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Network survivability is a critical issue for modern fiber-
optic telecommunication networks. Networks with alter-
nate routes between pairs of nodes permit users to com-
municate in the face of equipment failure. In this paper, we
consider the following low-connectivity network design
(LCND) problem: Given a graph G � (N, E) and a connec-
tivity requirement di � {0, 1, 2} for each node and edge
costs ce for each edge e � E, design a minimum-cost
network that contains at least dst � min{ds, dt} disjoint
paths between nodes s and t. We present linear-time al-
gorithms for both node- and edge-connectivity versions of
the problem on series-parallel graphs. Due to the sparsity
of telecommunications networks, this algorithm can be
applied to obtain partial solutions and decompositions that
may be embedded in a heuristic solution procedure as well
as exact solution algorithms for the problem on general
graphs. © 2004 Wiley Periodicals, Inc.
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1. INTRODUCTION

In this paper, we consider the low-connectivity network
design (LCND) problem that arises as a fundamental prob-
lem in the practical design of telecommunication networks
(see [7]). In this problem, given an undirected network G
� (N, E), with node set N, edge set E, a connectivity
requirement di � {0, 1, 2} for each node i � N, and edge
costs ce for each edge e � E, we wish to design a mini-
mum-cost network that has at least dst � min{ds, dt}
disjoint paths between each pair of nodes s and t. We
consider both edge- and node-connectivity versions of the
problem.* To distinguish between edge-connectivity and

node-connectivity, we append N (e.g., 2N) to denote node-
connectivity requirements and append E to denote edge-
connectivity requirements.

The LCND is NP-hard on general graphs, since it gen-
eralizes the Steiner tree problem, and has raised consider-
able interest among researchers. Grötschel et al. [12] de-
scribed a cutting-plane approach for the problem on general
graphs and were able to use this approach to solve some
problems arising in local telephone companies. Magnanti
and Raghavan [15] described a dual-ascent algorithm for the
edge-connectivity version of the problem. This algorithm
generates both a heuristic solution, as well as a lower bound
on the optimal solution value for the problem. Several other
researchers studied the problem on general graphs. See
Grötschel et al. [13] and Raghavan and Magnanti [20] for
recent surveys on this problem.

Telecommunication networks are typically sparse and
planar [18]. Further, in many cases, parts of the network are
series-parallel graphs. Consequently, researchers have stud-
ied the restriction of some versions of the LCND to series-
parallel graphs. Wald and Colbourn [25] described a linear-
time algorithm for the Steiner tree problem (ds � {0, 1})
on a series-parallel graph. Winter [26] described linear-time
algorithms for the LCND on series-parallel graphs when ds

� {0, 2N } and ds � {0, 2E} (i.e., no node has a
connectivity requirement of 1). Since network design prob-
lems are often modeled as integer programs, researchers
have investigated the polyhedral structure of the LCND
problem on series-parallel graphs. Mahjoub [16] provided a
complete description† of the 2-edge-connected spanning
subgraph polytope on series-parallel graphs (i.e., the case
where ds � 2E for all nodes). Baı̈ou and Mahjoub [3]
considered the case where ds � {0, 2E} and provided a
complete description of the Steiner 2-edge-connected poly-
tope. Coullard et al. [8, 9] considered the node-connectivity
version. In [8], they gave a complete description of the
2-node-connected spanning subgraph polytope on series-

* There are two edge-disjoint paths (respectively, node-disjoint paths)
between a pair of nodes if the deletion of a single edge (respectively, single
node) in the network does not disconnect them. A network is 2-edge-
connected (respectively, 2-node-connected) if there are two edge-disjoint
paths (respectively, node-disjoint paths) between every pair of nodes.
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† A complete description is a linear inequality description of the convex
hull of integer feasible solutions to the problem.
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parallel graphs (i.e., the case where ds � 2N for all nodes),
and in [9], they gave a complete description of the Steiner
2-node-connected polytope (i.e., the case with ds � {0,
2N }).

Series-parallel graphs are defined by a recursive con-
struction process. Consequently, because of this structure,
many NP-hard problems are polynomially solvable on
them. However, the derivation of the polynomial-time al-
gorithms are nontrivial and, indeed, very problem-specific.
As we will show, the edge- and node-connectivity version
of the LCND admit linear-time algorithms. The identifica-
tion of a linear-time algorithm is important for several
reasons: First, due to the sparsity of telecommunication
networks, large portions of them are series-parallel. As a
result, these algorithms may be used to obtain partial solu-
tions on the series-parallel portions that could be used in a
heuristic procedure for the problem. Second, decomposition
using 2-separators is used to solve the problem on general
graphs (see [12]). Using a decomposition procedure makes
it computationally viable to solve large-scale problems via
an exact procedure. In the decomposition procedure, a
2-separator (a pair of nodes whose deletion separates the
graph into two or more components) is identified. Then, a
series of smaller problems is solved on the components (in
a particular order and with some minor modifications to
these components), whose solutions can be pieced together
to obtain a solution to the original problem. The algorithm
for the LCND on series-parallel graphs is also based on
decomposition using 2-separators. Thus, the decomposition
can easily be applied to general graphs and combined with
an exact solution approach (such as a cutting-plane or
branch-and-cut algorithm) could result in the exact solution
of large-scale LCND problems. Interestingly, as a conse-
quence of our algorithm for the edge-connectivity version of
the LCND, we observe that a decomposition used by
Grötschel et al. [12] is incorrect.

The organization of the rest of the paper is as follows: In
Section 2, we describe a well-known correspondence be-
tween series-parallel graphs and partial 2-trees. In doing so,
we lay the foundations of our dynamic programming algo-
rithms. In Section 3, we describe a linear-time algorithm for
the node-connectivity version of the LCND problem, while
in Section 4, we describe a linear-time algorithm for the
edge-connectivity version of the LCND. Finally, in Section
5, we discuss how our results may be applied as a decom-
position procedure to general graphs, thus providing a way
to possibly solve large LCND problems on general graphs.

Notation: We use standard graph theory terms and nota-
tion as in the text by Bondy and Murty [5]. For clarity, we
elaborate on the following terminology where we differ
from [5]. A trail is a path that does not repeat edges. A
simple path is a trail that does not repeat nodes. Let G1

� (N1, E1) and G2 � (N2, E2) be two graphs. The
subgraph induced by G1 on G2 has edges E1 � E2 and
nodes as the end points of the edges E1 � E2. A node cut
is a subset N� of N such that G � N� is disconnected. A

k-node cut is a node cut of k elements. A 2-separator is a
2-node cut.

2. SERIES-PARALLEL GRAPHS AND 2-TREES:
ALGORITHM DESIGN OUTLINE

A graph G � (N, E) is said to be series-parallel if and
only if it contains no subgraph homeomorphic to K4 (the
complete graph on four nodes). An alternate, constructive,
definition is as follows: A graph is series-parallel if each of
its 2-node connected components‡ can be constructed, start-
ing with an edge, by the repeated application of the follow-
ing two operations:

● Series construction: Replace an edge e � (s, t) by a pair
of edges (s, u) and (u, t).

● Parallel construction: Replace an edge e � (s, t) by two
parallel edges e� � (s, t) and e� � (s, t).

A closely related graph to a series-parallel graph is a
2-tree. It is defined via the following recursive construction
procedure:

● K3, the complete graph on three nodes is a 2-tree.
● Given a 2-tree and any edge (i, k) on the 2-tree, the graph

obtained by adding a new node j and connecting it to
nodes i and k via new edges (i, j) and ( j, k) is a 2-tree.

Wald and Colbourn [25] characterized those networks,
partial 2-trees, that can be completed to 2-trees by adding
new edges. They showed that a network is a partial 2-tree if
and only if it has no subgraph homeomorphic to K4. Rob-
ertson and Seymour [22, 23] introduced a closely connected
concept of treewidth for graphs. Van Leeuwen [24] showed
that partial 2-trees are identical to graphs with treewidth at
most 2. (This statement remains true when 2 is replaced by
a general integer parameter k � 0, i.e., partial k-trees are
identical to graphs with treewidth at most k, as proved in
[24].) Thus, partial 2-trees are exactly series-parallel graphs,
and they are identical to graphs with treewidth at most 2.

