(b) shows the tree T’ after the exchange.

Path Exchanges. A path exchange is denoted by
iy —i, —--- —1i, and represents the following changes:
node i; moves from T[i;] to T[i,], node i, moves from
T[i,] to T[i;], and so on, and finally node i,_; moves
from T[i,_,] to T[i,]. The only difference between the
cyclic exchange and the path exchange is that in the
latter no node moves from subtree T[i,] to subtree
T[7,]. Similar to cyclic exchanges, path exchanges are
defined only when all nodes in the exchange orig-
inally belong to different rooted subtrees. A path
exchange is feasible only if the tree T' obtained after
the exchange is feasible. The cost of a path exchange
is given by

(S[ill\{i1}>+i%({im_l}usvm]\{im})

m=2

ET)—€(T) =€

m=1

Facility type 1,Z=5
(b) —_—

Figure 6 Cyclic-Exchange Example

The path exchange is called profitable if ‘6(T") —
©(T) < 0 and nonprofitable otherwise. In Figure 7(a)
we present a tree T and denote the path exchange
10 — 14 — 6 — 3 with arrows (note that the last node in
the path exchange is not unique). Figure 7(b) shows
the tree T’ after the exchange. The neighbors of a
tree T are defined as the set of feasible trees that can
be obtained from T using a cyclic exchange or path
exchange.

4.2, Neighborhood Construction and Exploration

The neighborhood defined above is of exponential
size and is thus very large even for relatively small
problems. An efficient exploration of this large neigh-
borhood is achieved through the construction of an
improvement graph (Thompson and Orlin 1989). We
now briefly describe the construction of the improve-
ment graph for cyclic and path exchanges as applied

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS

357

Facility type 1, Z=5

} (b)

Figure 7 Path-Exchange Example

to the MLCMST problem, and explain how profitable
cyclic and path exchanges can be identified.

Improvement Graph and Exchanges. An improve-
ment graph for a specific feasible solution T to the
MLCMST problem is denoted by G(T). The graph
G(T) is directed and has the same node set as the
original graph G of the MLCMST problem. Specifi-
cally, there is a one-to-one correspondence between
a node i in the original graph and a node i in the
improvement graph. However, the arc set of the G(T)
graph is defined differently. For each pair of nodes
i,j € N, the arc(i, j) in G(T) is defined only if T[i] #
T[j] and {i} U S[j]\{j} is a feasible subset of nodes
(which is always true in the unit-demand case). More-
over, we denote the cost of arc(i, j) by «;; and define
it as

a; = 6({i}US[/I\{j}) —€(S[j]-

Consider a directed cycle iy —i, —--- — i, —i; where
T[i] # T[i,] # - - - # T[i,] (i.e., all nodes belong to dif-
ferent subtrees). Observe that the sum of the costs
of the arcs on the cycle correspond exactly to the
change in cost when the cyclic exchange i} —i, —--- —
i, —i; is implemented. A directed cycle iy —i, — -+ —
i, —i; is called subset-disjoint if the subtrees T[i],
T[i,], ..., T[i,] are different rooted subtrees. Notice
that every subset-disjoint cycle with negative cost on
the graph G(T) represents a profitable node-based
cyclic exchange for the tree T (Thompson and Orlin
1989).

To identify path exchanges, the improvement graph
has to be modified slightly (see Ahuja et al. 2001
for complete details) by adding some nodes and arcs
so that negative-cost subset-disjoint cycles represent
both cyclic and path exchanges. We add an extra ori-
gin node v, and for each of the existing nodes j in
the improvement graph create an arc(v, j) with cost
G(S[jI\{j}) — ©€(S[j]). Next, we create a pseudonode
for each rooted subtree in T. For each pseudonode #,
we create an arc(h, v) to the origin with cost 0, and
an arc(i, h) from each of the nodes i in the origi-
nal improvement graph (i.e., before we added extra
nodes), if {i} USJ[j] is a feasible subset of nodes, with
cost €({i} U S[h]) — € (S[A]).

Neighborhood Exploration. Once the improve-
ment graph is constructed, we still have to identify
subset-disjoint negative-cost cycles in order to iden-
tify profitable exchanges. Finding the most negative-
cost subset-disjoint cycle is NP-hard. However, a
subset-disjoint negative-cost cycle can be found using
a modified shortest path algorithm as described in
Ahuja et al. (2001). This label-correcting algorithm
starts from a given node s and searches for the short-
est path to all other nodes on the graph. The mod-
ifications made to the algorithm ensure that it finds
only subset-disjoint cycles. The quality of the subset-
disjoint cycles that are generated with this procedure
depends heavily on the starting node s. Consequently,
in our implementation, we select each node on the
graph as a starting point, run the modified label-
correcting algorithm, and then select the best overall
cycle (i.e., the one with the smallest cost). Since we are
interested in negative-cost subset-disjoint cycles if this
procedure finds a subset-disjoint cycle with positive
cost, we do not implement the exchange represented
by the cycle.

