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1. Introduction
Combinatorial auctions (auctions in which bidders may
express bids on combinations or bundles of goods) are moti-
vated by the presence of synergy in bidders’ valuations for
sets of goods. The synergy associated with a set of goods S
and bidder j may be defined as �j�S�, where

�j�S�= vj�S�−
∑

i∈S
vj��i	�

and vj�S� is bidder j’s value for the set of goods S.
The presence of synergistic valuations impedes the

generalization of the single-good auctions to efficient
multiple-good auctions. When synergy is positive there are
complementarity effects; the bidder would like to tell the
auctioneer, “I would give you more money if I could be
guaranteed to get these goods together.” When synergy is
negative, substitution effects dominate; the bidder would
say, “Here are my prices, but I want to pay less if I get
goods that are substitutes.” Preferences for a bundle may be
referred to as subadditive, additive, or superadditive when
synergy is negative, zero, or positive, respectively.

Clearly, the auctioneer benefits from taking positive syn-
ergy effects into consideration; bidders will promise to
pay extra if they are guaranteed certain combinations of

goods. Although it is less immediately clear, the auction-
eer may benefit if he is willing to consider negative syn-
ergy information as well. This is because a bidder will be
more willing to bid up to his true value on small bun-
dles if the risk of paying too much for a combined bundle
is reduced or eliminated. In addition to the possibility of
increased revenue for the auctioneer, taking negative syn-
ergies into account can increase the economic efficiency
of an auction, a feature desirable in governmental auc-
tions of electricity, radio spectrum, oil-drilling rights, etc.,
which constitute an area of major interest in the auction
literature.

In a combinatorial auction, the auctioneer collects bids
bj�S� from each bidder j on potentially any subset S of
the items in the auction. In an efficient combinatorial auc-
tion, the auctioneer then solves a combinatorial optimiza-
tion problem, the winner-determination problem, which
finds an allocation of items to bidders that maximizes the
total value of accepted bids.1 For the most general con-
text, this may be modeled as an integer program (IP),
related to the set-packing problem and described, for exam-
ple, by de Vries and Vohra (2003). This general winner-
determination (GWD) problem for the allocation of N
items in the set I = �12 � � � N 	 among M bidders in the
set J = �12 � � � M	 can be formulated as follows, with
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binary variables xj�S� that equal 1 if and only if bidder j is
awarded bundle S ⊆ I :

max
∑

j∈J

∑

S⊆I
bj�S� · xj�S� (GWD)

subject to
∑

S⊇�i	

∑

j∈J
xj�S�� 1 ∀ i ∈ I (1)

∑

S⊆I
xj�S�� 1 ∀ j ∈ J  (2)

xj�S� ∈ �01	 ∀S ⊆ I ∀ j ∈ J � (3)

Constraint set (1) ensures that each item is assigned to
at most one bidder, and constraint set (2) prevents the auc-
tioneer from accepting multiple bids from the same bidder,
preventing the auctioneer from recombining multiple bids
to get a different bid on a subset than the one submitted by
the bidder.

In addition to the ��-hardness of the general winner-
determination problem (see, for example, Rothkopf et al.
1998), bidders in a combinatorial auction experience a fun-
damental difficulty expressing their preferences over an
exponential number of bundles; a bid can be submitted for
each of the 2N − 1 nonempty bundles in an auction of
N distinct items. Some attempts made in the literature to
alleviate these problems fall into a category we refer to col-
lectively as the restricted-subset methods (Rothkopf et al.
1998 provide several examples). Such methods restrict the
number of subsets that may receive a positive bid from a
given bidder and very often limit bidding behavior by dis-
allowing any bids on certain subsets.

Eschewing this approach to the “exponential bundles
problem,” we introduce a new submission format for sub-
mitting preferences in an auction for several unique items,
referred to as “matrix bidding.” Unlike restricted-subset
approaches to preference submission, matrix bidding allows
for positive bidding on any subset of interest to the bidder
while simultaneously allowing for a positive incremental
offer on any bundle. Stated differently, a matrix bid can
make positive bids on every bundle simultaneously, such
that the bid on any bundle is greater than the bid on any
strict subset of that bundle. The “bid statements” that can
be expressed with matrix bids have the ability to model
preferences requiring an exponential number of atoms in
a “flat-bid” language (see, for example, Nisan 2000) and
offer an alternative bidding paradigm to the other logi-
cal languages that address this problem (see, for example,
Boutilier 2002). While a single matrix bid restricts the pre-
cision with which prices are expressed on every bundle,
we show that a logical language of matrix bids is fully
expressive.

The rest of this paper is organized as follows. Section 1.1
provides a brief guide to the literature. In §2, we discuss
the basics of matrix bids and motivate how they can be
used with a few examples. In §§3 and 4, we provide a
deeper exploration of the preference expression afforded by
the matrix bid format and compare the logical language of
matrix bids to other logical languages from the literature.

In §5, we provide an IP formulation of the winner determi-
nation problem for a matrix bid auction (MBA) and show
that in general this problem is ��-hard. Also, we dis-
cuss the properties of the formulation that make it par-
ticularly strong, allowing for rapid winner determination.
In §6, we describe our computational experience solving
simulated MBAs using our IP formulation. These experi-
ments verify a fundamental strength of matrix bids; they
allow us to conduct auctions that would require too much
time or memory using a set-packing approach. Section 7
provides concluding remarks. All appendices to this paper
are contained in the electronic companion, which is avail-
able as part of the online version that can be found at
http://or.journal.informs.org/.

1.1. Related Literature

de Vries and Vohra (2003) provide a compact survey of
recent combinatorial auction research, and Cramton et al.
(2006) provide a more in-depth collection of combinatorial
auction essays. Included in the latter, Lehmann et al. (2006)
discuss the complexity issues of winner determination,
and Sandholm (2006) discusses winner-determination algo-
rithms. Other prominent articles on winner-determination
methods include Günlük et al. (2005) and Sandholm et al.
(2005) based on XOR-of-OR and XOR logical languages of
flat bids, respectively.

Rothkopf et al. (1998) provide a seminal paper in the
study of combinatorial auctions, including some of the
first detailed complexity results and the first discussion of
“restricted-subset” combinatorial auctions for which win-
ner determination is tractable. More recently, Müller
(2006) provides a survey of tractable winner-determination
instances based on both subset restrictions and preference-
type restrictions (e.g., preferences satisfying the “substitutes
property”). Relative to the combinatorial auction formats
discussed there, the matrix bid format enforces a preference
restriction that is not strong enough to result in a tractable
instance but is strong enough to drastically reduce the size
of formulation relative to an unrestricted approach.

As used elsewhere in the literature, we use the term flat
bid, denoted �Sp�, for an all-or-nothing bid of p mone-
tary units on the set of items S. Nisan (2000) provides the
seminal study of flat-bid logical languages in which flat
bids are joined with logical connectives (AND, OR, XOR,
etc.) to form more complex expressions of preferences.
As noted by Nisan (2000), certain natural expressions of
preference can require exponentially long bid sentences in
a logical language with only flat bids as atoms.2 The work
of Boutilier and Hoos (Boutilier 2002, Boutilier and Hoos
2001, Hoos and Boutilier 2000) explores the possibility of
expanding the bid language to include a “k-of” operator,
handling one of the most natural expressions that is tire-
some to convey in flat bids by simply adding the expression
in explicitly as a new atom. The k-of operator allows a
bidder to offer a price premium if at least k elements from a
list of other bids (clauses) is satisfied, allowing the bidder to
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specify, “I want 10 out of the following 15 items for $100,”
for example. At first, this addition is not very rewarding
in terms of the impact on winner determination because
the authors simply expand a k-of expression back into flat
bids prior to solving the winner-determination problem. But
Boutilier (2002) later shows how to explicitly model the
k-of operator in an IP formulation of winner determination
with a new class of constraints to handle the new operator.
A more recent summary on bidding languages is provided
by Nisan (2006).

In §§3 and 4, we will use many of these concepts in
describing a logical language of matrix bids. The nota-
tion �GB will be used for the bidding language described
by Boutilier (2002), in which bidders form bids by join-
ing goods or bundle bids together with logical connectives,
including the k-of operator. This bidding language also uses
a colon and a number at any point in the sentence to denote
a bid amount if the corresponding clause is satisfied. In the
notation from Boutilier (2002), A � 22 denotes, for example,
a bid of 22 on item or expression A. Also, one may use
A by itself in place of A � 0 and can in general omit “� 0”
from any expression without confusion.

Additionally, let the symbols ∧, ∨, and ⊕ denote the
standard logical operators AND, OR, and XOR, respec-
tively, with their typical interpretations. These symbols are
used to join together clauses to form sentences in the lan-
guage, where each clause is either a singleton bid like
A � 22 or, recursively, any other sentence in the language.
Thus, �RedBike � 40 ∨ RedHat � 10� ⊕ �BlueBike � 40 ∨
BlueHat � 10� would be submitted by a bidder bidding $40
on a RedBike or $10 on a RedHat (or $50 for both), $40
on a BlueBike or $10 on a BlueHat (or $50 for both), with
an assurance that she will not get both a red item and a
blue item, by virtue of the exclusive ⊕.

Formally, �GB is defined as the set of sentences obtained
recursively as follows: for any set of items S and any
monetary amount p, the flat bid �S � p� is a sentence in
�GB. Furthermore, if S1 and S2 are sentences in �p, then
S1 ∧ S2 � p, S1∨S2 � p, and S1⊕S2 are in �GB for any mone-
tary amount p. S1∧S2 � p bids p monetary units in addition
to the amounts bid by S1 and S2 if both subclauses are sat-
isfied. Similarly, S1∨S2 � p bids p additional units if one or
both of the subclauses are satisfied, and S1 ⊕ S2 states that
bids from only one subclause may be satisfied (i.e., the auc-
tioneer may collect bids from only one subclause). Finally,
for any collection of sentences S1 S2 � � �  Sn in �GB, the
sentence �k �S1 S2 � � �  Sn	p is in �GB for any monetary
amount p and positive integer k � n. This notation repre-
sents the k-of operator and is interpreted as an additional
bid of p units if at least k-of the n subclauses are satisfied.
For a more detailed explanation, see Boutilier (2002).

In the current work, we introduce matrix bids, each of
which bids on several bundles simultaneously, like the pre-
viously described sentences in the language �GB. In fact,
one strength of matrix bids is that each one places a bid
on every subset, with the potential for a positive marginal

bid for any item received. Because of this dense expres-
sion of preferences in a single matrix bid, we demonstrate
how to use matrix bids as an alternative atomic unit for a
logical bidding language, with no loss of compact express-
ibility relative to �GB, the most compactly expressive of
the languages in the literature.