We now briefly sketch a linear-time procedure developed
by Wald and Colbourn [25] and adapted by Winter [26] to
complete a partial 2-tree to a 2-tree. In the process of
completing a partial 2-tree to a 2-tree, we will make the cost
of added edges L a sufficiently large number (setting L � 1
� ¥e�E ce, where E is the set of edges in the original
graph, is sufficient). By doing so, it is sufficient to focus our
attention to solving the LCND on 2-trees. For example, if
the cost of the solution obtained is L or greater, it implies
that an edge not present in the original graph is in the
solution and so the problem is infeasible.

Without loss of generality, we assume that the graph G is
connected. Otherwise, the problem is either infeasible (if

‡ A 2-node-connected component of a graph G is a maximal subgraph of
G that is 2-node-connected.
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nodes with connectivity requirements, i.e., nodes with ds

� 1, are in different connected components) or we can
discard all components that do not contain nodes with
connectivity requirements. Checking whether the graph is
connected and identifying if all nodes with connectivity
requirements lie in the same connected component can be
done in linear time using depth first search (DFS) (see [10]).

The procedure to complete a partial 2-tree to a 2-tree
(from [25, 26]) also identifies when the original graph is not
a partial 2-tree. It first converts the connected graph to a
2-node connected graph. This is done using DFS in such a
way that the partial 2-tree structure is maintained (if the
original graph is a partial 2-tree). The procedure then con-
verts the 2-node connected partial 2-tree to a 2-tree by
adding edges to it. To determine the edges to be added, the
nodes of G are scanned sequentially and those of degree 2
are placed on a stack. The following steps are then repeated
upon a copy of G until the copy is reduced to K3 or the stack
is empty:

Let H � G be a copy of graph G.

(1) Remove the top node j, from the stack. If the stack is
empty, then G is not a partial 2-tree. STOP.

(2) Determine edges (i, j) and ( j, k) incident to j in H.
(3) If there is no edge (i, k), add it to both H and to G with

cost cik � L.
(4) Delete node j. H � H�j. If H � K3, G is a 2-tree.

STOP.
(5) If the degree of node i or k in H is 2, place them on the

stack.

The DFS procedure to transform a connected partial
2-tree to a 2-node connected partial 2-tree takes linear time.
The procedure of converting a 2-node connected partial
2-tree to a 2-tree also takes linear time since each step
deletes a node in the graph and the number of operations in
each step is constant. Consequently, the procedure to com-
plete a partial 2-tree to a 2-tree takes linear time.

The motivation for our dynamic programming algo-
rithms comes from the recursive construction process of a
2-tree. We reverse the construction process and sequentially
contract the graph. At each stage, we repeatedly eliminate
nodes of degree 2 until the graph obtained is an edge. At any
stage in the contraction process (including initially prior to
contraction), let Gij denote the graph represented by edge (i,
j). In other words, Gij represents the subgraph in the orig-
inal 2-tree G that has been contracted onto edge (i, j) (Fig.
1 provides an example). During the contraction process, we
keep track of state information for the subgraph Gij repre-
sented by each edge (i, j). The state information describes
solutions to certain problems (which can be different from
the original problem) restricted to the subgraph Gij.

To use the contraction process to devise linear-time
algorithms, there are three requirements: First, the number
of states that we associate with each subgraph is finite and
independent of the number of nodes. Second, suppose that
during the contraction process node j has degree 2 and is

connected to nodes i and k via edges (i, j) and (k, j) prior
to elimination of j. Then, the new state information for Gik

(i.e., after the elimination of j) must be computable solely
from the state information for Gij, Gik, and Gjk. Finally, we
should be able to deduce the solution to the problem from
the state information of the edge that is left at the end of the
contraction procedure.

Although it is easy to state the algorithm design philos-
ophy, and this has been formalized in several different ways
(see [2, 4, 6]), it is a nontrivial task to determine the state
information required for a given problem (and is very prob-
lem-specific). In the next few sections, we will develop
linear-time algorithms for different versions of LCND. The
basic algorithm can be described as follows: The state
information is initialized for each edge of the graph G. The
nodes of G are scanned sequentially and those of degree 2
are placed on a stack. The following steps are repeated until
G is reduced to an edge:

(1) Remove the top node j from the stack.
(2) Determine edges (i, j) and ( j, k) incident to j in G.
(3) Since G is a 2-tree, edge (i, k) exists. Compute the new

state information for the graph G̃ik � Gik � Gij � Gjk.
(4) Delete node j from G by setting G � G�j. Update the

state information associated with edge (i, k) in G (i.e.,
for graph Gik) by setting the state information for Gik

equal to the state information for graph G̃ik computed in
Step 3.

(5) If the degree of node i or k in G is 2, place them on the
stack.

FIG. 1. Example of subgraph’s of the original graph G represented by an
edge in the contraction process. Suppose that the graph is contracted to (i,
j), ( j, k), (i, k). Then, Gij � {(i, j), (i, f ), ( j, f ), (d, f ), (i, d), (d, e),
(e, f )}, Gik � {(i, k), (i, c), (k, c), (i, b), (b, c), (a, b), (a, c)}, and
Gjk � {( j, k), ( j, h), (h, k), ( j, g), ( g, h)}.
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3. NODE-CONNECTIVITY REQUIREMENTS

In the case of node-connectivity requirements, let Y1 be
the set of nodes with ds � 1 and let Y2N be the set of nodes
with ds � 2N. We now motivate the graphical structures
(states) that we compute in the course of the algorithm (i.e.,
the graphical structures we will compute in Step 3 of the
algorithm described at the end of the previous section). At
the end of the contraction process, an edge, say (i, k),
represents the graph. The minimum-cost solution§ to the
problem either includes both nodes i and k, or includes node
i but not k, or includes node k but not i, or excludes both
nodes i and k. Thus, at the minimum, we must keep track of
graphical structures corresponding to these four forms.

In our notation, the capital letters denote the graphical
structure, and the small letters, their costs. For ease of
exposition, we will use � (instead of L) to denote the cost
of edges that were added to complete the partial 2-tree to a
2-tree, as well as to denote the cost of infeasible solutions.
However, in a computer implementation, as we have indi-
cated earlier, � may be replaced by a sufficiently large
number L. The graphical structures, Sik, Tik, Tki, and Uik,
corresponding to the four possible cases identified above are
described below:

Sik � minimum-cost network on Gik that satisfies all the
connectivity requirements on Gik. It must include both
nodes i and k.

Tik � minimum-cost network on Gik that satisfies all the
connectivity requirements on Gik and must include node i
and must exclude node k. If k is required (i.e., dk �� 1),
then such a structure is infeasible, and by convention,
tik � �.

Uik � minimum-cost network on Gik that satisfies all the
connectivity requirements on Gik but excludes nodes i and
k. If either i or k are required, then, by convention, uik � �
(since Uik is not feasible if either i or k are required).

Notice that the graphical structures are variants of the
original problem restricted to the graph Gik. In addition, the
following graphical structures are necessary for the compu-
tations:

Pik � minimum-cost network on Gik containing both
nodes i and k and such that for every Y2N node there is a
simple path (i.e., a path that does not repeat a node) from i
to k through it and every Y1 node is connected to i and to k.

Qik � minimum-cost network on Gik comprising of two
disjoint trees that include all nodes with nonzero connec-
tivity requirements. One tree includes node i and the other
tree includes node k. If Gik�{i, k} has a Y2N node, then, by
convention, qik � �.

Rik � minimum-cost network on Gik comprising of two

disjoint networks that include all nodes with nonzero con-
nectivity requirements. One subnetwork includes node i and
the other subnetwork includes node k. Further, all the Y2N

nodes belong to only one of the two disjoint subnetworks,
and there must be two node-disjoint paths between every
pair of Y2N nodes. If this is not the case, for example, if i
and k � Y2N, then rik � �.