4.3. MLCMST Implementation

Observe that the multiexchange neighborhood struc-
ture requires the calculation of a minimum-cost tree
over the set of nodes S[i]U {c} that is necessary for
the construction of the improvement graph. In the
CMST problem, this tree is obtained by simply com-
puting the minimum spanning tree (MST). However,

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

358

INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS

in the case of the MLCMST problem, finding this
minimum-cost tree is also a MLCMST problem, but
on a smaller graph. Specifically, for a MLCMST prob-
lem on a graph G= (N, E) with A={0,1,...,L}, the
problem of finding a minimum-cost tree spanning the
set S[i] U {c} will have, in the worst case (i.e., when
all nodes in S[i] have unit demand), Z;, nodes. Since
the cardinality of S[i] does not depend on the prob-
lem size |N| but on Z;, it is possible to have situ-
ations where, in order to evaluate €(S[i]), we need
to solve a problem of size similar to the original. In
practice, it is possible to compute 6(S[i]) for smaller
problems (|N| <20) with the help of the ESCF model
we presented in §2. However, this approach is compu-
tationally very expensive, as an MIP model has to be
used to compute the cost of each arc in the improve-
ment graph. Furthermore, as the structure of the cur-
rent solution changes, the costs of the arcs in the
improvement graph have to be recomputed, necessi-
tating repeated use of an MIP model to compute the
costs of the arcs.

Instead, we propose the use of the construction
heuristic we developed in §3 to compute an estimate
€'(S[i]) of the cost of an arc in the improvement
graph. Observe that when we use the construction
heuristic to compute the costs of arcs in the improve-
ment graph, the cost of a cyclic or path exchange cor-
responds to the difference in cost between the tree T
prior to the exchange (given by ¢'(T)) and the tree T’
after the exchange (given by ¢'(T’)) when the rooted
subtrees in the trees T and T’ are obtained by the
construction heuristic. Thus, a negative-cost subset-
disjoint cycle in the improvement graph represents
a cyclic or path exchange that yields an improved
solution. Clearly, using the construction heuristic to
compute costs entails some risks (in terms of the
quality of the improved solutions found). On the
other hand, it is very advantageous to use the heuris-
tic due to running-time considerations. Our com-
putational results indicate that, despite using the
construction heuristic to compute costs, the perfor-
mance of the local search procedures we propose is
quite reasonable.

4.4. Local Search Algorithms for the MLCMST
We now present two local search procedures that
use the two node-based, multiexchange neighborhood
structures discussed earlier.

The first procedure starts from a feasible solu-
tion that is generated with the MLCMST construc-
tion heuristic. It then builds the improvement graph
for this solution and looks for negative-cost subset-
disjoint cycles starting from all nodes in the graph.
The costs of the arcs in the improvement graph are
computed using the MLCMST construction heuris-
tic. We then select, among the subset-disjoint cycles

found, the one with the lowest cost and we implement
the exchange (i.e., either cyclic or path) represented
by this cycle. Once the new solution is obtained, we
build the improvement graph corresponding to this
new solution and look for cycles once again. The pro-
cedure repeats these steps as long as we can identify
negative-cost subset-disjoint cycles. When no improv-
ing exchanges can be found, the algorithm stops.

The second procedure, which we call randomized
start local search (RSLS), considers many different
random starting solutions. The random starting solu-
tions are obtained by running the MLCMST construc-
tion heuristic on a perturbed version of the original
graph. The perturbation is achieved by multiplying
all the costs C!; by a random variable & uniformly dis-
tributed in the range [0.7, 1.3]. Note that, in order to
keep the original cost structure consistent, we have
to make sure that for each pair of nodes i, j € N, the
costs C,.lj, V1 e A are perturbed using the same value
of &. We generate ten different starting solutions and
we perform the local search procedure presented ear-
lier on each one individually. The final solution of the
RSLS approach is the best solution obtained from the
different runs.

5. Genetic Algorithm
Genetic algorithms (GA) are powerful procedures
motivated by ideas from the theory of evolution and
have been successfully used for a variety of prob-
lems (see Michalewicz 1996). Our GA consists of the
steps shown in Figure 8. First, an initial population
of individual, feasible solutions (or chromosomes)
P(t) is created. Next, the fitness of all the chromo-
somes in that population is evaluated. The fitness
of an individual summarizes in a single scalar the
quality of the solution represented by the individ-
ual. The evaluation of the fitness of the population
is required to check the termination condition of the
algorithm and during the selection of chromosomes.
At first, we select ¥ chromosomes (parents) from the
old population P(t — 1) for reproduction (crossover).
The crossover operator is essentially a set of rules that
defines the way in which characteristics (or genes)
from two solutions (parents) are combined to create
new individuals (children). After the crossover step,
the r new chromosomes (children) are assigned to the
new population, P(t). Next, pop_size — r — m individ-
uals are selected from P(t —1) and are copied to P(t).
Additionally, the best m individuals are chosen from
P(t—1) to be mutated. The mutated individuals then
become part of P(t). Finally, the new population is
evaluated and the procedure starts over.
Conceptually, our genetic-algorithm approach splits
the MLCMST problem into two parts: a grouping
problem and a network design problem. The group-
ing problem aims at finding the best assignment of