2. Matrix Bids
A bidder in this model specifies her preferences with a
value for each item in each of its possible rankings in the
final bundle. The bid offered for item i by bidder j given
that it is the kth best item she receives will be denoted bijk.
Bidder j’s bid on a bundle S may then be computed as

bj�S�=
∑

i∈S
bijK�iS�

where K�i S� gives the ordinal ranking of item i among
the items in S. For example, K�ı̄ S�= 1 if no item in S has
a higher rank than item ı̄. Similarly, K�ı̄ S�= 2 if exactly
one item in bundle S has a higher rank than item ı̄, etc.
A bidder interprets each matrix bid entry as an incremental
bid on an item; the row indicates which item is bid on, and
the column tells the ranking of the item within the bundle
it brings value to. The matrix bid itself is interpreted as a
collection of bids on any possible subset, each bid equal to
the sum of incremental values for the items. The preference
restriction imposed in the matrix bid model indicates that
the value that an item brings to a bidder is determined only
by its ranking relative to the other items in the bundle.
Although this may at first seem restrictive, we will show
that when used effectively a great variety of preferences
can be expressed by each bidder.

Together with the bijk entries, each bidder j in the matrix
bid format must convey a numerical ranking rij for each
of the N items at auction. We say that rij = 1 if item i is
the first (highest-ranked) item in bidder j’s ordering of the
items, rij = 2 if item i is the second item in bidder j’s
ordering, etc. We require that this ranking be strict and total
for each bidder j: if i1 �= i2, then ri1j �= ri2j , and ∀n � N ,
∃i ∈ I with rij = n. It is important to note that the rankings
specified by the values of rij are intended only to interpret
the matrix bid and do not necessarily reflect any preference
ordering among the items for that bidder. Stated differently,
ri1j < ri2j ⇒ vj��i1	�� vj��i2	� is not always the case.

Thus, each bidder submits an ordered list of the items
to establish the values of rij and a matrix containing non-
negative values of bijk (for simplicity, we assume integer
values throughout). The matrix of bijk entries together with
the precedence ordering rij is referred to as a matrix bid.
In each matrix bid, a row will be associated with a par-
ticular item, and each column will be associated with a
particular ranking. The item associated with a given row is
written to the left of that row, with the row of the highest-
ranked item on top, the second-highest item beneath it, etc.
Because the kth item in the ordering can be at most the kth
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item in any bundle, the matrix of bijk values will be lower
triangular.

The use of matrices to hold bid information suggests
that the preferences of each bidder may be represented by
an assignment network, and indeed it was this interpreta-
tion that initially motivated the matrix bid format. As such
it may be useful for the reader to consider this network
interpretation to build intuition and to connect the current
exposition to earlier research on unit-demand agents (see,
for example, Demange et al. 1986).

In the network interpretation, a matrix bid may be
viewed as representing each bidder by a collection of N
“unit-demand” agents, each of which can potentially con-
sume a single item. This suggests an assignment network,
with N origin nodes (one for each item) and MN destina-
tion nodes (one for each of the bidders’ agents). Each agent
is represented by a particular column of a matrix bid, and
we can therefore refer to agents and columns interchange-
ably. Thus, the ordering specified by a bidder determines
the order in which the agents may receive items. Specif-
ically, an agent may not receive an item unless the next-
higher-ranked agent receives a higher-ranked item.

For each agent k representing bidder j (denoted as agent
�j k�), define the binary acceptance variable xijk = 1 if
agent �j k� receives item i, and xijk = 0 otherwise. With
this terminology defined, we may now state the cooperation
restriction among a particular bidder’s agents as

∀k>1 xijk=1 ⇒ xı̄jk−1=1 for some ı̄ with rı̄j <rij �

This says that any agent (other than agent 1) may not
receive an item unless the next more highly ranked agent
receives a more highly ranked item.

The following simple rules summarize how to interpret
a matrix bid:
• When an item is awarded to a bidder, the auctioneer

receives a single bid from the corresponding row in that
bidder’s matrix bid.
• Only a single bid may be taken from any column.
• Except for bid entries in the first column, a bid may

not be used unless a bid in the previous column and a
higher row is also used.

Example 1. Suppose that a bidder is submitting prefer-
ences for the following entertainment choices on a specific
date: a ticket to the afternoon baseball game, a coupon for
dinner at a nearby restaurant, a day pass to a water park
(outside of town), and a ticket to a matinee at the local
theater. The bidder reasons that the matinee and baseball
game conflict; she cannot go to both, but she can make it to
dinner after either one. She decides that if she gets any of
the other items she will not leave town to go to the water
park. Her matrix bid may appear as follows:

baseball

matinee

dinner

water park

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

40

10 0

25 25 25

30 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�

The order rij is given in the outside column with baseball
being ranked first, the matinee second, and so forth. The
first column inside the matrix (always) gives the bid on
the item in that row if it is the highest-ranked (or only)
item received. The second column gives the price for each
item in the row given that it is the second-highest item
received, etc.

If she receives a baseball ticket she is willing to pay 0 for
the matinee, which she cannot attend because of conflict.
If she receives either baseball or the matinee in the first
column she would be willing to pay 25 for the meal (in
the second column). Although the seller is unlikely to give
away the matinee ticket, the mathematical formulation does
not necessarily rule this out. If the auctioneer gives her the
baseball ticket at 40 and the matinee ticket at 0, she is still
willing to pay 25 for the dinner, and she expresses this
with a 25 in the third column; a free matinee ticket does
not change her preferences for the dinner. The fourth row
shows that she would pay 30 for the water park pass by
itself but would pay 0 for it if any other items are won.
The bid of 30 cannot be accepted with any other bid by the
rules outlined above.

Example 2. A major television network is hosting a
worldwide television event with a limited number of avail-
able advertising time slots; for simplicity, we assume that
there are four time slots, A, B, C, and D, chronologically.
They attract companies X, Y , and Z, who have very differ-
ent marketing strategies determining their preferences for
these time slots.

Bidder X has developed a two-part “gag” commercial,
which they will use only if they can secure exactly two
time slots. They are indifferent to which two. Bidder Y
feels that slots B and C, occurring in the middle of the pro-
gram, are more effective than A and D at the beginning and
end of the program when less viewers are watching. The
effectiveness of their ads diminishes with repeat viewing,
so they are uninterested in purchasing more than two slots.
Bidder Z agrees that slots B and C are superior to A and D.
Their hypnotic ad campaign will show increased effective-
ness with each viewing, as the increasing values in each
row of their matrix bid submission suggest.

The matrix bids these companies submit are

Bidder X

A

B

C

D

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0

0 30

0 30 0

0 30 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣



Bidder Y

B

C

D

A

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

20

20 6

10 4 0

10 4 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣



Bidder Z

B

C

A

D

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

7

6 7

5 6 7

4 5 6 7

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�
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These examples show the ability of the matrix bid format
to express several types of preferences.3 The first example
shows the ability to model a relationship in which certain
items preclude one another while others do not. In the sec-
ond example, the items are thought of as substitutes by
bidder Y , complements by bidder Z, and somewhere in
between by bidder X, who shows preference for a specific
quantity.4 With these examples as motivation, we now look
at a detailed discussion of preference expression in §§3
and 4.

3. Preference Expression Using
Matrix Bids

In this section, we explore how matrix bids may be used
to convey preferences. We suggest the use of matrix bids
as “atomic bids” to be combined with logical connectives,
offering a new notational system for writing down prefer-
ences that are difficult to express with flat bids alone. We
show that a language with matrix bids as atoms is more
expressive in a polynomial amount of input than a language
with just flat bids as atoms and equally as expressive as a
flat bid language augmented with k-of or exactly-k-of bids.

Relative to other logical bidding languages, we show that
more can be said with a single atom and that some things can
be said easily in matrix bids that are cumbersome in other
languages. We also hope to convince the reader that with
some experience matrix bids are an easier-to-read format
than the equivalent collection of bids needed to express the
same preferences in a language with k-of and exactly-k-of
operators applied to flat bids only. Matrix bids provide a
structured way to string together several k-of, exactly-k-of,
and flat-bid sentence fragments to be read in a meaningful
way after deleting many of the logical connectives. In §6,
we will see that this allows us to quickly generate simulated
auction data (with no logical connectives), which would
have required exponentially long bid sentences in any of the
flat-bid auction simulations commonly found in recent liter-
ature (see, for example, Günlük et al. 2005, Leyton-Brown
et al. 2002, and Sandholm et al. 2005).

We follow in the spirit of Boutilier (2002), who con-
fronts the difficulty of expressing the k-of preferences in
flat-bid languages. Are there other natural preference types
that are difficult to handle in a logical language of flat bids?
Should the list of connectives be augmented to accept other
forms of preferences like the k-of operator? One example
of another natural connective is the “exactly k-of” opera-
tor, where the k-of operator discussed elsewhere could be
called more precisely the “at least k-of” operator (although
we will continue to refer to this one as the k-of operator).
It is not difficult to show that the exactly k-of operator can
be handled in an IP winner-determination formulation with
specialized constraints as the k-of operator is handled in
Boutilier (2002).

Adding more and more basic connectives and new
classes of constraints seems to complicate the matter. Read-
ing and writing bids in such a language becomes difficult

(for a human user) with many connectives and compli-
cated nestings to consider when putting together an entire
bid sentence or a complete profile of preferences. Is there
instead an atomic format that can accept a wide variety of
preferences including in particular those that are difficult
to express in flat bids alone? We demonstrate that matrix
bids offer such a format and that a logical language of
matrix bids can be made at least as expressive in a polyno-
mial amount of input space as any of the other languages
in the literature. This latter statement is justified by com-
parison to the language �GB of Boutilier (2002), which
in turn is at least as expressive as any language that pre-
cedes it. In particular, let �flat denote the language �GB of
Boutilier (2002) without the k-of operator and �MB denote
the language formed with matrix bids as atoms using the
same logical connectives as in �GB. We will show that the
preferences that can be expressed compactly in �flat are
properly contained in �MB and that the preferences that can
be expressed compactly in �MB are exactly equal to the
preferences that can be expressed compactly in �GB.

3.1. Capacity Constraints and Capacity Costs

We begin with an illustrative demonstration of one of the
strengths of matrix bids relative to the language �flat , which
is composed of flat bids joined by the logical connectives
AND, OR, and XOR. We show how simple capacity con-
straints are naturally expressed in a matrix bid and compare
with the equivalent formulation in �flat .