To motivate the need for these structures, consider Sik.
Suppose that in Step 3 of the basic algorithm we need to
compute S̃ik for the graph G̃ik � Gik � Gij � Gjk.
Consider the possible graphical structures induced by S̃ik on
Gik, Gij, and Gjk, respectively. To compute S̃ik, we need to
have available the costs of these graphical structures (i.e.,
the possible ones S̃ik induces on Gik, Gij, and Gjk, respec-
tively). S̃ik may induce a connected graph on Gik, Gij, and
Gjk, respectively. In this case, the graphical structures S̃ik

induces on Gik, Gij, and Gjk are Pik, Pij, and Pjk, respec-
tively (see Lemma 2), motivating the need for Pik. If S̃ik

induces a graph that is not connected on any one of Gik, Gij,
and Gjk, then, as we will show, all Y2N nodes in G̃ik are in
exactly one of Gik, Gij, and Gjk. Consequently, the discon-
nected subgraph induced by S̃ik either contains all Y2N

nodes, motivating Rik, or it does not contain any Y2N node
(other than one of the two endpoints, say i or j, if the
graphical structure is induced on Gij), motivating Qik.

Finally, the following variables provide logical informa-
tion to enable us determine whether a particular network
configuration is feasible:

aik indicates whether Gik�{i} contains at least one Y2N

node. If Gik�{i} contains at least one Y2N node, then aik

� � and is zero otherwise.
mik indicates whether any of the nodes in Gik have a

connectivity requirement. mik is � if one of the nodes on Gik

has a connectivity requirement and is zero otherwise.
Notice that, except for Tik and aik, all graphical struc-

tures and variables are symmetrical in the sense that Pik

� Pki.
Initially, before the first contraction, the costs for the

graphical structures on each edge (i, k) � E are initialized
as follows:

sik � �� if i � Y2N and k � Y2N

cik otherwise

tik � �� if k � Y1 � Y2N

0 otherwise

uik � �� if either i or k � Y1 � Y2N

0 otherwise

pik � cik

qik � 0
§ We consider the solution to be defined by the edges in the network. Thus,
the solution does not contain nodes with degree 0.
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rik � �� if i � Y2N and k � Y2N

0 otherwise

aik � �� if k � Y2N

0 otherwise

mik � �� if i or k � Y1 � Y2N

0 otherwise.

As the algorithm proceeds, let node j be the node of
degree two being eliminated and let nodes i and k be the
nodes adjacent to it. Then, the state information on G̃ik

� Gik � Gij � Gjk is updated as described in the following
recursive equations:

The Recursive Equations (Node-connectivity Case) (1)

s̃ik � min�pij � pjk � pik, tij � tkj � min�sik � aij � akj, pik

� aik � ajk, pik � aki � aji�, sik � pij � qjk � aij � akj, pik

� sij � qjk � aik � ajk, pik � pij � rjk � aji � aki, sik � pkj

� qij � aij � akj, pik � pkj � rij � aik � ajk, pik � skj � qij

� aji � aki, rik � pij � pjk � aij � akj, qik � sij � pjk � aik

� ajk, qik � pij � sjk � aji � aki�

t̃ ik � min�tik � tjk � min�pij � aij � akj, sij � aik � ajk, pij

� aji � aki�, mjk � tik � tij � min�aij, aik��

ũik � min�mij � mjk � uik, mik � mjk � uij, mij � mik

� ujk, tji � tjk � mik � min�ajk, aji��

p̃ik � min�pij � pjk � pik, pik � tij � tkj � aij � akj, pij � pjk

� qik, pik � pij � qjk � aij, pik � pjk � qij � akj�

q̃ik � min�qik � aij � akj � min�tij � tkj, pij � qjk, pjk � qij��

r̃ik � min�tij � tkj � min�rik � aij � akj, qik � aik � ajk, qik

� aki � aji�, rik � pij � qjk � aij � akj, qik � sij � qjk � aik

� ajk, qik � pij � rjk � aji � aki, rik � pjk � qij � aij

� akj, qik � pjk � rij � ajk � aik, qik � sjk � qij � aji � aki�

ãik � aij � aik � ajk

m̃ik � mij � mik � mjk.

Once we have reduced the graph to an edge [say (i, k)],
the cost of the solution is min{sik, tik, tki, uik}.

We now establish the correctness of the above equations:

Theorem 1. The recursive equations (1) correctly com-
pute the costs of the graphical structures for the node-
connectivity case.

Proof. The proof requires enumeration of all possible
cases. We describe the cases for structure S̃ik in detail. The
other cases are identified in the Appendix. Once we have
identified all possible cases, it is easy to obtain the recursive
equations.

We will consider the graphical structure S̃ik. In doing so,
we will also motivate the need for the structures Pik, Qik,
and Rik. The following result, which follows immediately
from the well-known Mengers’ theorem [17], is useful in
our discussion:

Lemma 2. Let {i, j} be a 2-separator, separating two
nodes s and t � Y2N. If there are two node-disjoint paths
between s and t, then one of the paths must include node i
and the other path node j.

We restrict our attention to the graph G̃ik � Gij � Gjk

� Gik. Suppose that all the Y2N nodes are not contained
entirely in one of the subgraphs Gij, Gjk, and Gik. In that
case, there either exist two nodes s and t in Y2N that have
one of {i, j}, { j, k}, {i, k} as 2-separators separating them
or i, j, k are the only nodes in Gik that belong to Y2N. In
both cases, using Lemma 2, it follows that each of the
graphs induced by S̃ik on Gik, Gjk, and Gij is a connected
graph that includes nodes i and k, nodes j and k, and nodes
i and j, respectively. From this, it follows that the union of
Pij, Pjk, and Pik provides us with a solution that satisfies the
requirements of S̃ik at minimum cost. Notice that, in this
case, s̃ik � pij � pjk � pik.

Now suppose that all the Y2N nodes are contained en-
tirely in one of the subgraphs Gij, Gjk, and Gik. Then, either
each of the graphs induced by S̃ik on Gik, Gjk, and Gij is a
connected graph that includes nodes i and k, nodes j and k,
and nodes i and j, respectively, in which case Pij � Pjk �
Pik provides us with a solution that satisfies the require-
ments of S̃ik at minimum cost. Or there are 12 possible
cases:

(1) j is not in S̃ik.
(a) All Y2N nodes are contained in Gik. Then, the

union of Sik, Tij, and Tkj gives S̃ik. In addition, aij

and akj should be zero; otherwise, all Y2N nodes
are not contained in Gik. In this case, s̃ik � tij

� tkj � sik � aij � akj.
(b) All Y2N nodes are contained in Gij. Then, the

union of Pik, Tij, and Tkj gives S̃ik. Note that if
Gik contains no Y2N node then Pik gives the opti-
mal Steiner tree on the node set Y1 � {i, k} on
Gik. In addition, aik and ajk must be zero; other-
wise, all Y2N nodes are not contained in Gij. In this
case, s̃ik � tij � tkj � pik � aik � ajk.

(c) All Y2N nodes are contained in Gjk. Then, the
union of Pik, Tij, and Tkj gives S̃ik. In addition, aki

and aji should be zero; otherwise, all Y2N nodes
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are not contained in Gjk. In this case, s̃ik � tij

� tkj � pik � aki � aji.
(2) j is in S̃ik, and j and k are not connected in the graph

induced on Gjk.# The graph induced on Gjk is either Rjk

or Qjk (defined earlier) based on whether Y2N nodes are
contained in Gjk.
(a) All Y2N nodes are contained in Gik. Then, the

union of Sik, Pij, and Qjk gives S̃ik. To ensure
feasibility, aij and akj must be zero. Thus, s̃ik � sik

� pij � qjk � aij � akj.
(b) All Y2N nodes are contained in Gij. Then, the

union of Pik, Sij, and Qjk gives S̃ik. To ensure
feasibility, aik and ajk must be zero. Thus, s̃ik

� pik � sij � qjk � aik � ajk.
(c) All Y2N nodes are contained in Gjk. Then, the

union of Pik, Pij, and Rjk gives S̃ik. To ensure
feasibility, aji and aki must be zero. Thus, s̃ik

� pik � pij � rjk � aji � aki.
(3) j is in S̃ik, and i and j are not connected in the graph

induced on Gij. These cases are symmetrical to cases
2(a)–2(c).

(4) j is in S̃ik, and i and k are not connected in the graph
induced on Gik. These cases are symmetrical to cases
2(a)–2(c).

S̃ik is obtained by computing the structure with the lowest
cost out of these 13 cases. Substituting the equations for
these 13 cases gives the equation for s̃ik showing that s̃ik is
computed correctly.

t̃ik, ũik, p̃ik, q̃ik, and r̃ik are computed correctly as shown
by the cases in the Appendix.