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS

359

Begin
t<0
initialize P(t)
evaluate P(t)
while (not termination-condition) do
t<—t+1
select r parents from P(t —1)
let the r parents reproduce (crossover) and generate r
offspring
insert the r offspring to P(t)
select (pop_size — r —m) individuals from P(f —1) and
copy them to P(t)
take the best m individuals of P(t —1)
and mutate them
insert the mutated individuals to P(t)
evaluate P(t)

end while
end
Figure 8 Steps of the Genetic Algorithm

nodes into groups that correspond to subtrees of the
central node. In other words, we try to find the
nodes i that belong in S[i] and form T[i]. Recall that
the set S[i] is feasible only if the sum of the weights
in the set does not exceed the capacity of the high-
est capacity link. In other words, for every group,
we require that 3", g W; < Z;. The cost of an assign-
ment made during the grouping part of the problem
is determined within our genetic algorithm by solving
the network design subproblem on the set S[i] U {c}
(where ¢ is the central node) and determining T[i]
for each node i € N. This network design problem
requires the construction of a minimum-cost multi-
level tree network that will connect all the nodes in
each of the groups with the central node, and the
genetic algorithm uses the heuristic presented in §3 to
construct trees on the groupings. The sum of the costs
of the different subtrees constructed by the heuristic
corresponds to the quality (fitness) of the grouping
assignment by the GA.

The notion of determining groupings (or nodes
in a subtree) has been used previously by some
researchers for the CMST problem (Ahuja et al
2001, Amberg et al. 1996, McGregor and Shen 1977,
Sharaiha et al. 1997, Sharma 1983). Recall from our
discussion in §4 that, in the case of the CMST prob-
lem, interconnecting nodes that belong to the same
subtree is quite simple as it is the minimum spanning
tree problem, while in the case of the MLCMST, this
interconnection of nodes is identical to the original
problem, albeit on a smaller graph. We now elaborate
on the details of our genetic algorithm.

5.1. Representation

Our genetic algorithm uses a representation proposed
by Falkenauer (1996) in the context of bin packing.
This representation, as shown in Figure 9, consists of
two parts, an item part and a group part. In the item

part, the nodes are assumed to be ordered in increas-
ing order, and the characters represent the group (sub-
tree of the central node) to which the node belongs.
The group part contains a list of groups (subtrees)
that make up the tree solution. The representation
shown in Figure 9 indicates that nodes 1, 3, 4, and 7
are in a group (group A), nodes 2, 5, and 6 are in a
group (group B), nodes 8, 9, and 10 form a group
(group C), and node 11 forms a group (group D).
The group part lists the four groups A, B, C, and D.
Observe that the order of the groups in the group
part does not alter the grouping represented by the
chromosome. Further, the mnemonic used to identify
groupings is largely irrelevant (other than that they
be distinct from each other). Also note that since the
number of subtrees of the central node will vary by
solution, the length of the group part of the chromo-
some will also vary.

5.2. Initial Population

Since any genetic material (solution characteristics)—
apart from mutations—found in the final solution will
come from the individuals in this population, the
choice of the initial population is a very important
aspect of the whole search procedure. If it is too spe-
cific, then the search will be limited to a small region
of the solution space, leading to a local optimum.
On the other hand, if the initial population is very
diverse, then the algorithm will spend valuable com-
putational resources exploring a variety of promising
areas of the search space.

We create the initial population, by using the Esau-
Williams heuristic (Esau and Williams 1966) for the
CMST problem for half of the initial population and
our construction heuristic from §3 for the other half of
the initial population. (The Esau-Williams heuristic is
the most popular heuristic for the CMST problem. It
starts with a star solution, and in each iteration of the

A

ABAABBACCCD:ABCD

Item part Group part

Figure 9 Example of a Group Assignment and the Respective

Representation

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

360

INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS

algorithm merges two subtrees into a single subtree so
that the new subtree satisfies the capacity constraints,
and the savings achieved by the merge operation
are maximum.) Since both of these heuristics give a
unique solution for a given problem instance, and we
need our initial population to be diverse, we gener-
ate multiple instances by multiplying the cost C}j of
each edge by a uniformly distributed random vari-
able in the range [1 — €, 1+ €]. Varying the value of
€ trades off between increased diversity of the initial
population (for large €) and early termination to a
solution further away from the global optimum (for
small €). We also make sure that each individual in
the initial population is unique, in order to ensure
diversity, regardless of the value of €. In the Esau-
Williams heuristic we use the capacity and costs of
facility type L, the maximum facility capacity in our
problem.

We convert the solutions generated by both heuris-
tics to the format of the GA representation by placing
nodes that belong to the same subtree of the central
node to the same group.

5.3. Selection Methods

We use the cost f(i), obtained with the MLCMST
heuristic, of the trees represented by the individuals
in P(t) as the fitness value. We then select the chro-
mosomes that will participate in reproduction and
create subsequent generations employing the classical
roulette-wheel mechanism (Michalewicz 1996). This
mechanism selects an individual i from the popula-
tion P(t) with probability

fmax — f(l)
ZjeP(t) (fmax - f(])) ’

where
frmax = MaXjep f () + 1.

Notice the probabilities in the roulette-wheel mech-
anism are well defined regardless of the sign of the
fitness value (i.e., even for negative fitness values).
For a given population, we discovered that the fit-
ness values of different individuals vary only slightly.
This is especially true for large problems (i.e., 100
nodes) where moving a node from one group to a
neighboring group has only a small effect on the cost
of the tree and the fitness value of the individual.
In order to focus on the differences in the fitness
of the individuals rather than the absolute cost val-
ues, we use a fitness function called sigma truncation
(Michalewicz 1996). This modifies the original fitness
value f(i) to a new fitness value f'(i) by computing

fi)y=f@)+f—yo,

where f is the average of the old fitness values over
the entire population, o is the standard deviation,

and vy is a constant, usually in the range [1, 5]. Larger
values of y correspond to higher selective pressure
(i.e., fitter individuals have a larger probability of
being selected). These new fitness values f'(i) are then
used with the roulette-wheel mechanism.