Suppose that we have an auction with N = 6 and a bidder
wants to express an additive valuation over the items with
a constraint that he cannot consume more than three items.
A matrix bid expressing this (with arbitrary values given
for each item) is as follows:

A

B

C

D

E

F

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

22

18 18

17 17 17

16 16 16 0

14 14 14 0 0

12 12 12 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�

With this bid, he pays the same cost for each item regard-
less of what other items he gets, but he will never pay a
positive amount for a fourth, fifth, or sixth item, reflected
by the zeros in the fourth, fifth, and sixth columns. For a
comparison of size and readability, consider the previous
matrix bid expressed in the �flat language and notation of
Boutilier (2002):

�A � 22∨B � 18∨C � 17�⊕ �A � 22∨B � 18∨D � 16�

⊕�A � 22∨B � 18∨E � 14�⊕ �A � 22∨B � 18∨ F � 12�

⊕�A � 22∨C � 17∨D � 16�⊕ �A � 22∨C � 17∨E � 14�

⊕�A � 22∨C � 17∨ F � 12�⊕ �A � 22∨D � 16∨E � 14�
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⊕�A � 22∨D � 16∨ F � 12�⊕ �A � 22∨E � 14∨ F � 12�

⊕�B � 18∨C � 17∨D � 16�⊕ �B � 18∨C � 17∨E � 14�

⊕�B � 18∨C � 17∨ F � 12�⊕ �B � 18∨D � 16∨E � 14�

⊕�B � 18∨D � 16∨ F � 12�⊕ �B � 18∨E � 14∨ F � 12�

⊕�C � 17∨D � 16∨E � 14�⊕ �C � 17∨D � 16∨ F � 12�

⊕�C � 17∨E � 14∨ F � 12�⊕ �D � 16∨E � 14∨ F � 12��

If this example does not yet convince the reader of expo-
nential growth for this type of preference expression in
�flat , note that if we were to add another item to the auc-
tion and maintain the capacity constraint of three items,
we would have to add 15 new XORed clauses to the above
statement of preferences while adding only seven new num-
bers (one new row) to the matrix bid. In general, additive
preferences for n items with a capacity constraint of k takes(
n

k

)
clauses, each containing k atomic bids in the language

of �flat , or a single matrix bid of size
(
n

2

)= n�n− 1�/2, ver-
ifying that �MB can contain preferences in a single matrix
bid that require a sentence of exponential length in �flat .

This example demonstrates how to apply a capacity con-
straint using a matrix bid and is not limited to a situation
where the underlying preferences are additive. Although
we used an additive structure in this example for sim-
plicity, one could start within any matrix bid expression
and “zero out” columns that exceed capacity. Furthermore,
matrix bids easily handle a capacity cost structure in place
of a hard capacity constraint. Imagine a firm that experi-
ences an underlying additive structure (again for simplicity)
for items received (for example, in terms of potential rev-
enue generated) but then wishes to capture storage and
maintenance costs based on the number of items in their
possession.

Suppose, for example, that in a six-item auction they
experience storage and maintenance costs of zero for the
first two items but have to employ a new worker (at a cost
of 3 units) to maintain every two items they purchase after
that and further must rent a storage area at 1 unit each for
the fifth and sixth items. If their additive revenue structure
is captured in the following matrix bid:

A

B

C

D

E

F

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

22

18 18

17 17 17

16 16 16 16

14 14 14 14 14

12 12 12 12 12 12

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣



then they can subtract the entries of the following row vec-
tor from each entry in the corresponding column to capture
the storage and maintenance costs, (0 0 3 0 4 1). Thus,
if revenue accrues additively with the values from the above

matrix bid and costs are as described above, the preferences
of this firm are captured in the following matrix bid:

A

B

C

D

E

F

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

22

18 18

17 17 14

16 16 13 16

14 14 11 14 10

12 12 9 12 8 11

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�

Thus, they have compactly submitted a bid with posi-
tive value for each of the 2N − 1 possible nonempty bun-
dles, whereas �flat cannot express the generalized version
of these preferences compactly. To be certain, note that the
information conveyed in the first three columns requires at
least as much space in a �flat sentence as in the previous
example and that both examples easily generalize because
of the underlying additive preference structure.

Note also that with this example, the bidder has conveyed
a positive incremental value for any item when added to
any bundle that does not contain it. This allows for a more
aggressive bidding strategy than is possible (compactly)
in the most general language, XOR-of-flat-bids, where the
statement “I will pay an incremental amount p if item a is
added to any of my previously submitted flat bids” poten-
tially requires the bidder to double the number of submitted
flat bids.

3.2. Characterization of �MB

Having established that �MB affords expression not avail-
able in a polynomial sentence in �flat , we proceed to show
that a language with matrix bids as atoms, �MB, is equally
as expressive as the language �GB of Boutilier (2002) in
an amount of input that is polynomially sized in the num-
ber of items. To do this, we must show that an arbitrary
�GB bid sentence can be expressed compactly in �MB and
that an arbitrary �MB bid sentence may be expressed com-
pactly in �GB. The first statement follows by noting that an
arbitrary flat bid (Sp) can be held compactly in a matrix
bid that places the items of S to the top of the matrix bid
ordering with an entry of p placed in the �S�th diagonal
entry and all other entries equal to zero. We admit, how-
ever, that this does not make good use of the space in a
matrix bid. We do, however, present techniques for inject-
ing �GB preferences into matrix bids more efficiently in §4.
For the reverse statement, we need only show that an arbi-
trary matrix bid can be expressed in �GB. We accomplish
this first in the language �+

GB, which we form by adding
the “exactly k-of” operator to �GB. It turns out the trans-
lation of a matrix bid into �+

GB is slightly more readable
than the equivalent expression given in �GB.

To write these expressions more succinctly, let �2 �A � 2
B � 4C � 8	3 denote, for example, the k-of bid of 3 mon-
etary units if at least two of the bids A � 2, B � 4, or C � 8 are



Day and Raghavan: Matrix Bidding in Combinatorial Auctions
922 Operations Research 57(4), pp. 916–933, © 2009 INFORMS

satisfied, with ABC receiving a bid of 17. Similarly, let
.2 �A � 2B � 4C � 8	3/ denote the exactly k-of bid of 3
monetary units if exactly two of the subclauses A � 2, B � 4,
or C � 8 are satisfied; in this case, the set ABC receives
a bid of 14.

Given a general matrix bid from a four-item auction:

A

B

C

D

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1

b1 b2

c1 c2 c3

d1 d2 d3 d4

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣



an equivalent bid in the language �+
GB is given by

�A� a1�

∨ �B∧ .0 �A	0/� b1�⊕ �B∧ .1 �A	0/� b2�

∨ �C ∧ .0 �AB	0/� c1�⊕ �C ∧ .1 �AB	0/� c2�

⊕�C ∧ .2 �AB	0/� c3�

∨ �D∧ .0 �ABC	0/� d1�⊕ �D∧ .1 �ABC	0/� d2�

⊕�D∧.2�ABC	0/� d3�⊕�D∧.3�ABC	0/� d4�,

where we remind the reader that, for example, B on its
own is equivalent to B � 0. We note that a few minor trun-
cations are possible in this expression (for example, �D ∧
.3 �ABC	0/� � d4 is equivalent to A∧ B ∧ C ∧D � d1)
but that no major truncations are possible (because each
entry is used exactly once). We therefore leave it in this
form, which illustrates that any matrix bid can be expressed
polynomially within �+

GB as
∨i� rij=n

i� rij=1

⊕rij
k=1�i∧ .k−1 Si0/ �

bijk�, where Si = �ı̄ ∈ I � rı̄j < rij	 and bijk are the matrix bid
entries. To show the equivalence in polynomial expressibil-
ity between �GB and �MB, we simply note that .k Sp/ is
equivalent to �kSp ∧ �k+ 1 S∗, where we use ∗ to
signify a sufficiently large negative value, making �+

GB and
�GB equivalent up to a polynomial transformation. (The
use of ∗ will be discussed in the next section; it may be
interpreted as a negative number whose absolute value is
larger than the sum of all positive bids in the auction.)

4. Using the Matrix Bid
Language Efficiently

The characterization of �MB as equivalent to �GB in terms
of polynomial expressibility suggests that matrix bids may
be thought of as a notational compactification of prefer-
ences that could before be expressed only with several k-of
expressions. In particular, our capacity constraint example
above showed that a matrix bid readily houses several k-of
expressions while simultaneously allowing for price differ-
entiation among particular items to be expressed in the rows
of each item. As noted above, however, our claim that any
�GB sentence could be expressed in a polynomial size in

�MB made poor use of the space afforded to us by a matrix
bid. We now show a few techniques for injecting sev-
eral general forms of preferences into a single matrix bid,
demonstrating more efficient use of the freedom allowed
by the matrix bid format. We begin by showing that an
arbitrary AND, OR, or XOR clause of singleton bids can
be contained in a single matrix bid, as can an arbitrary
k-of-singletons bid or flat bid.

Recall that in the matrix bid language, a flat bid �Sp�
can be written as

i1

i2

���

i�S�
���

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0

0 0

���
� � �

0 0 · · · p

���
���

���
���

� � �

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣



where i1 i2 � � �  i�S� are the items in S written in any order,
and the ellipses in this example represent regions contain-
ing only zeros. This expression represents a very inflexible
offer, paid only if the exact package S is received.

A more flexible offer is demonstrated by the arbitrary
OR bid, �i1 � p1 ∨ i2 � p2 ∨· · ·∨ in � pn� � b. This bid offers pl
for item il taken in any combination with other items and
offers a bonus b if any one of the items is awarded (i.e., if
any of the singleton subclauses is satisfied). This OR bid is
captured in the matrix bid:

i1

i2

���

in

���

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

p1 + b

p2 + b p2

���
� � �

pn + b pn · · · pn

���
���

���
���

� � �

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�

Here the items i1 i2 � � �  in in the OR statement are placed
above (in higher-ranked rows) items not in the statement
while again the ordering among the items in the statement
is inconsequential. We form this matrix bid by starting with
an additive valuation (a pl placed in every entry of the row
for each il) and add the bonus amount b to the first entry
in each of these rows. This ensures that the bonus must be
awarded if at least one item in i1 i2 � � �  in is received and
is only awarded once. The rows below in contain the items
I\�i1 i2 � � �  in	 and are filled with zeros. (Such rows of
zeros need not be submitted in practice.)

Modeling the arbitrary AND of singleton bids combines
the previous two approaches. The �GB sentence �i1 � p1 ∧
i2 � p2∧· · ·∧ in � pn� � b offers an additive valuation over sin-
gle items i1 i2 � � �  in, with a bonus amount b offered only
if every item in �i1 i2 � � �  in	 is received. We therefore
begin with constant rows to express the additive valuation
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and add the bonus amount b to the last element on the
diagonal:

i1

i2

���

in

���

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

p1

p2 p2

���
� � �

pn pn · · · pn + b

���
���

���
���

� � �

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣



where again the order of the items is inconsequential as
long as all of the items not belonging to the AND state-
ment are placed in zero rows below those that are in the
statement.

The arbitrary XOR of n singleton bids �i1 � p1 ⊕ i2 �
p2 ⊕ · · · ⊕ in � pn� makes an offer of pl on each singleton
set �il	 but places no bid on any bundle containing more
than one item. This is captured in the following matrix bid,
in which we place only positive amounts (specifically the
bid pl for the item in that row) in the first column:

i1

i2

���

in

���

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

p1

p2 0

���
� � �

pn 0 · · · 0

���
���

���
���

� � �

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣



where as always, items not involved in the bid are placed
at the bottom of the matrix bid with zero rows.

To model the k-of preference �kSp, a bid of p on
at least k items from the set S, consider the matrix bid

i1 0 kth col.

i2 0
� � � ↓

���
���

� � �

ik
��� p

���
��� p

� � �

���
���

���
���

� � �

i�S� 0 · · · p · · · · · · � � �

���
���

���
���

���
���

���
� � �

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣



where the only nonzero entries are the values of p in the
kth column in rows that contain elements of S.