ãik is computed correctly. ãik is � if any node in G̃ik�i is
a Y2N node. Thus, it is � if any node in Gik�i, Gij�i, or Gjk

is a Y2N node. The equation ãik � aik � aij � ajk expresses
this condition.

m̃ik is computed correctly. m̃ik is � if any node in G̃ik has
a connectivity requirement. Thus, it is � if any node in Gij,
Gik, or Gjk has a connectivity requirement. The equation
m̃ik � mij � mik � mjk expresses this condition. ■

Theorem 3. The node-connectivity version of the LCND
problem on a series-parallel graph can be solved in linear
time.

Proof. At each step, the algorithm performs a fixed
number of operations. The number of steps is linear in the
number of nodes. Thus, based on our preceding discussion,
it follows that the solution to the node-connectivity version
of the LCND problem can be computed in linear time on a
series-parallel graph.

In our discussion, we restricted ourselves to obtaining the
cost of the solution. It should be clear that by keeping track

of the associated graphs for each structure the optimal
network can also be obtained in linear time. ■

4. EDGE-CONNECTIVITY REQUIREMENTS

In the case of edge-connectivity requirements, let Y1 be
the set of nodes with ds � 1 and let Y2E be the set of nodes
with ds � 2E. The methodology is similar to that for the
node-connectivity case, except that the graphical structures
that we need to keep track of are more complicated. At the
end of the contraction process, let the edge remaining,
which represents the graph, be (i, k). Then, the minimum-
cost solution to the problem either includes both nodes i and
k, or includes node i but not node k, or includes node k but
not node i, or excludes both node i and k. These possible
structures are denoted as follows:

Sik � minimum-cost network on Gik that satisfies the
requirements of all nodes on Gik and must include nodes i
and k.
Tik � minimum-cost network on Gik that satisfies the
connectivity requirements on Gik and must include i and
exclude k. If k is required, then tik � �.
Uik � minimum-cost network on Gik that satisfies the
connectivity requirements on Gik and excludes nodes i and
k. If either i or k have connectivity requirements, then, by
convention, uik � �.

One of the most important differences between the two
problems lies in the fact that the edge-connectivity version
of Lemma 2 is not true. In other words, suppose that {i, j}
is a 2-separator separating two nodes s, t � Y2E and there
are two (or more) edge-disjoint paths between nodes s and
t. Then, it is possible that all the edge-disjoint paths pass
through node i but not node j or pass through node j but not
node i. In the former case, node i must have at least two
edge-disjoint paths to node s and at least two edge-disjoint
paths to node t. Similarly, in the latter case, node j must
have at least two edge-disjoint paths to node s and at least
two edge-disjoint paths to node t. Consequently, we may
observe the following: If all paths between two nodes s, t
� Y2E in a feasible network satisfying all the connectivity
requirements pass through a node u, node u must have two
edge-disjoint paths to node s, two edge-disjoint paths to
node t, and, thus, two edge-disjoint paths to all nodes in
Y2E. It is as if node u has a 2E connectivity requirement
imposed on it. This situation drastically increases the num-
ber of structures that we need to consider. Unlike the
node-connectivity case, we need to consider structures
where the endpoints have 2E connectivity requirements
imposed on them (this corresponds to cases where two
edge-disjoint paths pass through the same node). Conse-
quently, the following S and T structures are also necessary:

Sik
ik � minimum-cost network on Gik that satisfies the

requirements of all nodes on Gik and, furthermore, a 2E
requirement is imposed on nodes i and k.

# In the rest of this paper, especially in the Appendix, we will interchange-
ably use the term “the graph induced on Gjk is disconnected” to refer to the
situation where nodes j and k are not connected in the graph induced
on Gjk.
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Sik
i � minimum-cost network on Gik that satisfies the

requirements of all nodes on Gik and, furthermore, a 2E
requirement is imposed on node i and node k is required to
be connected.
Sik

k � minimum-cost network on Gik that satisfies the
requirements of all nodes on Gik and, furthermore, a 2E
requirement is imposed on node k and node i is required to
be connected.
Tik

i � minimum-cost network on Gik that satisfies the
connectivity requirements on Gik, excludes node k, and
imposes a 2E requirement on node i. If k is required to be
connected, then tik

i � �.

In addition, the following structures are necessary for the
computations:

Pik � minimum-cost network on Gik such that, for every
Y2E node in Gik, there is a trail (i.e., a path that does not
repeat an edge) from i to k through it and every Y1 node is
connected to i and k.
Qik

ik � minimum-cost network on Gik comprising of two
disjoint networks on Gik that include all nodes with nonzero
connectivity requirements. One subnetwork includes node i
and the other subnetwork includes node k, both of which
have 2E requirements imposed on them. Further, the con-
nectivity requirements within each disjoint network are
satisfied.
Qik

i � minimum-cost network on Gik comprising of two
disjoint networks on Gik that include all nodes with nonzero
connectivity requirements. One subnetwork includes node i
and the other subnetwork includes node k. Node i has a 2E
requirement imposed on it, and all Y2E nodes in Gik�{i, k}
are in the subnetwork containing node i. Further, the con-
nectivity requirements within each disjoint network are
satisfied. Note that if the subnetwork of Qik

i containing node
k has a node with a 2E requirement other than node k then
qik

i � �. This implies that the subnetwork of Qik
i containing

node k is a tree or just node k.
Qik

k � minimum-cost network on Gik comprising of two
disjoint networks on Gik that include all nodes with nonzero
connectivity requirements. One subnetwork includes node i
and the other subnetwork includes node k. Node k has a 2E
requirement imposed on it, and all Y2E nodes in Gik�{i, k}
are in the subnetwork containing node k. Further, the con-
nectivity requirements within each disjoint subnetwork are
satisfied.
Qik � minimum-cost network on Gik comprising of two
disjoint trees that include all nodes with nonzero connec-
tivity requirements. One tree includes node i and the other
tree includes node k. If Gik�{i, k} has an Y2E node, then, by
convention, qik � �.
Rik � minimum-cost network on Gik comprising of two
disjoint networks that include all nodes with nonzero con-
nectivity requirements. One subnetwork includes node i and
the other subnetwork includes node k. Further, all the Y2E

nodes belong to only one of the disjoint subnetworks, and
there must be two edge-disjoint paths between every pair of

Y2E nodes. If this is not the case, for example, if i and k
� Y2E, then rik � �.

Finally, the following variables provide information on
feasibility:

bik indicates whether Gik�{i} contains at least one Y2E

node. If Gik�{i} contains at least one Y2E node, then bik

� � and is zero otherwise.
mik indicates whether any of the nodes in Gik have a
connectivity requirement. mik is � if any node on Gik has a
connectivity requirement and is zero otherwise.
wk indicates whether node k � Y2E. wk is � if k � Y2E and
is zero otherwise.

Notice that except for Tik, Tik
i , and bik all graphical

structures and variables are symmetrical in the sense that Pik

� Pki (Sik
i � Ski

i , Qik
i � Qki

i , and so on). We initialize the
costs as follows:

pik � cik

sik
ik � �

sik
i � �� if k � Y2E

cik otherwise

sik
k � �� if i � Y2E

cik otherwise

sik � �� if i � Y2E and j � Y2E

cik otherwise

uik � �� if either i or k � Y1 � Y2E

0 otherwise

tik
i � �� if k � Y1 � Y2E

0 otherwise

tik � �� if k � Y1 � Y2E

0 otherwise

qik
ik � 0

qik
i � 0

qik
k � 0

qik � 0

rik � �� if i � Y2E and k � Y2E

0 otherwise

bik � �� if k � Y2E

0 otherwise
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mik � �� if i or k � Y1 � Y2E

0 otherwise.