5.4. Crossover Operator

Our crossover operator is nearly identical to that of
Falkenauer (1996), with a small change specific to the
MLCMST problem. It is applied to the group part of
the chromosome structure, and is able to work with
chromosomes of varying length. It consists of the fol-
lowing steps:

1. Select at random two crossing sites, which define
the crossing section, on the group part of the two par-
ent chromosomes.

2. Inject the contents between the two crossing sites
of the first parent just before the first crossing site of
the second parent.

3. Update the membership of the items as follows.
All items will belong to the group specified in the
second parent, unless the group to which the item
belongs in the first parent is injected into the second
parent. In that case, the item would have a new mem-
bership specified by the group of the first parent. If
any group is empty as a result, remove it from the
group part.

4. If a group from the second parent has lost items
and it now has fewer than k items, we reassign these
items to other groups with probability p.. If any
group is empty as a result, remove it from the group
part. (This is the step that differs from Falkenauer
1996.)

5. Repeat Steps(1)—(4) reversing the role (i.e., order)
of the parents.

We illustrate the procedure with the example
shown in Figure 10. Consider the two chromosomes
and their respective representations shown in Fig-
ures 10(a) and 10(b). To perform a crossover, we
generate at random two crossing sites for each chro-
mosome. They are just prior to and after group B
for the first parent, and just prior to group a and
after group b for the second parent, as shown in
Figures 10(a) and 10(b). Injecting the contents of the
crossing section of the first parent (|B|) to the sec-
ond parent at the first crossing site of the second par-
ent, we obtain Babcd as the new grouping for the
child. The group membership of the nodes in the child
follow from the second parent, unless the group to
which the node belongs in the first parent has been
injected into the group part. Since B is the only group
injected from the first parent, the item part of the child
is aBacBBcbbdc. Consequently, we obtain the chro-
mosome aBacBBcbbdc : Babcd from the crossover (as
shown in Figure 10(c)). Observe that each group of
the offspring is either identical to a group in the first

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS

361

ABAABBACCCD:A|B|CD

(a)

Figure 10 Crossover Operator in Genetic Algorithm
Note. Parents are represented in (a) and (b); offspring is represented in (c).

parent, or is a subset of a group in the second par-
ent. Thus, if the parents were feasible to begin with
(i.e., the total weight of the items in a grouping is less
than or equal to Z;), then the offspring will also be
feasible.

The fourth step in the crossover procedure is specif-
ically designed for our problem and it aims at improv-
ing the result of the crossover operator. In other
grouping problems, like the bin-packing problem, it
is desired that all the bins are close to or at their max-
imum capacity. Thus, usually a heuristic like first fit
decreasing is applied to reassign nodes in groups with
fewer items. In our case, however, it is not wise to
reassign nodes to any group just because it has avail-
able capacity. Actually, it is not certain that there will
be any gains by reassigning these nodes at all. Conse-
quently, we design our reassignment procedure as fol-
lows. Our reassignment procedure focuses on groups
that are (strict) subsets of a group in the second par-
ent. If the number of items in such a group is less than
a parameter k, then, with probability p., each item
is assigned to the group to which the closest (using
facility type 0 costs) node not in its group belongs.

For example, suppose k=3 and p., =0.5, and con-
sider the result in Figure 10(c). The only group that
qualifies and must be considered for reassignments
is group b. Then, with probability 0.5, we reassign
node 9 to the group to which node 10 (assuming 10
is closest to it and the group has sufficient capacity
to accommodate node 9) belongs, and with probabil-
ity 0.5 we reassign 8 to the group to which node 6
belongs (assuming that 6 is closest to it and its group
has enough capacity).

5.5. Mutation

Our mutation operator is a local search operator and
is based on the cyclic and path exchange neighbor-
hood structure presented in §4. Every time the muta-
tion operator is to be applied to a given chromosome,
we first construct an improvement graph based on the
solution represented by that chromosome. We then

abacbbcbbdec:|ablcd

(b)

aBacBBcbbdec:

(©

Babecd

find negative-cost subset-disjoint cycles on that graph
by starting from different nodes in the graph, and we
select the cycle with the lowest cost. The reassign-
ments corresponding to the negative cycle are then
implemented on the original chromosome. We apply
the mutation operator on the m best individuals of
each population and copy the solutions to the new
population.

This approach is different from traditional mutation
operators that are usually applied with low probabil-
ity on any chromosome in the population (i.e., not
necessarily the best individuals) and do not guarantee
an improvement. This is usually done because muta-
tion operators can significantly alter the genetic mate-
rial of a chromosome. However, in our case (i) the
operator will always improve a chromosome, and
(if) the genetic material of the chromosome that is
being mutated will not be lost since these chromo-
somes (i.e., the best in the population) have a high
probability of participating in crossovers or being
copied directly to the next generation.