We next note that several ORed k-of bids for the same
set S can be contained in the same matrix bid with “con-
stant column” bids as illustrated in the previous exam-
ple. For example, if the bids �2 �a b cd e f 	p2,

�4 �a b cd e f 	p4, and �5 �a b cd e f 	p5 are
to be submitted with an OR relationship, we would form
the matrix bid

a

b

c

d

e

f

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0

0 p2

0 p2 0

0 p2 0 p4

0 p2 0 p4 p5

0 p2 0 p4 p5 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�

If at least two items are received the amount p2 is promised
to the auctioneer, if at least four items are received an addi-
tional amount p4 is promised, etc.

Just as several k-of bids can be nested in a single matrix
bid, we now show that a chain of exclusive (i.e., XORed)
flat bids �S1 p1� �S2 p2� � � �  �Snpn� with S1 ⊂ S2 · · ·
⊂ Sn can be nested along the diagonal as in the following
matrix bid:

S1

↓
S2

↓
���

Sn

↓
���

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0

��� p1

0

p2 −p1

� � �

0

pn −pn−1

���
� � �

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�

Here we have ordered the items so that all of the items in
S1 are ranked higher than all of the items in S2, which are
all ranked higher than the items in S3, etc. We place the bid
of p1 for the set S1 on the diagonal in the row of the last
(lowest-ranked) element in S1 and a bid of p2 − p1 in the
row of the last element in set S2. Similarly, we put a bid
of pl − pl−1 on the diagonal entry of the row with the last
element of Sl. It is easily verified that this matrix bid yields
the appropriate expression of preference because assigning
the last item in Sl causes the total accepted bid to reach pl.

4.1. Expressing a Set of Bids as a
Single Matrix Bid

We first examine the question of expressing a set of prefer-
ences (bids) within a single matrix bid. A naive approach
would be to simply go through the N ! possible orderings
and check whether the ordering can express the 2N prefer-
ences in a single matrix bid. This approach takes O�N !2N �
time. A better approach, while still exponential in its run-
ning time (but polynomial in the size of the O�2N � input), is
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based on checking the key condition on preference restric-
tion imposed in the matrix bid model. That is, bijk, the
incremental value for item i when added to any of the

(
rij−1
k−1

)

possible bundles5 containing k − 1 more highly ranked
items, is constant. In other words,

bijk = bj�S ∪ i�− bj�S� ∀S ∈ SB�i j k� (4)

where SB�i j k� = �S ⊂ I � rı̄j < rij ∀ ı̄ ∈ S, and �S� =
k− 1	. We describe two approaches to check this condition.
The first is a column-based approach, working to fill the
matrix bid entries column by column from left to right. The
second is a row-based approach, working to fill the matrix
bid entries row by row from bottom to top. Both approaches
either provide an ordering of items or indicate that it is not
possible to express the preference as a matrix bid.

In the column-based approach, we work from left to right
keeping track for each item its highest possible position in
the ordering. In particular, we use a position index pos.i/
for each item i. In the first column, every bid is a bid on
exactly one item. Thus, for the first column (without any
checking) we can set pos.i/ to N for all items. Next, in
the second (and later columns), we work from bottom to
top using a position index t that goes from N down to
k (the column index). We check for position index t and
column k whether the value that item i brings to the

(
t−1
k−1

)

possible bundles of items with position index t or lower
is constant. If true, this indicates that pos.i/ can remain at
value t. Otherwise, the value of pos.i/ is reduced. At each
iteration, the procedure also checks whether the number
of items with pos.i/ � t is less than N − t + 1. If so, we
cannot express the preference with a matrix bid, and the
procedure stops. The column-based procedure is described
in Figure 1. The running time of the procedure is easily
computed by noting that in each position of the matrix bid
the procedure considers t × (

t−1
k−1

)
sets. Because the sum

of all entries in Pascal’s triangle is 2N and t is bounded
above by N , the running time is ��N2N �. We note that
the column-based procedure makes use of the following
property that we prove in online Appendix C.

Claim 4.1. Suppose while considering column k and posi-
tion index t there are l items that satisfy condition �4� �only
considering items with position index t or lower�. Then,
we can immediately lower the position index of items with
pos.i/ value strictly between t and t− l to t− l �i.e., there
can be no items in position index strictly between values
t− l and t�.

Proof. See online Appendix C. �

The row-based approach (independently suggested by
Goossens 2006) works similarly to the column-based
approach except that condition (4) is checked row by row
(working from left to right in a row) and bottom to top.
Initially, each item has pos.i/= N . We check for position
index t and for each k = 2 to t, whether the value that
item i brings to the

(
t−1
k−1

)
possible bundles of items with

Figure 1. Column-based algorithm to determine
whether a preference set can be represented
in a single matrix bid.

For i= 1 to N set pos.i/=N
For k= 2 to N − 1 {

t =N ;
Repeat {

count= 0;
For each i with pos.i/= t {

Is bj�S ∪ i�− bj�S�= constant for all S that
contain k− 1 items (not including i) with
position index � t?

If yes, count= count +1;
If no, pos.i/= t− 1;

}
If ((# of items with pos.i/� t) <N − t+ 1) STOP;
For i= 1 to N

If ((pos.i/ < t) AND (pos.i/ > t− count))
set pos.i/= t− count;

t = t− count;
} until �t � k�;

}

position index t or lower is constant (the constant can be
different for different k). If true, this indicates that pos.i/
can remain at value t. Otherwise, the value of pos.i/ is
reduced. The row-based procedure is described in Figure 2
(it also makes use of Claim 4.1). The running time of the
procedure is computed identically as the column-based pro-
cedure by noting that in each position of the matrix bid the
procedure considers t × (

t−1
k−1

)
sets. Thus, the running time

is ��N2N �.

4.2. Information Loss in a Single Matrix Bid

Because of its widespread use in simulations and general
treatments of combinatorial auctions, it is interesting to
consider the relationship of matrix bidding to an XOR-of-
flat-bids language. In particular, we are interested in the
following question: If a bidder cannot express his/her pref-
erence in a single matrix bid, is there a way to fill in matrix
bid entries that makes safe (i.e., does not expose the bidder
to paying too much for a bundle) but effective (i.e., is not
dominated by another safe value) use of the space afforded
by the matrix bid format?

Suppose, for example, that bidder j can quickly compute
her desired bid on any bundle, bj�S�, and is filling out a
matrix bid to convey her preferences. For a given ordering,
observing that every bid on the diagonal and every bid in
the first column are bids on exactly one subset (shown in
the previous matrix bid example and the XOR of singletons
example, respectively), she may simply fill these entries in.
For example, in a four-item auction, we have the follow-
ing matrix bid, where we abbreviate, for example, the set
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Figure 2. Row-based algorithm to determine whether a
preference set can be represented in a single
matrix bid.

For i= 1 to N set pos.i/=N
t =N ;
Repeat {

count= 0;
For each i with pos.i/= t {

cond= true;
For k= 2 to t− 1 {

While (cond= true) do {
Is bj�S ∪ i�− bj�S�= constant for all S

that contain k− 1 items (not
including i) with position
index� t?

If no, set pos.i/= t− 1 and
cond= false;

}
}
If (cond= true) set count= count+ 1;

}
If ((# of items with pos.i/� t) <N − t+ 1) STOP;
For i= 1 to N

If ((pos.i/ < t) AND (pos.i/ > t− count))
set pos.i/= t− count;

t = t− count;
} until �t � 2�;

�ABC	 by ABC:

A bj�A�

B bj�B� bj �AB�−bj�A�

C bj�C� x bj�ABC�−bj�AB�

D bj�D� y z bj �ABCD�−bj�ABC�

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�

Our question from the previous paragraph now becomes:
Is there a way to choose entries x, y, and z that is safe
and effective? The matrix bid paradigm makes simultane-
ous bids on several sets by assuming that the incremen-
tal value that an item provides to a bundle does not vary
over all bundles containing only higher-ranked items. If in
fact the incremental value that an item provides to a bun-
dle does vary over bundles containing only higher-ranked
items, the bid information in the interior entries (i.e., those
not in the first column or on the diagonal) is not exact.
These entries can be employed in a safe and effective way,
however, by using the minimum possible incremental value
for that entry. For this example, we have

x=min
(
bj�AC�− bj�A� bj�BC�− bj�B�

)


y =min
(
bj�AD�−bj�A�bj�BD�−bj�B�bj�CD�−bj�C�

)


z=min
(
bj�ABD�− bj�AB� bj�ACD�− bj�AC�

bj�BCD�− bj�BC�
)
�

Filling in the corresponding matrix bid entries with these
values assures that the bidder has bid a safe amount but
could not have bid a higher safe amount. Again, note the
connection between the number of terms in each minimiza-
tion and the term in the same position in Pascal’s trian-
gle, thus providing a characterization of the accuracy of
each entry. This emphasizes that bid accuracy is exact in
the left column and diagonal and is least accurate in the
middle of the bottom row. In general, this technique of find-
ing a safe value for an arbitrary entry is given by b

safe
ijk =

minS∈SB�i j k� bj�S ∪ i�− bj�S�.
This “safe bid” technique allows a bidder to safely “pack

in” more bid information into a matrix bid with a particular
ranking or ordering of items already chosen. Consequently,
if one wanted to choose an ordering that maximizes some
measure of bid accuracy (or minimizes a measure of error),
then in general the bidder must optimize over the N ! possi-
ble orderings, a problem that in general seems to require a
great deal of enumeration. On the other hand, the column-
based and row-based approach to determine whether a pref-
erence can be expressed as a matrix bid can easily be
adapted as heuristics to approximate a general bid function
by a matrix bid.

For example, in a column-based approximation, when
the column-based approach cannot find any item i with
pos.i/= t (at a given t and k) that satisfies condition (4),
we can select among all items considered for the given t
and k. We choose the item that minimizes the difference
between the maximum and minimum value that the item
brings to the bundles considered. This item is given position
index t as an approximation, and the procedure continues
(ties are broken arbitrarily).

On the other hand, in a row-based approximation, when
the row-based approach cannot find any item i with
pos.i/= t (at a given t) that satisfies condition (4), we can
select among all items considered for the given t. Observe
that in the row-based procedure we check an entire row at a
time to determine whether an item can be given that row
as its position index. Consequently, a simple heuristic is to
choose the item that minimizes the sum of the differences
between the maximum and minimum values that the item
brings to each of the bundles considered in columns k= 2
to t, respectively (ties are broken arbitrarily). Goossens
(2006) describes this procedure in greater detail.