As the algorithm proceeds, the state information on G̃ik

� Gik � Gij � Gjk is updated as described in the following
recursive equations:

The Recursive Equations (Edge-connectivity Case) (2)

s̃ik � min�pij � pjk � pik, tij � tkj � min�sik � bij � bkj, pik

� bjk � bik, pik � bji � bki�, sik
i � tij

i � bkj � tkj, sik
k � tkj

k

� bij � tij, sik
ik � tij

i � tkj
k , sik � pij � qkj � bij � bkj, pik � sij

� qkj � bik � bjk, pik � pij � rjk � bji � bki, sik
i � sij

i

� qkj, sik
k � pij � bij � qkj

k , sij
j � pik � qjk

j � bik, sik
i � sij

ij

� qjk
j , sik

ik � sij
i � qkj

k , sik
ik � sij

ij � qjk
jk, sik � pkj � qij � bij

� bkj, pik � sjk � qij � bji � bki, pik � pjk � rij � bik

� bjk, sik
k � skj

k � qij, sik
i � pkj � bkj � qij

i , sjk
j � pki � bki

� qji
j , sik

k � skj
kj � qij

j , sik
ik � skj

k � qij
i , sik

ik � skj
kj � qij

ij, pij � sjk

� qik � bji � bki, sij � pjk � qik � bik � bjk, pij � pjk � rik

� bij � bkj, skj
k � pji � bji � qki

k , sij
i � pjk � bjk � qik

i , sij
j

� sjk
j � qik, sij

ij � sjk
j � qik

i , sij
j � sjk

jk � qik
k , sij

ij � sjk
jk � qik

ik�

s̃ik
ik � min�pik � pij � pjk, sik

ik � tij
i � tkj

k , sik
ik � sij

i � qkj
k , sik

ik

� sij
ij � qjk

jk, sik
ik � sjk

k � qij
i , sik

ik � sjk
jk � qij

ij, sij
ij � sjk

jk � qik
ik�

s̃ik
i � min�pij � pjk � pik, sik

i � bkj � tkj � tij
i , sik

ik � tkj
k

� tij
i , sik

i � sij
i � qkj, sik

i � sij
ij � qjk

j , sik
ik � sij

i � qkj
k , sik

ik � sij
ij

� qjk
jk, sik

i � pkj � bkj � qij
i , sik

ik � sjk
k � qij

i , sik
ik � sjk

jk � qij
ij, sij

i

� pjk � bjk � qik
i , sij

ij � sjk
j � qik

i , sij
ij � sjk

jk � qik
ik�

t̃ ik � min�tik � tij � mjk � min�bij, bik�, tik
i � tij

i � mjk, tik

� tjk � min�pij � bij � bkj, sij � bik � bjk, pij � bji � bki�,tik
i

� sij
i � tjk � bjk, tik � sij

j � tjk
j � bik, tik

i � sij
ij � tjk

j �

t̃ ik
i � min�tik

i � tij
i � mjk, tik

i � sij
i � tjk � bjk, tik

i � sij
ij � tjk

j �

ũik � min�uik � mij � mkj, uij � mik � mjk, ujk � mji

� mki, tji � tjk � mik � min�bjk, bji�, tji
j � tjk

j � mik�

p̃ik � min�pij � pik � pjk, pik � tij
i � tkj

k , pik � sij
i � qkj

k , pik

� sij
ij � qkj

kj, pik � skj
k � qij

i , pik � skj
kj � qij

ij, pij � pjk � qik
ik�

q̃ik � min�qik � bij � bkj � min�tij � tkj, pij � qjk, pkj � qij��

q̃ik
i � min�qik

i � tkj � bkj � tij
i , qik

i � pkj � bkj � qij
i ,

qik
i � sij

i � qjk, qik
i � sij

ij � qjk
j �

q̃ik
ik � min�qik

ik � tij
i � tkj

k , qik
ik � sij

i � qjk
k , qik

ik � sij
ij � qjk

jk,

qik
ik � skj

k � qji
i , qik

ik � skj
kj � qji

ji�

r̃ik � min�tij � tkj � min�rik � bij � bkj, qik � bik � bjk, qik

� bji � bki�, qik
i � tij

i � tkj � bjk, qik
k � tkj

k � tij � bji, rik � qij

� pkj � bij � bkj, qik � rij � pkj � bik � bjk, qik � qij � skj

� bji � bki, qik
i � qij

i � pjk � bkj � bjk, qik
k � qij � skj

k

� bji, qik � qij
j � skj

j � bki, qik
k � qij

j � skj
kj � wi, rik � pij

� qjk � bij � bkj, qik � sij � qjk � bik � bjk, qik � pij � rjk

� bji � bki, qik
k � pij � qjk

k � bij � bji, qik
i � sij

i � qjk

� bjk, qik � sij
j � qjk

j � bik, qik
i � sij

ij � qjk
j � wk�

b̃ik � bij � bjk � bik

m̃ik � mik � mij � mjk.

As in the node-connectivity case, once we have reduced
the graph to an edge, the cost of the solution is min{sik, tik,
tki, uik}.

We now prove the correctness of the above equations:

Theorem 4. The recursive equations (2) correctly com-
pute the costs of the graphical structures for the edge-
connectivity case.

Proof. The proof is a process of enumerating all 108
possible cases. We describe the cases for one graphical
structure S̃ik in detail. The others are discussed in the
Appendix. As before, we restrict our attention to the graph
G̃ik � Gij � Gjk � Gik.

There are 34 possible cases:

(1) Nodes i and j are connected in the network induced by
S̃ik on Gij, nodes i and k are connected in the network
induced by S̃ik on Gik, and nodes j and k are connected
in the network induced by S̃ik on Gjk (i.e., none of the
networks induced on Gij, Gik, and Gjk by S̃ik are
disconnected). Then, it follows that S̃ik � Pik � Pij �
Pjk. In this case, s̃ik � pij � pjk � pik.

(2) Node j is not in S̃ik. There are six subcases:
(a) All the Y2E nodes are contained within Gik. Then,

S̃ik � Sik � Tij � Tkj. For feasibility, we need bij

and bkj to be zero. Thus, s̃ik � tij � tkj � sik

� bij � bkj.
(b) All the Y2E nodes are contained within Gij. Then,

S̃ik � Pik � Tij � Tkj. For feasibility, we need bik

and bjk to be zero. Thus, s̃ik � tij � tkj � pik

� bjk � bik.
(c) All the Y2E nodes are contained within Gjk. Then,

S̃ik � Pik � Tij � Tkj. For feasibility, we require
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that bji and bki to be zero. Thus, s̃ik � tij � tkj

� pik � bji � bki.
(d) All the Y2E nodes are contained within Gij � Gik,

and there is at least one Y2E node within Gij and at
least one Y2E node within Gik, both distinct from
i. This forces a 2E requirement on i. Thus, S̃ik

� Sik
i � Tij

i � Tkj. In addition, for feasibility, we
require that bkj be zero. Thus, s̃ik � sik

i � tij
i � tkj

� bkj.
(e) All the Y2E nodes are contained within Gjk � Gik,

and there is at least one Y2E node within Gjk and
at least one Y2E node within Gik, both distinct
from k. This forces a 2E requirement on k. Thus,
S̃ik � Sik

k � Tij � Tkj
k . For feasibility, we require

that bij be zero. Thus, s̃ik � sik
k � tij � tkj

k � bij.
(f) Gij contains at least one Y2E node and Gjk contains

at least one Y2E node. This forces a 2E require-
ment on i and k. Thus, S̃ik � Sik

ik � Tij
i � Tkj

k , and
s̃ik � sik

ik � tij
i � tkj

k .
(3) Node j is in S̃ik, and nodes j and k are not connected in

the graph induced on Gjk. There are nine subcases:
(a) All the Y2E nodes are contained within Gik. Then,

S̃ik � Sik � Pij � Qkj. In addition, for feasibility,
we require that bij and bkj be zero. Thus, s̃ik � sik

� pij � qkj � bij � bkj.
(b) All the Y2E nodes are contained within Gij. Then,

S̃ik � Pik � Sij � Qkj. For feasibility, we require
that bik and bjk be zero. Thus, s̃ik � pik � sij

� qkj � bik � bjk.
(c) All the Y2E nodes are contained within Gjk. Then,

S̃ik � Pik � Pij � Rjk. For feasibility, we require
that bji and bki be zero. Thus, s̃ik � pik � pij

� rjk � bji � bki.
(d) All the Y2E nodes are contained within Gij � Gik,

and there is at least one Y2E node within Gij and at
least one Y2E node within Gik, both distinct from
i. This forces a 2E requirement on i. Thus, S̃ik

� Sik
i � Sij

i � Qjk. Note that no additional
feasibility variables are required here since qjk

� � if any nodes in Gjk�{j, k} are in Y2E. Thus,
s̃ik � sik

i � sij
i � qkj.