6. Computational Experiments

We now report on several computational experiments
with our heuristics for the MLCMST problem. We
coded our construction heuristic, local search pro-
cedures, and genetic algorithm in Visual C++. We
conducted all runs on a dual-processor Pentium III
PC running Windows 2000, 1 GHz clock speed, with
512 MB RAM. After computational testing on the dif-
ferent parameters for the GA, we selected the val-
ues shown in Table 2 (which are robust across our
test set).

Our computational experiments fall into two cate-
gories. Experiments on small problems with 20 and 30
terminal nodes, and experiments on larger problems
with 50, 100, and 150 terminal nodes (not counting
the central node). We ran the construction heuristic,
local search procedures, and the genetic algorithm
on all the test problems with 100 or fewer terminal

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

362 INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS
Table 2 Genetic-Algorithm Parameters Table 3 Percentage Gaps of LP Relaxations of SCF, ESCF, and MCF to
. Optimal Integer Solution

Category Description Name Value
LP SCF (%) LP ESCF (%) LP MCF (%)
General Population size — 100 Problem
Number of parents — 70 set Average Range Average Range Average Range
Selection Selection method — Roulette g 1978 17.65-2256 611 3.08-1006 562 2.86-9.61
Sigma truncation constant Y 3 20e 1362 10.96-1552 547 3.88-7.38 471 298657
Mutation Number of mutation — 10 20r 17.47 13.28-22.54 6.61 2.96-9.17 597 1.82-8.45
Initial population Cost matrix perturbation € 05 30c 18.24 16.27-1990 6.38 4.48-9.22 585 3.97-8.50
Stopping criteria Maximum number of generations — 10 Aggregate 17.27 10.96-22.56 614 296-10.06 554 1.82-9.61
Generations without improvement — 5
Crossover Probability of reassignment Per 1 .)
Number of nodes for reassignment k <6 LP relaxation for SCF, ESCF, and MCF to the Optl'

nodes. For the 150-node problems, we present results
only with the construction heuristic and the first local
search procedure since the running times of the RSLS
procedure and the genetic algorithm were excessive.
Further, we computed lower bounds using the LP
relaxation of ESCF on all of the test problems. Addi-
tionally, for the small test problems, we also com-
puted the optimal integer solution using the ESCF
formulation.

For each problem size (i.e., 20, 30, 50, etc.) we gener-
ated three problem types—one with the central node
in the center, one with the central node at the edge,
and one where the central node is located randomly—
each with 50 instances. We denote each problem set
by specifying the number of terminal nodes in the
problems followed by a lowercase letter c, e, or 1, indi-
cating whether the central node is at the center, edge,
or randomly selected. In all these test problems, the
nodes are generated randomly in a 20 x 20 square
grid. The problem allows the use of three different
facility types with capacities 1, 3, and 10 units of traf-
fic, and the cost of facility type O, Cg, was set equal
to the Euclidean distance between nodes i and j. The
cost of facility type 1 was set to 2Cf]’- and the cost
of facility type 2 was set to 6Cj\. Recall that the traf-
fic requirement for each terminal node is one unit of
traffic.

6.1. Comparing SCF with MCF

Table 3 shows our computational analysis on the
mathematical-programming formulations we pre-
sented in §2. We present the percentage gap of the

mal solutions for all 20 terminal node problems and
for the 30 terminal node problems for which the cen-
tral node is positioned in the center. The percentage
gaps show that the average gap over all 200 prob-
lem instances for SCF is 17.28%, while the same gap
is only 6.14% for ESCF and slightly better, at 5.54%,
for MCFE.

Table 4 shows the running times (in seconds) for
all three LP relaxations and the IP solutions. Notice
that the enhancements to the SCF result in only minor
additional computational effort. The average over all
200 instances for the LP relaxation of SCF is 0.2 sec-
onds, while the same average for the LP relaxation of
ESCF is 0.23 seconds. However, the increase in com-
putational time is significant for the LP relaxation of
MCE. The average over all 200 instances for LP MCF
is 18 seconds, almost 100 times greater than for the
single commodity formulations.

We now remark on an edge-reduction procedure
that we applied quite effectively to reduce the size
of the mathematical-programming formulations. We
replaced the arc set A used by the formulations with
a new set, A’ C A, by using the following rule, orig-
inally mentioned in Rothfarb and Goldstein (1971):
every arc(i,j) € A is also in A’ only if it satisfies
Cg <C, where ¢ is the central node. We eliminate
these arcs from consideration since they cannot be
part of an optimal solution. This relationship simply
states that we cannot have flow directed out of node i
and into node j if it is cheaper to send it directly to
the central node c instead. We point out that this rule
can be applied only if the costs of all the facilities are
a function of the distance between i and j. This reduc-

Table 4 Running Times (in Seconds) for the Different Formulations

LP SCF LP ESCF LP MCF IP ESCF
Problem
set Average Range Average Range Average Range Average Range
20c 0.11 0.09-0.14 0.13 0.11-0.16 2.07 1.08-4.69 3.82 0.39-38.66
20e 0.24 0.22-0.27 0.29 0.25-0.33 29.18 13.86-44.00 19253 17.30-1,751.38
20r 0.17 0.11-0.23 0.20 0.13-0.30 10.71 1.77-34.30 73.26 1.88-1,415.55
30c 0.28 0.27-0.33 0.33 0.30-0.36 30.05 10.33-74.92 244.77 9.19-1,724.45
Aggregate 0.20 0.09-0.33 0.23 0.11-0.36 18.00 1.08-74.92 128.59 0.39-1,751.38