4.3. Contingency Expression Using ∗-Entries
We now demonstrate another technique for preference
expression with matrix bids that allows for a contingency
relationship among “blocks” in the matrix. We will see that
this allows for another form of “compactification” in which
two or more “basic” expressions of preference can be com-
bined in the same matrix bid, rather than spreading these
basic pieces into separate matrix bids and joining them with
logical connectives. Furthermore, the ability to express this
contingency relationship in a matrix bid allows us to omit
a contingency operator from our logical language.
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Observe that if a particular entry in a matrix bid is
assigned a significantly negative number, then a revenue-
maximizing auctioneer will never assign the item in that
row to the agent represented by that column. Representing
this large negative number as ∗, we can block off regions
of a matrix bid forcing entries to be accepted only in a
certain way. To demonstrate the use of ∗ in a matrix bid,
consider a bidder who wishes to express a contingency rela-
tionship between two “basic” valuations, which can each
be written in its own matrix bid. Suppose, for example,
that the bidder is interested in purchasing a set of three
items �ABC	 as a package at a price of 40 and would
like to express an additive valuation over items �DEF 	
contingent upon winning the essential set �ABC	. Using
one block for the flat-bid portion of these preferences and
an additive block for the other, this bidder may place the
following matrix bid:

A

B

C

D

E

F

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0

0 0

0 0 40

∗ ∗ ∗ 16

∗ ∗ ∗ 14 14

∗ ∗ ∗ 12 12 12

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�

Note, for example, that the set �BCDE	 cannot be
awarded to this bidder at a price of 14 (as it could if the ∗s
were replaced with zeros) because in pricing this bundle a
∗-entry is accepted, representing a penalty great enough to
overcome any generated benefit.

This ability to block off “basic” expressions of prefer-
ence quickly generalizes: any expressions that can be made
in a separate matrix bid can be combined with a contin-
gency relationship as long as the subsets of items effec-
tively bid on in each matrix bid are disjoint (where the
items effectively bid on are those for which there is a pos-
itive entry in its row or below). A simple and powerful
example of this is given by the following type of prefer-
ences, which we call a grocery-list bidding. In this scenario,
a bidder perceives some list of necessary ingredients, each
of which must be obtained in a certain quantity and each
of which has a list of substitute items.

For example, suppose that the manager of a pizza com-
pany is purchasing ingredients at a wholesale auction
(suppose perhaps that each item is a truckload of some
ingredient). He may divide the set of auctioned items into
categories of items, each containing several substitutable
alternatives: doughs, sauces, cheeses, and toppings. Sup-
pose further that his preferences are as follows: (i) He
needs to obtain exactly one of the three types of dough,
two of the three types of cheese, and one of the three types
of sauce, or else he is not willing to purchase anything.
(ii) Furthermore, he perceives different quality levels for
the various sauces, making him willing to pay 8 additional
monetary units if his bundle contains sauce B and 12 units
if his bundle contains sauce C. (iii) Finally, he has additive

Figure 3. A grocery-list matrix bid.

dough A

dough B

dough C

cheese A

cheese B

cheese C

sauce A

sauce B

sauce C

topping A

topping B

topping C

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0

0 ∗
0 ∗ ∗
∗ 0 ∗ ∗
∗ 0 0 ∗ ∗
∗ 0 0 ∗ ∗ ∗
∗ ∗ ∗ 40 ∗ ∗ ∗
∗ ∗ ∗ 48 ∗ ∗ ∗
∗ ∗ ∗ 52 ∗ ∗ ∗
∗ ∗ ∗ ∗ 7 ∗ ∗
∗ ∗ ∗ ∗ 6 6 ∗
∗ ∗ ∗ ∗ 5 5 5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

preferences over three toppings, given that he has a bun-
dle that satisfies his dough, cheese, and sauce requirements.
His preferences are compactly expressed in the matrix bid
in Figure 3.

Applying the basic assumption for matrix bids that
matrix bid entries may be accepted only in a down and to
the right fashion, it is easy to see that the bid of Figure 3
expresses no positive bid except on bundles that contain
exactly three doughs, two cheeses, and one sauce and that
topping preferences are additive thereafter. The preferences
expressed by the bidder in Figure 3 also provide a first
example of a partition bidder as used in our simulations
and described in online Appendix B.

4.4. Logical Language of Matrix Bids

Up to this point, this section has focused on expression
of preferences within a single matrix bid. Matrix bidding
is, however, a restrictive format, and we emphasize that in
practice a logical language of matrix bids may be required
to convey preferences accurately. Although the previous
section demonstrates a technique for joining basic prefer-
ence expressions within a single matrix bid, many relation-
ships can be expressed only by combining several matrix
bids with logical connectives, as the following telecommu-
nications example demonstrates.

Suppose that we are auctioning city-wide licenses for
mobile communication rights. One company may submit the
two bids in Figure 4 for California cities. The metropoli-
tan areas of SanFrancisco (S.F.), Oakland, and SanJose are
close enough geographically that it would be impractical
to purchase rights to one city without the other two. Bid 1
offers a “single-minded” bid of 50 for all three but otherwise
makes no offers on any cities. Bid 2 introduces a different
type of behavior. The bidding company is most concerned
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Figure 4. Matrix bids for spectrum licenses.

Bid 1

SanJose

Oakland

S�F�

∣
∣
∣
∣
∣
∣
∣
∣

0

0 0

0 0 50

∣
∣
∣
∣
∣
∣
∣
∣

Bid 2

Pasadena

LongBeach

Anaheim

L�A�

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0

0 0

0 0 0

30 35 45 60

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

with purchasing the rights to LosAngeles (L.A.) but feels that
they will experience increased returns for each of the neigh-
boring cities they obtain. Furthermore, they cannot support
a communications network in the smaller neighboring cities
without at least controlling the hub, L�A. They bid 30 on
L.A. by itself, 35 on L.A. with any one of its neighbors,
45 on L.A. with any two of its neighbors, and 60 on L.A.
with all three of its neighbors. In general, if a bidder con-
siders one item to be essential, with a set of n other items as
substitutable accessories or add-ons, she may make bids on
the distinguished item with 0 accessories, 1 accessory, � � �  n
accessories by bidding with an increasing row (we call such
a bidder an add-on bidder in our simulations; see online
Appendix B).

If the two bids in this example are treated as if the single
bidder had two bidders acting on his behalf, the submission
is interpreted as “Bid 1 OR Bid 2.” The OR is inclusive; the
company submitting these bids may receive a subset that
is the union of subsets obtained by each of its matrix bids.
It may be the case, however, that the company is interested
only in purchasing the rights for one of the two regions;
they wish to bid “Bid 1 XOR Bid 2.” In online Appendix A,
we demonstrate how to model both OR-of-XOR-of-Matrix-
Bid and XOR-of-OR-of-Matrix-Bid languages within our IP
formulation of the general matrix bidding format (which
will now be presented in §5).

5. Formulation of the
Winner-Determination Problem

The winner-determination problem, in this context, is to
find the maximum revenue assignment of items to columns,
satisfying supply of one for each item and demand of
at most one for each column, as well as upholding the
ordering or ranking of items. According to the ranking,
a feasible assignment may assign an item to a given column
only if the columns for a particular bidder with a lower
value of k are assigned items with a lower value of rij .
These constraints are formalized in the following integer
program, which we will refer to as MBA-IP:

max
∑

i∈I

∑

j∈J

∑

k�rij

bijk · xijk (MBA-IP)

subject to
∑

j∈J

∑

k�rij

xijk � 1 for each i ∈ I (5)

∑

i∈I � rij�k
xijk � 1 for each �j k� ∈ J ×K (6)

∑

l∈I �k�rlj�rij
xljk −

∑

l∈I �k−1�rlj<rij

xljk−1 � 0

for each �i j k� with k > 1 (7)

xijk ∈ �01	 ∀ i j k�
The decision variable xijk is a binary acceptance variable;

xijk = 1 if the bid bijk is accepted, and xijk = 0 if it is not.
Constraint set (5) is a set of supply constraints for each
item, and demand constraints (6) assure that at most one
item is received by each column. Constraints (7) enforce the
ordering; xijk = 0 unless some xlj�k−1� = 1, where rlj < rij .
This is not the only way to formulate this set of constraints
and not the most obvious; these inequalities are chosen to
eliminate as many fractional solutions as possible in the
LP relaxation while enforcing the ordering by including
more than is necessary in the first summation. To see that
this formulation of the ordering constraints is superior to
the “natural” version (i.e., xijk −

∑
l∈I �k−1�rlj<rij

xljk−1 � 0
for each �i j k� with k > 1), observe that in a three-item
auction for items A, B, and C with rA1 = 1, rB1 = 2, and
rC1 = 3, it is possible to have a feasible fractional solution
to the LP relaxation of MBA-IP with xA11 = xB12 = xC12 =
1
2 using the “natural” constraints, whereas constraints (7)
do not admit such a solution.

Constraint sets (5) and (6) correspond to assignment
constraints. Thus, without constraints (7) that enforce the
ordering, the LP relaxation of constraints (5) and (6) is
integral and the problem is polynomially solvable. Adding
constraints (7) greatly complicates the matter, however.
In particular, it is not hard to find examples in which
the LP relaxation of MBA-IP has a fractional optimal
solution. Indeed, we show in Theorem 5.1 that the winner-
determination problem for an MBA is ��-hard, and it
follows from the Padberg and Alevras (1994) study6 of
“order-preserving assignment problems” that a single matrix
bid may be evaluated in polynomial time.

We now verify one strength of the formulation MBA-IP:
it is polynomially sized in the number of items and bid-
ders, unlike the GWD problem, which requires an expo-
nential number of variables, one for every bidder/bundle
pair. This suggests that for some values of N , a GWD auc-
tion cannot be performed because of memory restrictions,
whereas an MBA may still be held for the same set of N
items. To verify this, we note that each bidder must submit∑N

l=1 l = N�N + 1�/2 bid entries and an ordered list of N
items, 1

2N
2 + 3

2N pieces of information. The total number
of x variables is equal to the total number of matrix bid
entries M ·N�N + 1�/2. Counting the constraints similarly
according to their indices, we find that there are N of type
(5), MN of type (6), and M ·N�N − 1�/2 of type (7). Thus,
MBA-IP has 1

2N
2M+ 1

2NM variables and 1
2N

2M+ 1
2NM+

N constraints. Our computational results (§6) suggest that,
for reasonable N and M , MBA-IP instances of this size
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can be solved quickly enough for auction implementation
purposes despite the following theorem.

Theorem 5.1. The winner-determination problem for a
matrix bid auction is ��-hard.

Proof. Weemploy the��-hardweighted set-packing prob-
lem (WSP): Given a set S and a list of subsets of S: S1
S2 � � �  Sp, each with a corresponding weight w1w2
� � � wp, problem WSP asks for the maximum weight col-
lection of mutually disjoint Sis.

The transformation of this general instance of WSP into
a matrix bid auction proceeds in a straightforward manner.
Identify S from the WSP with I and create p bidders, one
for each Si. Each bidder will submit a matrix bid of wp on
the set Sp (recall that the compact matrix bid representation
of a flat bid of wp on a set of items Sp is illustrated in §4).
An optimal solution to the winner-determination problem
for this auction MBA-IP provides a maximum weight set-
packing of S1 S2 � � �  Sp, and vice versa. �

Despite this classification of the decision problem as
��-hard, our experience tells us that the formulation
MBA-IP is fairly well behaved. (In §6, we provide addi-
tional computational evidence.) Recall that with the assign-
ment constraints (5) and (6), the feasible region has integer
extreme points. With the addition of constraints (7), many
of these extreme points are no longer feasible and fractional
extreme points may be introduced. Exactly how many of
each type are generated or eliminated by (7) varies among
instances (even of the same size) depending on the order-
ings chosen by bidders. Every integer solution to MBA-IP,
however, is also a feasible assignment and thus an extreme
point of the region defined without (7), partially explaining
the proliferation of LP-relaxation solutions that are integer
optimal as seen in our experiments. A stronger explanation
is suggested by the following lemma.