(e) All the Y2E nodes are contained within Gik and the
component containing node k in the network in-
duced by S̃ik on Gjk and each contains at least one
Y2E node distinct from k. This forces a 2E require-
ment on k. Then, S̃ik � Sik

k � Pij � Qkj
k . For

feasibility, we require that bij be zero. Thus, s̃ik

� sik
k � pij � qkj

k � bij.
(f) All the Y2E nodes are contained within Gij and the

component containing node j in the network in-
duced by S̃ik on Gjk, and each contains at least one
Y2E node distinct from j. This forces a 2E require-
ment on j. Then, S̃ik � Pik � Sij

j � Qjk
j . For

feasibility, we require that bik be zero. Thus, s̃ik

� pik � sij
j � qjk

j � bik.
(g) Gik contains at least one Y2E node, the component

containing node j in the network induced by S̃ik on
Gjk contains at least one Y2E node, and the com-
ponent containing node k in the network induced
by S̃ik on Gjk does not contain any Y2E node. This
forces a 2E requirement on i and j. Then, S̃ik

� Sik
i � Sij

ij � Qjk
j . Thus, s̃ik � sik

i � sij
ij � qjk

j .

(h) Gij contains at least one Y2E node, the component
containing node k in the network induced by S̃ik on
Gjk contains at least one Y2E node, and the com-
ponent containing node j in the network induced
by S̃ik on Gjk does not contain any Y2E node. This
forces a 2E requirement on i and k. Then, S̃ik

� Sik
ik � Sij

i � Qkj
k . Thus, s̃ik � sik

ik � sij
i � qkj

k .
(i) Both the component containing node j and the

component containing node k in the disjoint net-
work induced by S̃ik on Gjk contain at least one
Y2E node. This forces a 2E requirement on j, k,
and i. Then, S̃ik � Sik

ik � Sij
ij � Qjk

jk. Thus, s̃ik

� sik
ik � sij

ij � qjk
jk.

(4) Node j is in S̃ik, and nodes i and j are not connected in
the graph induced on Gij. There are nine subcases
symmetrical to subcases 3(a)–3(i).

(5) Node j is in S̃ik and nodes i and k are not connected in
the graph induced on Gik. There are nine subcases
symmetrical to subcases 3(a)–3(i).

s̃ik
ik, s̃ik

i , t̃ik, t̃ik
i , ũik, p̃ik, q̃ik

ik, q̃ik
i , q̃ik, and r̃ik are

computed correctly (see Appendix).
b̃ik is computed correctly. Proof similar to ãik in Theo-

rem 2.
m̃ik is computed correctly. Proof as in Theorem 2. ■

Theorem 5. The edge-connectivity version of the LCND
problem on a series-parallel graph can be solved in linear
time.

Proof. Similar to Theorem 3. ■

5. DECOMPOSITION PROCEDURE FOR
GENERAL GRAPHS

We now turn our attention to more general graphs and
discuss how some of the ideas in this paper may be applied
to them.

We first consider the node-connectivity case. Using
Lemma 2, we observe that if we find a 2-separator {i, j} in
a graph, which separates two nodes in Y2N, then we may
decompose the original problem into two smaller problems
as follows: Consider the two connected graphs G1 � (N1,
E1) and G2 � (N2, E2), each containing at least one node
in Y2N distinct from i and j, with E1 � E2 � E, E1 � E2

� �, N1 � N2 � N, and N1 � N2 � {i, j}. [These can
easily be determined by deleting nodes i and j (the nodes in
the 2-separator) from the graph.] Create G�1 � G1 � (i, j)
and G�2 � G2 � (i, j). Give nodes i and j a node-
connectivity requirement of 2, and set cij � 0, in both G�1
and G�2. Solve the LCND problem on each of the smaller
graphs, and denote the solutions as G*1 and G*2, respec-
tively. The solution to the LCND problem on the original
graph is obtained as G*1 � G*2�(i, j). This procedure can be
generalized as follows: Consider the connected graphs Gt

� (Nt, Et), t � 1, . . . , q, each containing at least one
node in Y2N distinct from the nodes i and j of the 2-sepa-
rator, with �t�1, . . . ,q Et � E, �t�1, . . . ,q Nt � N, Er �
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Es � �, and Nr � Ns � {i, j} for any r, s � {1, . . . , q}
and r 	 s. Again, these may be determined by deleting
nodes i and j in the 2-separator. For t � 1, . . . , q, create
G�t � Gt � (i, j), give nodes i and j a node-connectivity
requirement of 2, and set cij � 0. Solve the LCND problem
on each Gt and denote the solution as G*t. The solution to
the LCND problem on the original graph is obtained as
�t�1, . . . ,q G*t�(i, j).

By repeating this decomposition procedure, either two
problems at a time or multiple subproblems at a time, it is
possible to decompose the original LCND problem into a
series of smaller LCND problems. Grötschel et al. [12] took
this approach (considering multiple subproblems at a time)
to solve to optimality several problems that arise in tele-
communications practice. Note that 2-separators in a graph
may be found in linear time using an algorithm based on
depth first search (see [14]).

We now turn our attention to the edge-connectivity case.
Decompositions for this case are somewhat more involved
since we do not have a counterpart to Lemma 2.� Conse-
quently, the decomposition procedures are more complex,
requiring the solution of multiple smaller problems, and
may not be as easy to apply (except for the simplest cases)
in general graphs. For completeness, we discuss the decom-
position:

As in the node-connectivity case, let {i, j} be a 2-sep-
arator separating two nodes in Y2E, and G1 � (N1, E1) and
G2 � (N2, E2), the two connected graphs, each containing
at least one node in Y2E distinct from i and j, with E1 � E2

� E, E1 � E2 � �, N1 � N2 � N, and N1 � N2 � {i,
j}. There are nine different cases to consider. We use the
notation developed in Section 4, with superscripts 1 and 2,
to denote the structure belongs to graphs G1 or G2 respec-
tively:

(1) The networks induced on G1 and G2 by the solution are
connected. Then, the solution is Pij

1 � Pij
2 .

(2) Nodes i and j are not connected in the network induced
on G2, and the network induced on G1 is connected.
There are three subcases:
(a) Both the component containing node i and the

component containing node j in the network in-
duced on G2 contain Y2E nodes. Then, the solution
is Sij

ij1
� Qij

ij2
.

(b) The component containing node j in the network
induced on G2 does not contain Y2E nodes. Then,
the solution is Sij

i1
� Qij

i2
.

(c) The component containing node i in the network
induced on G2 does not contain Y2E nodes. Then,
the solution is Sij

j1
� Qij

j2
.

(3) Nodes i and j are not connected in the network induced
on G1, and the network induced on G2 is connected.
There are three subcases:
(a) Both the component containing node i and the

component containing node j in the network in-
duced on G1 contain Y2E nodes. Then, the solution
is Sij

ij2
� Qij

ij1
.

(b) The component containing node j in the network
induced on G1 does not contain Y2E nodes. Then,
the solution is Sij

i2
� Qij

i1
.

(c) The component containing node i in the network
induced on G1 does not contain Y2E nodes. Then,
the solution is Sij

j2
� Qij

j1
.

(4) Node j is not in the solution. Then, the solution is
Tij

i1
� Tij

i2
.

(5) Node i is not in the solution. Then, the solution is
Tij

j1
� Tij

j2
.

We considered the decomposition procedure when
2-separators separate two nodes in Y2E. In a similar fashion,
it is easy to derive the decomposition procedure when a
2-separator separates a node in Y1 from a node in Y2E, but
does not separate two nodes in Y2E. In [12], Grötschel et al.
described one such decomposition procedure that they claim
can be applied to the edge-connectivity case of the LCND
problem. We now show that this decomposition procedure
is incorrect. In this decomposition, a 2-separator {i, j}
separates a node in Y1 from a node in Y2E, but does not
separate two nodes in Y2E. Let G1 � (N1, E1) and G2

� (N2, E2) be the two graphs with E1 � E2 � E, E1 �
E2 � �, N1 � N2 � N, and N1 � N2 � {i, j}, with all
Y2E nodes in N2 and with N1�{i, j} containing at least one
node in Y1 and no Y2E nodes. Grötschel et al. claimed that
the network induced on G1 by the solution to the LCND
problem can only take one of the four following forms:

(1) Two disjoint trees. One tree includes i and the other tree
includes j.