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS 363
Table 5 Percentage Gap of Heuristic Solutions to Optimal Solution
HEU LS RSLS GA

Problem Average Range No. of Average Range No. of Average Range No. of Average Range No. of
set (%) (%) opt. (%) (%) opt. (%) (%) opt. (%) (%) opt.
20c 3.47 0.00-8.97 2 0.76 0.00-3.31 21 0.27 0.00-2.46 33 0.17 0.00-1.54 37
20e 5.45 0.61-11.92 0 3.66 0.00-9.04 1 0.86 0.00-3.55 15 0.46 0.00-2.12 21
20r 3.25 0.00-8.18 2 1.05 0.00-4.54 11 0.47 0.00-3.25 22 0.12 0.00-1.66 36
30c 5.00 1.81-10.64 0 1.81 0.00-5.23 3 0.85 0.00-3.59 6 0.27 0.00-1.56 22
Aggregate 4.29 0.00-11.92 4 1.82 0.00-9.04 36 0.61 0.00-3.59 76 0.25 0.00-2.12 116

tion procedure is particularly effective as the problem
size increases. For the three 50-node problem sets, the
average reduction in the number of arcs by apply-
ing this procedure over all 150 instances is 46.51%,
and the average reduction in running time due to the
reduction in problem size is also 46.51%.

6.2. Heuristic Procedures

Table 5 compares the heuristic solutions with the opti-
mal solutions (computed with the ESCF model). It
reports on the percentage gap between the heuristic
solution and the optimal solution, and also reports
the number of optimal solutions that each heuristic
was able to find. “HEU” stands for the construction
heuristic, “LS” and “RSLS” stand for the two local
search procedures presented in §4, and “GA” stands
for the genetic algorithm of §5. Our results indicate
that the construction heuristic finds the optimal solu-
tion for four out of the 200 problems and is, on aver-
age, within 4.29% of the optimal solution value. LS is
able to find the optimal solution for 36 out of the 200

Table 6 Percentage Gap of HEU and LS from Lower Bound

HEU (% LS (%
Problem %) %)
set Average Range Average Range
20c 10.24 4.54-18.81 7.35 3.17-11.58
20e 11.56 7.45-17.17 9.67 6.00-15.20
20r 10.58 4.58-19.00 8.22 3.05-11.88
30c 1217 7.55-20.00 8.77 5.47-13.70
30e 9.98 5.01-15.00 6.57 4.20-9.68
30r 11.02 6.48-16.00 7.61 4.63-10.89
50c 11.15 7.16-15.63 8.15 5.92-11.21
50e 8.14 5.51-11.23 5.15 413-6.77
50r 9.53 6.12-13.50 6.47 4.63-9.96
100c 9.93 7.73-12.03 6.64 5.28-7.69
100e 6.16 4.93-7.82 3.85 3.21-4.56
100r 8.52 6.47-11.52 5.47 419-7.21
Aggregate(100) 9.91 4.54-20.00 6.99 3.05-15.20
150c 8.52 7.21-10.16 5.51 4.30-6.60
150e 5.05 4.07-5.99 3.24 2.71-3.84
150r 6.75 4.93-8.81 4.37 3.22-5.47
Aggregate 9.29 4.07-20.00 6.47 2.71-15.20

Note. The row Aggregate(100) presents aggregate statistics for problems
with up to 100 nodes.

problems and is, on average, within 1.82% of the opti-
mal solution value. RSLS is able to achieve even better
results and finds the optimal solution for 76 problems
and is, on average, within 0.61% of optimality. Finally,
GA finds the optimal solution in 116 instances and is,
on average, within 0.25% of optimality.

Tables 6 and 7 present the percentage gap between
the heuristic solutions and the lower bounds that
were computed by the LP relaxation of ESCF. Table 6
presents the results for “HEU” and “LS” for all prob-
lem sets while Table 7 shows the performance of
“RSLS” and “GA” for problem sets with at most 100
terminal nodes. Looking at the average gap from the
lower bound across all problem sets, we notice that
the gaps decrease slightly as problem size increases.
We note the average gaps from the lower bounds
over 600 instances (not counting the 150 terminal
node problems) are 9.91%, 6.99%, 6.30%, and 6.09%
for HEU, LS, RSLS, and GA respectively. For the 150
terminal node problems, we obtained heuristic solu-
tions only with the construction heuristic and LS pro-
cedure. The average gap for these, over all problem
instances, was 9.29% and 6.47%, respectively.