Lemma 5.2. For any bidder j , if
∑

k xijk ∈ �01	 for all
items i ∈ I , then xijk ∈ �01	 for all i and k.

Proof. The implication is trivial for all i such that∑
k xijk = 0, so we consider the case in which

∑
k xijk = 1.

Let i1 = argminIj rij , where Ij = �i � ∑k xijk = 1	 (i.e.,
Ij is the set of all items awarded to j). Similarly, let i2 =
argminIj\�i1	 rij , i3 = argminIj\�i1i2	 and so forth, yielding in
general that in is the nth ranked item in Ij .

First note that because there is no item l with rlj < ri1j
and xljk �= 0, constraints (7) for i1 imply that xi1jk � 0 for
all k > 1, and therefore xi1jk = 0 for all k > 1. Because∑

k xi1jk = 1, it must be the case that xi1j1 = 1. By (6), it also
follows that xij1 = 0 for all i �= i1.

Next, we claim that if xinjn = 1 for all n < �k, then
xi�kj�k = 1. This is easily shown because xinjn = 1 for all n<
�k implies that

xijk = 0 for all k� �k and i with rij < ri�kj  (8)

xi�kjk = 0 for all k < �k� (9)

The first of these two facts (8), together with (7), implies
that xi�kjk = 0 for all k > �k. Using this with (9) and∑

k xi�kjk = 1, we obtain the desired result, xi�kj�k = 1. The
lemma now follows by induction. �

Lemma 5.2 states roughly that if a bidder j receives
integer amounts of all items (among all her columns), the
constraints of MBA-IP dictate that the assignment of items
to bidder j’s collection of columns must be integral. Alter-
natively, items may not be split fractionally among the
columns of a single bidder j , unless there is some item that
j shares fractionally with a different bidder.

The polynomial-solvability of the order-preserving as-
signment problem (see Padberg and Alevras 1994) now fol-
lows as a special case of Lemma 5.2, which implies that
the polyhedron defined by constraints (5)–(7) with just a
single bidder has integer extreme points. Note that for this
special case Lemma 5.2 offers an alternate and much more
succinct proof than Padberg and Alevras (1994).

Lemma 5.2 suggests the possibility of an advantageous
branching strategy when using a branch-and-bound tech-
nique to solve MBA-IP. Rather than branching on a single
variable at each node in the branch-and-bound tree, it seems
possible to benefit by branching on a bidder/item pair, dic-
tating that the specific item definitely be awarded to bid-
der j on one branch and that the item definitely not be
awarded to bidder j on the other branch. It is advantageous
to focus on bidder/item pairs corresponding to items split
fractionally among several bidders because by Lemma 5.2,
if these bidder/item pairs do not exist, then items will not
be split fractionally among the columns of the same bidder,
and the resulting solution must therefore be integer.

6. Computational Benefits of
Matrix Bidding

Having explored the expressibility of the matrix bids for-
mat as a compact language for conveying a wide variety
of preference information and categorizing the winner-
determination problem for an MBA as ��-hard, we are
interested to see how efficiently we can solve instances of
our formulation MBA-IP. The purpose of our experiments
was to demonstrate the strength of the MBA-IP formu-
lation, verifying that we can indeed rapidly solve MBA
instances, and to illustrate the benefits of matrix bidding
relative to the XOR-of-flat-bids language.

To achieve these goals, data must be generated randomly
because few empirical data are publicly available for actual
combinatorial auctions. The type of data simulation used
here is common in the combinatorial auction literature.
Sandholm et al. (2005) provide a prominent example, and
Boutilier (2002) notes that the available benchmark data
(i.e., the CATS test suite discussed by Leyton-Brown et al.
2002) may not always be beneficial for the testing of new
language paradigms. In our case, we applied the algorithm
of §4.1 to 200 of the CATS instances used for the compu-
tational experiments in Day and Raghavan (2007). (In par-
ticular, we used CATS instances with 16 items and 10, 25,
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50, or 100 package bids, with 50 instances of each auction
size.) We found that approximately 29% of all bidders had
preferences that could be expressed exactly with a single
matrix bid, but there was only a single auction instance for
which all bidders could be thus converted, making a head-
to-head comparison with the CATS data impractical. This
should not be a great surprise because the CATS architec-
ture is geared toward finding a few high-valued bundles
for a simulated bidder, whereas matrix bidding emphasizes
the simultaneous bidding on a large number of bundles.
Therefore, we may conclude that the CATS data do not
provide an easily usable set of data for matrix bid test-
ing. Instead, and as in Boutilier (2002), we used random
generation of “typical sentences” in our own language as
a test bed for an initial evaluation of our ability to solve
winner-determination problems stated in the matrix bidding
language.

In the early phases of our investigation, we began with
some small examples generated on an ad hoc basis, using
our own imagination and economic intuition. Next, we gen-
erated problems randomly, selecting each entry in each
matrix bid from the same set of possible values with
equal probability; however, this totally random data was
not entirely useful. Indeed, in these initial experiments it
was uncommon to find instances in which the LP relax-
ations yielded fractional solutions, and we decided that it
would be beneficial to generate simulated auction data in a
more sophisticated way. The reasoning for this was that the
very “lumpy” preferences, those with significant positive
synergies, were not very likely under a scheme in which
each matrix bid entry was drawn with equal probability
from the same support; totally random instances seemed too
easy. Because computational difficulties in combinatorial
auction winner determination arise exactly from this lumpi-
ness, we decided instead to simulate bidders who would
emulate “typical” behavior, including several lumpy-type
preferences like the k-of and flat bidding described in §3.

Because many available combinatorial auction tech-
niques focus on flat atomic bids and preferences built as
an aggregation of flat bids, the data generated to test these
techniques are naturally comprised of randomly drawn bids
attached to randomly drawn subsets or bundles of items.
Because matrix bidding is an auction format in which
bidders assign values to bundles in a more orderly fash-
ion, it should seem natural that our method is to randomly
simulate expected behavior patterns.

To maintain simplicity in our experiments, we restrict to
the situation in which each bidder is allowed only a single
matrix bid (e.g., there is no XORing of matrix bids). The
input for each set of experimental runs is N (the number
of items), M (the number of matrix bids), H (a parameter
bounding the highest bid per item), and A (the number of
auctions to simulate with these parameters).

Using these parameters, the simulation first randomly
selects a bid profile for each matrix bid from one of the
seven types described below with equal probability. For

each bid type a subroutine randomly selects a nonnegative
integer (or ∗) for each of the appropriate matrix bid
entries based on the value H . Online Appendix B describes
the exact details for each of the following seven bid-
der types used in our experiments: (i) additive preference
bidder, (ii) single-minded bidder, (iii) nested flat-bid bid-
der, (iv) nested k-of bidder, (v) partition bidder, (vi) add-on
bidder, and (vii) diminishing returns bidder.

The descriptions given in online Appendix B show that
matrix bid entries in our random experiments were chosen
so that the incremental value an item brings to a bundle is
never more than the value H and that, when a particular
entry effectively bids on multiple items, the random seed
used to price the incremental value of a single item is mul-
tiplied by the number of items effectively bid on so that the
bid entry is not drastically small. These measures assure
that the preferences conveyed by each bid entry are “in the
right ballpark” relative to all other bids in the auction. Fur-
thermore, they provide the right notion of “lumpiness” that
experience suggests is the cause of computational difficulty
in combinatorial auction winner determination.

Throughout the experiments presented here, we maintain
H = 20, although our glimpses at performance for other
values of H suggest similar results. A more elaborate model
might incorporate a different value Hi for each item i (i.e., a
different support for each item’s value), although here we
assume that the value any item brings to a matrix bid entry
is drawn from the same support.

Online Appendix B describes the exact method for sim-
ulating each behavior type, and we do note here that our
matrix-bid-based method provides an interesting alterna-
tive to the CATS data (see Leyton-Brown et al. 2000).
Both methods generate data based on economic models
of synergy and predefined preference structures, but the
compactness of matrix bidding allows for the expression
of economically simple preferences that require an expo-
nential number of flat bids in the XOR language used by
CATS. Thus, the technique for data generation used here
may in some cases provide access to data sets not available
through CATS because of memory constraints. (Day’s web-
site, http://users.business.uconn.edu/bday/index.html, pro-
vides a link to the executable used to generate matrix bid
auction instances, as well as the actual 1,800 instances gen-
erated for the current treatment.)

Using this technique for bidder simulation, we gener-
ated 50 instances (A= 50) of each instance size taken from
combinations of N ∈ �4 8, 16, 24, 72	 and M ∈ �5 10, 25,
50, 75, 100	. For each of these instances, after generating
the matrix bids we performed a conversion into XORed flat
bids. To do this, we simply searched through each possible
bundle for each matrix bid and assigned a flat bid to that
bundle equal to the matrix bid on that bundle. To elim-
inate unnecessary bids, no flat bid was generated unless
the lowest-ranked item in that bundle contributed a strictly
positive marginal amount to the value of the bundle. For
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Table 1. Average run time (in seconds) for winner determination.

M = 5 10 25 50 75 100

MBA-IP
N = 4 0�00506 0�00382 0�00884 0�01608 0�02628 0�03870
8 0�00646 0�01244 0�03358 0�07736 0�12110 0�18050
16 0�09112 0�0895 0�2271 0�62284 0�88516 1�21684
24 0�19328 0�48246 1�40398 4�09132 5�56776 7�19489
48 13�5852 15�5009 67�2408 149�861 250�890 456�343
72 63�7875 260�139 1337�05 4411�98 4275�91 ∗∗

XOR/GWD
N = 4 0�00160 0�00480 0�01012 0�01302 0�01826 0�02458
8 0�01380 0�02374 0�05630 0�14470 0�2085 0�31032
16 20�5628 28�8746 156�269 602�694 1522�67† 815�426‡

24 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
48 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
72 ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
∗∗ Indicates that some instances of that size could not be solved because of RAM overflow, and ∗∗∗ indicates that

no instance of that size could be solved.
†,‡ Indicate results on a 2-GB machine.

example, a matrix bid with all zero entries except for a sin-
gle positive entry on the diagonal would generate only one
flat bid. This makes the comparison more fair, so that the
number of flat bids is minimized.

With identical auction instances captured in two dif-
ferent formats, we next solved each instance using the
MBA-IP formulation and the GWD formulation for the
matrix bid and the XOR-of-flat-bids languages, respectively.
Unless otherwise stated, we used CPLEX 9.0 on a 3.2-
GHz Pentium 4 processor Dell desktop with 1 gigabyte
of RAM for our computational work. Table 1 provides
the results in terms of average run time, providing some
indication of the horizon of practical implementation for
matrix bids. The entry of ∗∗ indicates that some instances
of that size could not be solved because of RAM overflow
in CPLEX’s branch-and-cut process, and ∗∗∗ indicates that
no instance of that size could be solved, again because of
RAM overflow.7

Although the XOR language may provide a faster winner-
determination problem for a small number of items, the
computational time for the GWD formulation grows much
faster than for the MBA-IP formulation as the number of
items increases. Indeed, under matrix bidding we do not
see 4+ minutes of average run time until around 48 items
and 75 bidders, whereas the XOR formulation requires this
long on average for just 16 items and 25 bidders.