(2) A tree that does not include node i.
(3) A tree that does not include node j.
(4) A tree that includes both nodes i and j.

They neglect the case where nodes i and j are not
connected in the graph induced on G2, forcing both edge-
disjoint paths between nodes in Y2E to go through G1. Thus,
the decomposition procedure discussed in Grötschel et al. is
incorrect.

CONCLUDING REMARKS

In this paper, we have described linear-time algorithms
for the low-connectivity network design problem on series-
parallel graphs. Our research generalizes earlier work [25,
26] by considering 0, 1, and 2 connectivity requirements
together (i.e., ds � {0, 1, 2}). Further, we show how these
ideas may be applied to obtain decomposition procedures
that can be applied to general graphs.

For many problems, the linear-time algorithms on partial
2-trees generalize to partial k-trees [1, 2, 4, 6]. In particular,
Arnborg et al. [1] showed that all properties definable in
monadic second-order logic (MSOL) with quantification
over vertex and edge sets can be decided in linear time for

� Similar decompositions to the node-connectivity case may be applied by
finding two edges whose removal disconnects two nodes in Y2E.
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partial k-trees given the tree decomposition. They also
considered problems involving counting or summing eval-
uations over sets definable in MSOL and showed that a
large class of these problems can be solved in linear time for
partial k-trees. Borie et al. [6] described a predicate calculus
in which many graph problems can be expressed. They
showed that any problem that can be expressed using this
predicate calculus can be solved in linear time on any
recursively constructed graph, once the decomposition tree
needed to construct the recursively constructed graph is
known.

We are not aware of a way of expressing the LCND
problem in either of these two formats. Thus, in the case of the
LCND problem, extending these results even to 3-trees seems
particularly challenging. One of the prime difficulties in gen-
eralizing the approach (described in this paper) to 3-trees is the
number of states, that is, graphical structures, and cases grow
quite rapidly and substantially. Further, it is conceivable that
the LCND problem itself is NP-hard on a k-tree (for some k
� 3). An interesting and recent result by Nishizeki et al. [19]
showed that the edge-disjoint paths problem is NP-complete
on 2-trees (while it is polynomially solvable on 1-trees and
outerplanar graphs). Another interesting result in an earlier
paper by Richey and Parker [21] showed that a particular
generalization of the Steiner tree problem that they call the
multiple Steiner subgraph problem (this is actually a special
case of the weighted Steiner tree packing problem introduced
in [11]) is polynomially solvable on trees, but is NP-complete
on series-parallel graphs.

APPENDIX

Hand-drawn figures for all cases are available from the
author.

Listing of Cases for Theorem 1

Cases for T̃ik. There are five cases for T̃ik.

(1) j is included in T̃ik.
(a) All Y2N nodes are in Gik. Then, T̃ik � Tik � Pij

� Tjk. In addition, for feasibility, we require that
aij and akj be zero.

(b) All Y2N nodes are in Gij. Then, T̃ik � Tik � Sij �
Tjk. For feasibility, aik and ajk must be zero.

(c) All Y2N nodes are in Gjk. Then, T̃ik � Tik � Pij

� Tjk. For feasibility, aji and aki must be zero.
(2) j is not in T̃ik.

(a) All Y2N nodes are in Gik. Then, T̃ik � Tik � Tij.
For feasibility, mjk and aij must be zero.

(b) All Y2N nodes are in Gij. Then, T̃ik � Tik � Tij.
For feasibility, mjk and aik must be zero.

Cases for Ũik. There are five cases for Ũik.

(1) j is not in Ũik.
(a) All Y2N nodes are in Gik. Then, Ũik � Uik. For

feasibility, mij and mjk must be zero.

(b) All Y2N nodes are in Gij. Then, Ũik � Uij. For
feasibility, mik and mjk must be zero.

(c) All Y2N nodes are in Gjk. Then, Ũik � Ujk. For
feasibility, mij and mik must be zero.

(2) j is included in Ũik.
(a) All Y2N nodes are in Gij. Then, Ũik � Tji � Tjk.

For feasibility, mik and ajk must be zero.
(b) All Y2N nodes are in Gjk. Then, Ũik � Tji � Tjk.

For feasibility, mik and aji must be zero.

Cases for P̃ik. There are five cases for P̃ik.

(1) None of the graphs induced on Gij, Gik, and Gjk is
disconnected. Then, P̃ik � Pik � Pij � Pjk.

(2) j is not included in P̃ik. Then, P̃ik � Pik � Tij � Tkj.
For feasibility, aij and akj must be zero.

(3) j is included and the graph induced on Gik by P̃ik is
disconnected. Then, P̃ik � Pij � Pjk � Qik.

(4) j is included and the graph induced on Gjk by P̃ik is
disconnected. Then, P̃ik � Pik � Pij � Qjk. For
feasibility, aij must be zero.

(5) j is included and the graph induced on Gij by P̃ik is
disconnected. Then, P̃ik � Pik � Pjk � Qij. For
feasibility, akj must be zero.

Cases for Q̃ik. There are three cases for Q̃ik.

(1) j is not included in Q̃ik. Then, Q̃ik � Qik � Tij � Tkj.
For feasibility, aij and akj must be zero.

(2) j is included in Q̃ik and the graph induced on Gjk is
disconnected. Then, Q̃ik � Qik � Pij � Qjk. For
feasibility, aij and akj must be zero.

(3) j is included in Q̃ik and the graph induced on Gij is
disconnected. Then, Q̃ik � Qik � Qij � Pjk. For
feasibility, aij and akj must be zero.

Cases for R̃ik. There are nine cases for R̃ik.

(1) j is not in R̃ik.
(a) All Y2N nodes are in Gik. Then, R̃ik � Rik � Tij

� Tkj. For feasibility, aij and akj must be zero.
(b) All Y2N nodes are in Gij. Then, R̃ik � Qik � Tij

� Tkj. For feasibility, aik and ajk must be zero.
(c) All Y2N nodes are in Gjk. Then, R̃ik � Qik � Tij

� Tkj. For feasibility, aji and aki must be zero.
(2) j is in R̃ik and the graph induced on Gjk is disconnected.

(a) All Y2N nodes are in Gik. Then, R̃ik � Rik � Pij

� Qjk. For feasibility, aij and akj must be zero.
(b) All Y2N nodes are in Gij. Then, R̃ik � Qik � Sij

� Qjk. For feasibility, aik and ajk must be zero.
(c) All Y2N nodes are in Gjk. Then, R̃ik � Qik � Pij

� Rjk. For feasibility, aji and aki must be zero.
(3) j is in R̃ik and the graph induced on Gij is disconnected.

These cases are symmetrical to subcases 2(a)–2(c)
for R̃ik.

Listing of Cases for Theorem 4

Cases for S̃ik
ik. There are seven cases for S̃ik

ik.

(1) None of the graphs induced on Gij, Gik, and Gjk by S̃ik
ik

are disconnected. Then, S̃ik
ik � Pik � Pij � Pjk.

(2) Node j is not in S̃ik
ik. Then, S̃ik

ik � Sik
ik � Tij

i � Tkj
k .
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(3) j is in S̃ik
ik and the graph induced on Gjk is disconnected.

(a) The component containing node j in the network
induced by S̃ik

ik on Gjk does not contain Y2E nodes.
Then, S̃ik

ik � Sik
ik � Sij

i � Qkj
k .

(b) The component containing node j in the network
induced by S̃ik

ik on Gjk contains Y2E nodes. Then,
S̃ik

ik � Sik
ik � Sij

ij � Qjk
jk.

(4) j is in S̃ik
ik and the graph induced on Gij is disconnected.

These cases are symmetrical to subcases 3(a) and 3(b)
for S̃ik

ik.
(5) j is in S̃ik

ik and the graph induced on Gik is disconnected.
The only way for i and k to be two-edge connected is
through node j. Then, S̃ik

ik � Sij
ij � Sjk

jk � Qik
ik.

Cases for S̃ik
i . There are 13 cases for S̃ik

i .

(1) None of the graphs induced on Gij, Gik, and Gjk by S̃ik
i

are disconnected. Then, S̃ik
i � Pik � Pij � Pjk.