Tables 8 and 9 present the running times of
the heuristics for all problem sets. The construc-
tion heuristic, as expected, is the fastest of the four
procedures. In fact, even for 150-node problems, it

Table 7 Percentage Gap of RSLS and GA from Lower Bound

RSLS (%) GA (%)
Problem
set Average Range Average Range
20c 6.83 3.17-11.58 6.73 3.17-11.18
20e 6.70 4.07-9.90 6.29 4.07-9.30
20r 7.60 3.53-11.25 7.23 3.05-10.15
30c 7.75 4.90-12.61 712 4.79-10.65
30e 5.57 4.20-8.20 5.69 4.04-7.61
30r 6.88 417-9.91 6.64 3.72-9.49
50c 7.56 3.86-10.27 7.30 3.97-9.60
50e 4.77 3.43-5.66 4.69 3.58-5.36
50r 6.01 4.49-8.23 5.78 4.24-7.48
100c 6.45 5.27-7.39 6.38 5.08-7.40
100e 3.96 3.28-4.62 3.80 3.13-4.40
100r 5.55 4.49-6.75 5.39 4.19-6.64
Aggregate 6.30 3.17-12.61 6.09 3.05-11.18

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS

364
Table 8 Running Times (in Seconds) for HEU and LS
LS
HEU
Problem set Average Average Range
20c <0.01 0.45 0.23-0.88
20e <0.01 0.94 0.55-2.83
20r <0.01 0.74 0.33-2.27
30c <0.01 2.38 1.02-6.06
30e <0.01 6.14 2.03-14.11
30r <0.01 3.96 1.48-11.56
50c <0.01 17.31 7.11-40.50
50e <0.01 29.86 9.39-63.84
50r <0.01 19.82 6.14-34.38
100c 0.04 194.16 68.38-323.33
100e 0.04 284.91 181.23-497.59
100r 0.03 237.84 109.98-412.66
150¢c 0.09 807.94 434.99-1,280.34
150e 0.10 1,015.32 633.38-1,629.39
150r 0.09 833.67 471.67-1,222.36

runs in under a tenth of a second! The local search
procedure LS is fairly rapid, and can take about 1,000
seconds (15 minutes), on average, for 150-node prob-
lems. What is interesting to note here is that RSLS
becomes computationally more expensive than the
GA, as problem size increases. Consequently, we can
say that RSLS is dominated by the GA, since it not
only gives poorer quality solutions but it also requires
more time.

In summary, the construction heuristic achieves an
acceptable level of performance for a greedy heuris-
tic and the local search procedure is able to pro-
vide higher quality solutions in a relatively short
amount of time. We found that LS improves the con-
struction heuristic solutions by 2.56%, on average,
and the maximum improvement over the construc-
tion heuristic solution was 7.8%. The RSLS proce-
dure improves upon the solutions of the local search
algorithm slightly, but these improvements come at
a high computational cost. Finally, the best solutions

Table 9 Running Times (in Seconds) for RSLS and GA

RSLS GA
Problem
set Average Range Average Range
20c 5.34 2.97-7.94 11.43 8.31-29.03
20e 12.24 7.73-18.63 25.37 16.70-33.83
20r 9.52 3.59-16.33 15.52 8.34-33.48
30c 27.18 16.50-43.22 26.49 19.19-43.19
30e 91.89 64.13-119.83 76.81 57.75-96.31
30r 56.19 29.08-111.44 51.67 27.30-92.19
50c 256.61 183.83-378.17 170.57 117.95-214.95
50e 668.14 548.22-818.75 369.08 272.50-567.00
50r 384.40 246.63-606.45 225.58 135.02-353.82

100¢c 3,557.17
100e 6,982.16
100r 4,748.49

2,924.41-4,048.28 2,503.97
5,934.83-8,570.88 2,974.92
3,132.99-7,447.30 2,155.69

1,620.69-3,756.26
1,302.28-5,258.36
935.11-3,247.06

are obtained for problems with up to 100 nodes using
the GA.

7. Conclusions and Future Work

In this paper, we described the multilevel capacitated
minimum spanning tree problem, a generalization
of the well-known CMST problem. The MLCMST
encompasses practical concerns of local access net-
work design but has not attracted much attention
in the past. Like most capacitated network design
problems, the MLCMST is an extremely challenging
problem to solve. In this paper, we developed both
heuristic techniques and lower bounding mechanisms
for the MLCMST. To our knowledge, this work repre-
sents the first comprehensive study of the problem.

To begin, we presented two mixed-integer pro-
gramming formulations, ESCF and MCEF, that provide
strong lower bounds. The LP relaxation of ESCE, a sin-
gle commodity model, solves rapidly and is most use-
ful for bounding purposes. The second model MCEF, a
multicommodity model, is stronger and can provide
tighter bounds, but even to solve its LP relaxation for
large problems (100 nodes and greater) is computa-
tionally challenging. The improved bounds provided
by MCF are only marginally better, and, thus, on bal-
ance, we recommend the use of the ESCF model to
calculate lower bounds.

We then developed a savings-based heuristic for
the MLCMST problem that finds solutions that are,
on average, 9.29% away from the lower bound. The
heuristic is extremely fast and runs in under a sec-
ond, even for 150 node problems. Next, we adapted
a neighborhood search technique, originally proposed
for the CMST problem, and developed two local
search procedures (LS and RSLS). The LS procedure
achieves results that are, on average, within 6.47%
of the lower bound, and the RSLS algorithm is able
to improve marginally on the results of LS. Novel in
our development of the very large scale neighborhood
search procedures for the MLCMST is the use of a
heuristic to compute the costs of arcs on the improve-
ment graph (instead of using exact costs). The local
search procedure LS improves the construction heuris-
tic solutions by 2.56%, on average, and has success-
fully been used for problems with up to 150 nodes.
Finally, we presented a hybrid genetic algorithm for
the MLCMST problem. The GA, compared to our
other heuristics, obtains the best solutions. For smaller
problems, the GA is able to provide solutions whose
objective is within 0.25% of optimality and, for larger
problems, the GA solutions is about 4% to 7% away
from the lower bound, depending on the location of
the central node. The GA can be used to provide solu-
tions for problems with up to 100 nodes.