As Table 1 indicates, however, the greater strength of the
matrix bid approach is reduced memory. When we expand
out all of the bid information from each matrix bid into
flat bids, there becomes such a large number of decision
variables (nontrivial bids) that there is typically not enough
memory to hold all of the bases stored at each node in a
CPLEX branch-and-cut tree. As we see in Table 1, the XOR
language paradigm could not be applied for more than 16
items because of memory overload, whereas matrix bidding
solved most of the problems with 72 items and 100 bidders

(33 of 50 instances) and every instance of a smaller size
without overloading the memory.

The run times indicated also give an indication of the
applicability of the matrix bidding approach in a practical
context. Multiround auctions for several items often provide
an hour or so per round to accommodate human delibera-
tion, making run times of a few seconds or minutes for a
small number of items seem adequate. Although larger run
times for a larger number of items suggest that matrix bid-
ding may not be appropriate for each round of an iterative
combinatorial auction for more than 48 items, the approach
may still be suitable for a sealed-bid round of an auction
(such as the clock-proxy auction of Ausubel et al. 2006)
for approximately 72 items because winner determination
that may take a day or two of run time may be acceptable
after bidder participation has concluded.

Because the XOR language becomes too cumbersome
with huge data files (>2 GB) starting around size N = 24,
we performed a limited-bundle-size experiment for N = 24
and each of the previously used values for M . To show the
increased effectiveness of the MBA-IP formulation relative
to GWD as the number of items increases, we truncated a
set of bid data to allow only for bundles of size 5 or less.
(In some applications, such as spectrum license auctions,
the auctioneer may want to limit bundle size to decrease
market concentration, for example.) Note that limiting bun-
dle size to 5 or less is easy with matrix bids—just “zero
out” the sixth through final columns. Using the same con-
version procedure as before, this produced XOR data files
of manageable size, allowing for comparisons of the speed
of the two formulations at N = 24. We performed this
smaller experiment with just 10 instances of each size, trun-
cated from the same set of randomly generated instances
discussed above.

The results are shown in Table 2. Not only can we see
that the MBA-IP formulation is continuing to perform a



Day and Raghavan: Matrix Bidding in Combinatorial Auctions
Operations Research 57(4), pp. 916–933, © 2009 INFORMS 931

Table 2. Median and worst-case run time (in seconds) over 10 winner-determination instances for
each size, with 24 total items and bundle size limited to 5 items or fewer in each case.

M = 5 10 25 50 75 100

Median
MBA-IP 0�078 0�188 0�359 0�812 1�343 1�976
XOR/GWD 0�452 5�148 18�765 59�859 130�305 423�867

Worst case
MBA-IP 0�109 0�266 1�422 1�64 2�437 3�453
XOR/GWD 5�079 1088�484 1883�25 148�078 722�391 681�907

few orders of magnitude better for the median instances at
each size, but we also see that the disparity between the
typical case and the worst case is growing much faster for
the GWD formulation. Indeed, for one particularly diffi-
cult instance (the worst for size M = 25), the run time is
more than 100 times the median instance of that size under
the XOR formulation, compared to a factor of about four
times the median instance of that size for the same difficult
instance formulated using MBA-IP.

The results presented in Tables 1 and 2 represent the use
of matrix bidding in its most straightforward implementa-
tion. Thus, the computational results presented here may
be viewed as a first step in establishing the potential of the
matrix bidding language. Many promising computational
areas remain to explored, including both the investigation
of specialized heuristics to reduce memory usage and run
times and a thorough exploration of how CPLEX’s various
cutting and branching parameters may be tuned to provide
better performance. Although a more detailed discussion of
these possibilities is beyond the scope (and page limit) of
the current submission, we note that positive results using
heuristics presented by Day (2004) and Goossens (2006)
indicate that more specialized computational techniques
may further strengthen the applicability of the matrix bid-
ding paradigm. Indeed, this is the focus of much of our
current research, and we anticipate a sequel paper focused
solely on the computational aspects of solving combinato-
rial auctions with the matrix bid format.

7. Conclusions
Is there a way to express a variety of preferences in a two-
dimensional array, containing just numbers, that allows for
expression of both substitutes and complements? In this
paper, we introduce matrix bidding and assert that it is
such a format. We offer this new compact representation
of preferences for combinatorial auctions based on the the-
ory of “price-vector agents” (see Day 2004 for a more gen-
eral treatment of this approach). Matrix bids can indeed be
expressed in a standard two-dimensional array, giving them
the valuable property of being able to be written in a spread-
sheet or standard text editor, with only numbers and no need
for special symbols or commands. A survey of the literature
on bid languages shows that few if any have this property.

Indeed, Theorem 5.1 shows that matrix bid expression
is general enough for the winner-determination problem
to be ��-hard and thus fundamentally difficult. Despite
this difficulty, Lemma 5.2 (which generalizes a result of
Padberg and Alevras 1994) assures us that the problem of
evaluating the bid on an arbitrary bundle can be performed
in polynomial time for any single matrix bid. This tight
formulation of the matrix bid auction winner-determination
problem makes it a “good” way to solve the ��-hard prob-
lem, with a high percentage of simulated instances solving
to integral optimality as the LP relaxation.

In §§3 and 4, we investigate some of the strengths and
weaknesses of matrix bidding in terms of preference expres-
sion. We show that a logical language of matrix bids is
equally as expressive in a polynomially sized format as any
known bidding language, but with an added level of visual
intuitiveness. We demonstrate that matrix bids are particu-
larly useful for the expression of several k-of bids, perhaps
with price differentiation among the items, as well as intu-
itively applying a capacity cost structure to any other matrix
bid expression, or for grocery-list bidding, to name just a
few. Indeed, the wide range of preference expression pos-
sible under matrix bidding is among its greatest strengths.
We also describe a method that allows for the expression
of a bidder’s preferences in a single matrix bid when pos-
sible or lets us know that expression of the bidder’s pref-
erences in a single matrix bid is not possible. This natu-
rally led to the question of how much information is lost
in a single matrix bid, which we answered, and the notion
of safe bidding when bidders must submit bids in a single
matrix bid. An interesting question that arises in the con-
text of a matrix bid is whether the bids expressed satisfy
various microeconomic properties (e.g., free disposal). In
this regard, we must mention the novel work of Goossens
et al. (2009), where they show that checking whether the
valuations represented by a matrix bid satisfy any of the
following microeconomic properties—free disposal, sub-
additivity, superadditivity, submodularity, supermodularity,
gross substitutes—can be done by solving shortest-path
problems on polynomially sized graphs.

We also emphasize that a logical language of matrix
bids would be necessary for a reasonable generality of
preference expression and propose that an XOR-of-OR-of-
matrix-bid language admits a great variety of preference
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expression that can be written in a spreadsheet environ-
ment without the explicit use of connectives (by separating
XORed scenarios into different sheets). The development
and empirical testing of user-friendly interfaces (such as
a spreadsheet implementation of an XOR-of-OR of matrix
bid language) remain goals for future research, of which
we have taken a few initial steps.

Our method for data simulation (discussed in online
Appendix B) elucidates another strength of the format.
Matrix bidding provides a quick way to generate complex
examples and simulated data using only numerical infor-
mation. Matrix bidding can therefore be a quick way to
generate examples from a fairly general class of prefer-
ences, including preferences (such as the k-of preferences)
that would take an exponential amount of bid informa-
tion in other combinatorial auction data sets, such as those
using flat bids (for example, CATS; see Leyton-Brown et al.
2000). However, some care must be taken that data are gen-
erated in an orderly fashion for the resulting matrix bids to
represent economically meaningful behaviors.

Finally, using this simulation approach, we demonstrate
the computational benefits of matrix bidding. Not only
did computational processing time grow much slower for
matrix bids, but because of the compactness of the lan-
guage it took much larger problem instances to exhaust our
memory capabilities under matrix bidding relative to the
XOR language. As a result, we could solve instances with
three times as many items and three times as many bid-
ders as the largest instance we could solve under the XOR
language. With the recently proposed “clock-proxy” auc-
tion of Ausubel et al. (2006), it is evident that there are
indeed great benefits to conveying a bidder’s entire set of
preferences for as many bundles as possible.

Altogether we hope to have convinced the reader that
matrix bidding is an interesting and useful technique for
combinatorial auctions. Its advantages are its compactness,
expressibility, and relative computational ease.

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/. All appendices to the paper are contained in
this electronic companion.

Endnotes
1. The argument for the use of an efficient mechanism is
provided by Ausubel and Cramton (1999). In this paper, we
restrict our attention to expressive languages and the solu-
tion of (efficient) winner-determination problems. Although
we do not discuss strategic properties in the present text,
we recommend the use of a “core” pricing mechanism.
As described in Day and Raghavan (2007), such a mech-
anism relies heavily on our ability to rapidly solve several
winner-determination problems, further justifying our focus
on efficiency based on submitted bids.

2. In logic, atoms refer to the terms joined by logical
connectives at the most basic level. Clauses are made by
joining atoms with connectives, larger clauses are built by
joining those clauses with connectives, etc.
3. Bidder X and Bidder Y provide examples of nested
k-of bidding and diminishing returns bidding, respectively,
used in our simulations and described in detail in online
Appendix B.
4. The optimal value for the winner-determination problem
in this second example is 57. Bidder X receives items A
and D, contributing 30 to the objective function. Bidder Y
receives item C for 20 units, and Bidder Z pays 7 units
for B.
5. We note the interesting property that the number of bun-
dles corresponds exactly to the term in the same position
in Pascal’s triangle (see Weisstein 2005).
6. Padberg and Alevras (1994) study the order-preserving
assignment problem, which corresponds exactly to an
instance of 5 with only a single bidder and potentially fewer
than N columns.
7. For two of the XOR/GWD cases, (N = 16, M = 75)
and (N = 16, M = 100), marked with † and ‡, respectively,
we could not compute solutions for any instances because
of RAM overflow. We retried these instances on a differ-
ent machine (2.66-GHz Intel Xeon processor Dell desktop
with 2 gigabytes of RAM) to see how much more could
be done with a greater amount of RAM. The average run
times given reflect the average over the 43 of 50 instances
for † and 16 of 50 instances for ‡ that could be completed
prior to RAM overflow with 2 GB. For †, four of the seven
overflow instances yielded usable best integer solutions at
around 96% optimality on average, whereas only four out
of the 34 overflow cases yielded usable best integer solu-
tions, at about 95% optimality on average for ‡. For all
other instances of these sizes no feasible integer solution
was found prior to RAM overflow. For N = 24 and larger
we encountered RAM overflow even with the 2-GB RAM
machine.
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Appendix A: Modeling OR-of-XOR and XOR-of-OR Matrix-Bid
Languages

In this section we discuss how to model the OR-of-XOR and XOR-of-OR Matrix-Bid Languages using the

integer program MBA-IP.