We now make a few observations regarding future
work. First of all, we note that the construction heuris-

Gamvros, Golden, and Raghavan: The Multilevel Capacitated Minimum Spanning Tree Problem

INFORMS Journal on Computing 18(3), pp. 348-365, ©2006 INFORMS

365

tic is critical to all our approaches. By improving the
quality of the solutions found by the heuristic, we
could possibly improve the performance of all our
algorithms.

Another direction for future work is the nonunit
demand case. Observe that our MIP formulations
(ESCF and MCF) directly apply to the nonunit
demand case. In the nonunit demand case, our con-
struction heuristic can be used to construct a feasible
multilevel capacitated spanning tree based on the
same savings calculated by equation (23). However,
unlike the unit-demand case, finding the maximizing
set H corresponds to a knapsack problem. Thus, it
may be appropriate to use a heuristic (as a surrogate)
to find the maximizing set H in (23). Of course, this
approach and other possible alternatives should be
explored through extensive computational testing so
that their performance can be evaluated.

Observe that our metaheuristic procedures can be
applied to the nonunit demand case without sig-
nificant modifications, assuming that a construction
heuristic is available for the nonunit demand case.
Specifically, the neighborhood structure used by our
local search procedure directly applies to the nonunit
demand case. Additionally, the genetic algorithm rep-
resentation and crossover operator also directly apply
to the nonunit demand case. Thus, no significant
modifications are required.

Finally, one additional challenge is to develop bet-
ter mathematical-programming formulations that can
find the optimal solutions for large problems and gen-
erate tighter bounds. Although our heuristics can run
on problems with up to 150 nodes, we are unable
to find exact solutions for problems with more than
30 nodes. Stronger formulations will allow for a bet-
ter understanding of the quality of the heuristic solu-
tions on larger problems. In connection with this, we
are making available to other researchers the 750 prob-
lems considered in our computational work in this

paper.

References

Ahuja, R. K, J. B. Orlin, D. Sharma. 2001. Multi-exchange neigh-
borhood structures for the capacitated minimum spanning tree
problem. Math. Programming 91 71-97.

Amberg, A., W. Domschke, S. Vofs. 1996. Capacitated minimum
spanning trees: Algorithms using intelligent search. Combin.
Optim. Theory Practice 1 9-40.

Berger, D., B. Gendron, J. Y. Potvin, S. Raghavan, P. Soriano. 2000.
Tabu search for a network loading problem with multiple facil-
ities. J. Heuristics 6 253-267.

Bienstock, D., O. Giinliik. 1996. Capacitated network design—
Polyhedral structure and computation. INFORMS |. Comput. 8
243-259.

Bienstock, D., S. Chopra, O. Giinliik, C.-Y. Tsai. 1998. Minimum cost
capacity installation for multicommodity network flows. Math.
Programming 81 177-199.

Dahl, G., M. Stoer. 1998. A cutting plane algorithm for multi-
commodity survivable network design problems. INFORMS].
Comput. 10 1-11.

Esau, L. R, K. C. Williams. 1966. On teleprocessing system design.
IBM System |. 5 142-147.

Falkenauer, E. 1996. A hybrid grouping genetic algorithm for bin
packing. J. Heuristics 2 5-30.

Gavish, B. 1982. Topological design of centralized computer
networks—Formulations and algorithms. Networks 12 355-377.

Gavish, B. 1983. Formulations and algorithms for the capacitated
minimal directed tree problem. J. ACM 30 118-132.

Gavish, B. 1991. Topological design of telecommunications
networks—Local access design methods. Ann. Oper. Res. 33
17-71.

Gouveia, L. 1993. A comparison of directed formulations for the
capacitated minimum spanning tree problem. Telecomm. Sys-
tems 1 51-76.

Magnanti, T., P. Mirchandani, R. Vachani. 1993. The convex hull of
two core capacitated network desing problems. Math. Program-
ming 60 233-250.

Magnanti, T., P. Mirchandani, R. Vachani. 1995. Modeling and solv-
ing the two-facility capacitated network loading problem. Oper.
Res. 43 142-157.

McGregor, P. M., D. Shen. 1977. Network design: An algorithm for
access facility location problems. IEEE Trans. Comm. 25 61-73.

Michalewicz, Z. 1996. Genetic Algorithms + Data Structures = Evo-
lution Programs. Springer-Verlag, New York.

Rothfarb, B., M. C. Goldstein. 1971. The one-terminal Telpak prob-
lem. Oper. Res. 19 156-169.

Salman, F, S. R. Ravi,]J. Hooker. 2001. Solving the local access
network design problem. Working paper, Krannert Graduate
School of Management, Purdue University, West Lafayette, IN.

Sharaiha, Y. M., M. Gendreau, G. Laporte, I. H. Osman. 1997. A tabu
search algorithm for the capacitated minimum spanning tree
problem. Networks 29 161-171.

Sharma, R. L. 1983. Design of an economical multidrop network
topology with capacity constraints. IEEE Trans. Comm. 31
590-591.

Thompson, P, J. B. Orlin. 1989. Theory of cyclic transfers. Working
papet, Operations Research Center, MIT, Cambridge, MA.