One way to quickly accomplish an XOR of Matrix bids is to add constraints on the set of slack variables

sjk from each constraint in the set 6 in the integer program MBA-IP. (To generate slack variables, replace

“≤ 1” with “+sjk = 1” in constraint set 6, so that sjk = 0 for any integer feasible solution in which j

receives at least k items, and sjk = 1 for any integer feasible solution in which j receives less than k items.)

Observe that if slack variable sj1 = 1, bidder j’s first column is completely without an item. According

to the ordering constraints if there is no item at bidder j’s first column there can be no item at bidder j’s

second column, and so forth; sj1 = 1 therefore implies that bidder j receives no items. Since each bidder

represents a single matrix bid we may achieve “Bid 1 XOR Bid 2” by adding the constraint:

s11 + s21 ≥ 1

to the IP formulation, where j = 1, 2 refer to Bid 1 and Bid 2 respectively. For the remainder of this

subsection we use the convention that each j ∈ J refers to a single matrix bid, rather than a bidder in the

auction.

In general, the XOR of matrix bids 1, 2...m may be expressed by:

m∑

j=1

sj1 ≥ m− 1 (10)

If a bidder submits a request to XOR matrix bids 1, 2...m, and a separate request to XOR matrix bids

(m + 1), (m + 2)...n, these submissions do not mutually exclude one another. This allows each bidder’s

submission to easily take the OR-ofXOR general form:

(MatrixBid1 XOR MatrixBid2... XOR MatrixBid M1) OR
(MatrixBid M1 + 1 XOR ...MatrixBid M2) OR...
(MatrixBid MQ−1 + 1 XOR ...MatrixBid MQ)

specifying an OR-of-XOR of matrix bids language, where Mq =
∑q

l=1 ml, and each ml equals the number

of XORed matrix bids in the lth of the Q different ORed clauses. For each of the Q clauses, a constraint of

the form (10) is introduced.

Also studied in the auction literature are XOR-of-OR bidding languages, which include the format

initially proposed for the FCC’s Auction #31 (Günlük et al., 2005). This can be modeled in the MBA-IP

formulation as follows. Add a binary variable for each OR string, and define Q = {1, 2, ...Q} as the XORed

set of clauses, each an ORed string of matrix bids. A bidder’s complete preference submission will be of the

form:
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(MatrixBid1 OR MatrixBid2... OR MatrixBid M1) XOR
(MatrixBid M1 + 1 OR ...MatrixBid M2) XOR...
(MatrixBid MQ−1 + 1 OR ...MatrixBid MQ)

where Mq =
∑q

l=1 ml, and each ml is now equal to the number of ORed matrix bids in the lth of the

Q different XORed clauses. For each q ∈ Q define gq = 0 if any matrix bid in the ORed string q receives

items, gq = 1 otherwise. Then add definitional constraints to MBA-IP for each string q, together with an

XOR constraint:

gq ≤ sj1, ∀ j ∈ q

Q∑
q=1

gq ≥ Q− 1

The first set of constraints ensures that if gq = 1, then none of the matrix bids j in string q receives items.

The second constraint ensures that among all Q strings at most one has one or more matrix bids receiving

items.

Though we provide here several examples of potentially useful logical languages of matrix bids, many

other are possible. Indeed, any of the logical bidding structures put forth by Boutilier (2002) may be adapted

to create a more or less complex logical language of matrix bids. Our examples show that in certain cases a

formulation may be expressed in terms of the slack variables for a single column from each matrix bid, rather

than on a large collection of xijk assignment variables. We note that the particular choice of an appropriate

logical language may vary from application to application, and that one direction for future research is to

empirically measure the trade-off between expressability and computational burden in the selection of a

logical language.

Appendix B: Methodology used for Simulating Bidder Preferences

Here we describe the prototypes used to simulate bidder preferences using matrix bids for our experiments.

In each case (except for the partition bidder), before the entries in a matrix bid are filled in, a ranking rij

is chosen at random from among the N ! possibilities.

Additive Preference Bidder: For each item in the auction, an integer is chosen from the set {0, 1, 2, ..., H}
with equal probability. Every row is then filled in with the same number equal to value chosen for the item

in that row.

Single-minded Bidder: Included to simulate very inflexible or lumpy preferences, this bidder places a

single positive entry on the diagonal. A column is chosen at random with equal probability, and a seed

for the entry is chosen from the set {1, 2, ...,H} with equal probability. The seed is then multiplied by the

column number to reflect the number of items it is effectively bidding on.

Nested Flat-Bid Bidder: For each entry on the diagonal, an integer is chosen from the set {−H, ..., H}
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Figure 5: A nested k-of Matrix Bid
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with equal probability. Next, every negative selection is set to equal zero; there is thus a H
2H+1 probability

of a positive entry, and probability of 1
H for each positive value conditional upon the entry being positive.

Finally each positive entry is multiplied by the number of zero entries preceding it along the diagonal,

weighting each entry by the number of items it has effectively bid on.

Nested k-of Bidder: Begin with a nested flat-bid bidder and simply fill in each column with the entry

chosen for the diagonal entry in that column. An example is given by Figure 5. If the numbers 6, 4, and

7 are drawn for the columns 3, 5, and 6, respectively, each column generated by multiplying the random

number by the number of consecutive zero columns immediately to the left plus one. Each positive bid then

has an average bid per item equal to the randomly drawn number for that column.

Partition Bidder: This bidder divides the set of items into g groups of substitutes and gives a price for

receiving one item from the group, given that one item from each previous group has been received. First

we choose the number of groups g with equal probability from 2 to N
2 + 1. Then each item is assigned to

a group with equal probability. Next the rankings are chosen so that each item in an earlier group has an

earlier ranking (ranking within a group will not matter). Then, the value for any item in the group is chosen

from the set {−H, ..., H} with equal probability. The value is set to zero if negative, and multiplied by the

number of consecutive immediately preceding groups with value of zero. Again this is to ensure that each

positive bid value reflects the number of items it is effectively bidding on. Finally, the matrix bid column

corresponding to each group number is filled in with the value of the group for any row corresponding to an

item in the group, and ∗ for every other row. The result is a special case of the grocery-list bidding from §4.2,

in which only one item is demanded from each group of substitutes. We note that when using ∗-entries in a

matrix bid, we can simply remove the decision variable associated with that entry from the IP formulation.

Add-on Bidder: This bidder bids on an essential item and some nonnegative amount for any number of

add-on items. First the row of the item to be considered essential is chosen at random with equal probability.

Next an initial value is chosen for the essential item which is placed in the first column of the row. For each

following entry in the row an integer between zero and the initial value is chosen, and added to the previous

value in the row until the row is filled.

Diminishing Returns Bidder: This bidder simulates weakly diminishing marginal returns for every item

received, and thus is generated to have weakly decreasing rows and columns. The entry in the first row and

first column (i.e., the value for the highest ranked item) is chosen from {0, 1, 2, ..., H} with equal probability.
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Each entry in the first column is given a value between the value above it and half of that value, with a

50% probability of being equal to the entry above it and an equal probability of taking any integer value

between if not equal. To start the next column once a column is filled, the diagonal entry from that column

is generated in the same way, but adjusting down to the entry on its left if that number is smaller. The other

entries in the new column are generated in the same way as the first column, based on the entry above, but

now adjusted down to the value of the entry on its left if necessary to ensure weakly decreasing rows.

Appendix C: Proof of Claim 4.1.

Proof. By induction on the columns. This is clearly true when k = 1 and k = 2. Suppose it is true for

column k = α, and we are now working on column k = α + 1 in the column-based procedure. Observe, as

a consequence of the inductive argument, the only items with pos[i] values strictly between t and t− l must

have had pos[i] = t in column α.

Let f be an item with position index values strictly between t and t− l. Let g be one of the l items that

satisfy condition (4) for row t and denote the set of l items as L. Consider any set Sg of size k − 1 that

contains items with position index t or lower and (i) does not contain f , and (ii) contains g. Note there are
(

t−2
k−2

)
such sets that we denote by Ωg and observe

bj(Sg ∪ f) = bj(Sg ∪ f\g)+ constant, since g has pos[g] = t in column k;

bj(Sg) = bj(Sg\g)+ constant, since g has pos[g] ≥ t− 1 in column k − 1;

and

bj(Sg ∪ f\g) = bj({Sg ∪ f\g}\f)+ constant, since f has pos[f ] = t in column k − 1.

Resulting in the observation that

bj(Sg ∪ f)− bj(Sg) = bj({Sg ∪ f\g}\f)− bj(Sg\g)+ constant.

But, {{Sg ∪ f\g}\f} = {Sg\g}, and thus bj(Sg ∪ f)− bj(Sg) = constant for all Sg ∈ Ωg.

The above argument remains true for any item h ∈ L. Thus for every h ∈ L

bj(Sh ∪ f)− bj(Sh) = constant for all Sh ∈ Ωh.

Further,

bj(Sh ∪ f)− bj(Sh) = bj(Sg ∪ f)− bj(Sg) ∀g, h ∈ L, since Sh ∩ Sg 6= φ ∀g, h ∈ L.

In simple terms the above argument says for any set T of k − 1 items (i) not containing f , and (ii) con-

taining at least one item from L, the incremental value item f brings to the set is the same.

With the above result in hand, we now prove inductively that f cannot be given a position index c strictly

between t and t − l (i.e., t − l < c < t). Let It denote all items with position index less than or equal to t.

Suppose c the position index of f is equal to t − x with x = 1. Then it must be true for the
(

t−2
k−1

)
sets S

with elements chosen from (It\L\f)∪ (L\g), for some choice of g ∈ L, the incremental value f brings to the

set S is constant. Note none of the sets S ∈ Ωg, but some of the sets in S are also elements of Ωh, h ∈ L\g.

Thus, it must be true that the incremental value f brings to sets Sg ∈ Ωg is identical to the incremental
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value f brings to the
(

t−2
k−1

)
sets S. Or there are

(
t−2
k−1

)
+

(
t−2
k−2

)
=

(
t−1
k−1

)
sets of k − 1 elements from It\f to

which the incremental value f brings is constant. And consequently f must have position index equal to t

resulting in a contradiction.

Repeating this argument with x = 2, i.e., c = t − 2, we find that it must be true for the
(
t−1−x

k−1

)
sets

S with elements chosen from (It\L\f) ∪ (L\{g, h}), for some choice of {g, h} ∈ L, the incremental value

f brings to the set S is constant. Again, none of the sets S ∈ (Ωg ∪ Ωh), but some of the sets in S

are also elements of Ωe, e ∈ L\{g, h}. Thus, it must be true that the incremental value f brings to sets

Sg ∈ Ωg and Sh ∈ Ωh is identical to the incremental value f brings to the
(
t−1−x

k−1

)
sets S. Or there are

(
t−1−x

k−1

)
+

∑x
y=1

(
t−1−y
k−2

)
=

(
t−1
k−1

)
sets of k − 1 elements from It\f for which the incremental value f brings

is a constant. Consequently f must have position index equal to t resulting in a contradiction. Continuing

in this fashion until x = l − 1 completes the proof.
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