(2) Node j is not in S̃ik
i .

(a) Gjk does not contain Y2E nodes. Then, S̃ik
i � Sik

i

� Tij
i � Tkj. In addition, for feasibility, we require

that bkj be zero.
(b) Gjk contains Y2E nodes. Then, S̃ik

i � Sik
ik � Tij

i

� Tkj
k .

(3) j is in S̃ik
i and the graph induced on Gjk is disconnected.

(a) Gjk does not contain Y2E nodes. Then, S̃ik
i � Sik

i

� Sij
i � Qjk.

(b) The component containing node j, but not the
component containing node k, in the network in-
duced by S̃ik

i on Gjk contains Y2E nodes. Then, S̃ik
i

� Sik
i � Sij

ij � Qjk
j .

(c) The component containing node k, but not the
component containing node j, in the network in-
duced by S̃ik

i on Gjk contains Y2E nodes. Then, S̃ik
i

� Sik
ik � Sij

i � Qkj
k .

(d) Both the component containing node j and the
component containing node k in the network in-
duced by S̃ik

i on Gjk contain Y2E nodes. Then, S̃ik
i

� Sik
ik � Sij

ij � Qjk
jk.

(4) j is in S̃ik
i and the graph induced on Gij is disconnected.

(a) Gjk and the component containing node j in the
network induced by S̃ik

i on Gij do not contain Y2E

nodes. Then, S̃ik
i � Sik

i � Pkj � Qij
i . For feasi-

bility, we require that bkj be zero.
(b) Gjk contains Y2E nodes, and the component con-

taining node j in the network induced by S̃ik
i on Gij

does not contain Y2E nodes. Then, S̃ik
i � Sik

ik � Sjk
k

� Qij
i .

(c) The component containing node j in the network
induced by S̃ik

i on Gij contains Y2E nodes. Then,
S̃ik

i � Sik
ik � Sjk

jk � Qij
ij.

(5) j is in S̃ik
i and the graph induced on Gik is disconnected.

These cases are symmetrical to subcases 4(a)–4(c)
for S̃ik

i .

Cases for T̃ik. There are nine cases for T̃ik.

(1) j is not included in T̃ik.
(a) All the Y2E nodes are contained within Gik. Then,

T̃ik � Tik � Tij. For feasibility, mjk and bij must
be zero.

(b) All the Y2E nodes are contained within Gij. Then,
T̃ik � Tik � Tij. For feasibility, mjk and bik must
be zero.

(c) All the Y2E nodes are contained within Gij � Gik,
and there is at least one Y2E node within Gij and at
least one Y2E node within Gik, both distinct from
i. Then, T̃ik � Tik

i � Tij
i . For feasibility, mjk must

be zero.
(2) j is included in T̃ik.

(a) All the Y2E nodes are contained within Gik. Then,
T̃ik � Tik � Pij � Tjk. For feasibility, bij and bkj

must be zero.
(b) All the Y2E nodes are contained within Gij. Then,

T̃ik � Tik � Sij � Tjk. For feasibility, bik and bjk

must be zero.
(c) All the Y2E nodes are contained within Gjk. Then,

T̃ik � Tik � Pij � Tjk. For feasibility, bji and bki

must be zero.
(d) All the Y2E nodes are contained within Gij � Gik,

and there is at least one Y2E node within Gij and at
least one Y2E node within Gik, both distinct from
i. Then, T̃ik � Tik

i � Sij
i � Tjk. For feasibility, bjk

must be zero.
(e) All the Y2E nodes are contained within Gij � Gjk,

and there is at least one Y2E node within Gij and at
least one Y2E node within Gjk, both distinct from
j. Then, T̃ik � Tik � Sij

j � Tjk
j . For feasibility, bik

must be zero.
(f) Both Gik and Gjk contain Y2E nodes. Then, T̃ik

� Tik
i � Sij

ij � Tjk
j .

Cases for T̃ik
i . There are three cases for T̃ik

i .

(1) j is not included in T̃ik
i . Then, T̃ik

i � Tik
i � Tij

i . For
feasibility, mjk must be zero.

(2) j is included in T̃ik
i .

(a) Gjk does not contain Y2E nodes. Then, T̃ik
i � Tik

i

� Sij
i � Tjk. For feasibility, bjk must be zero.

(b) Gjk contains Y2E nodes. Then, T̃ik
i � Tik

i � Sij
ij

� Tjk
j .

Cases for Ũik. There are six cases for Ũik.

(1) j is not in Ũik.
(a) All Y2E nodes are contained within Gik. Then, Ũik

� Uik. For feasibility, mij and mkj must be zero.
(b) All Y2E nodes are contained within Gij. Then, Ũik

� Uij. For feasibility, mik and mjk must be zero.
(c) All Y2E nodes are contained within Gjk. Then, Ũik

� Ujk. For feasibility, mji and mki must be zero.
(2) j is in Ũik.

(a) All Y2E nodes are contained within Gij. Then, Ũik

� Tji � Tjk. For feasibility, mik and bjk must be
zero.

(b) All Y2E nodes are contained within Gjk. Then, Ũik

� Tji � Tjk. For feasibility, mik and bji must be
zero.

(c) All Y2E nodes are contained within Gij � Gjk, and
there is at least one Y2E node within Gij and at
least one Y2E node within Gjk, both distinct from
j. Then, Ũik � Tji

j � Tjk
j . For feasibility, mik must

be zero.
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Cases for P̃ik. There are seven cases for P̃ik.

(1) None of the networks induced by P̃ik on Gik, Gij, and
Gjk is disconnected. Then, P̃ik � Pik � Pij � Pjk.

(2) j is not in P̃ik. Then, P̃ik � Pik � Tij
i � Tkj

k .
(3) j is in P̃ik and the network induced on Gjk is discon-

nected.
(a) No Y2E nodes are present on the component con-

taining node j in the network induced by P̃ik on
Gjk. Then, P̃ik � Pik � Sij

i � Qkj
k .

(b) Y2E nodes are present on the component contain-
ing node j in the network induced by P̃ik on Gjk.
Then, P̃ik � Pik � Sij

ij � Qkj
kj.

(4) j is in P̃ik and the network induced on Gij is discon-
nected. These cases are symmetrical to subcases 3(a)
and 3(b) for P̃ik.

(5) j is in P̃ik and the network induced on Gik is discon-
nected. Then, P̃ik � Pij � Pjk � Qik

ik.

Cases for Q̃ik. There are three cases for Q̃ik.

(1) j is not in Q̃ik. Then, Q̃ik � Qik � Tij � Tkj. For
feasibility, bij and bkj must be zero.

(2) j is in Q̃ik, and the graph induced by Q̃ik on Gjk is
disconnected. Then, Q̃ik � Qik � Pij � Qjk. For
feasibility, bij and bkj must be zero.

(3) j is in Q̃ik, and the graph induced by Q̃ik on Gij is
disconnected. Then, Q̃ik � Qik � Qij � Pkj. For
feasibility, bij and bkj must be zero.

Cases for Q̃ik
i . There are four cases for Q̃ik

i .

(1) j is not in Q̃ik
i . Then, Q̃ik

i � Qik
i � Tij

i � Tkj. For
feasibility, bkj must be zero.

(2) j is in Q̃ik
i , and the graph induced on Gij is discon-

nected. Then, Q̃ik
i � Qik

i � Qij
i � Pkj. For feasibility,

bkj must be zero.
(3) j is in Q̃ik

i , and the graph induced on Gjk is discon-
nected.
(a) No Y2E nodes are present in the component con-

taining node j in the network induced by Q̃ik
i on

Gjk. Then, Q̃ik
i � Qik

i � Sij
i � Qjk.

(b) Y2E nodes are present in the component containing
node j in the network induced by Q̃ik

i on Gjk.
Then, Q̃ik

i � Qik
i � Sij

ij � Qjk
j .

Cases for Q̃ik
ik. There are five cases for Q̃ik

ik.

(1) j is not in Q̃ik
ik. Then, Q̃ik

ik � Qik
ik � Tij

i � Tkj
k .

(2) j is in Q̃ik
ik and the network induced on Gjk is discon-

nected.
(a) No Y2E nodes are present in the component con-

taining node j in the network induced by Q̃ik
ik on

Gjk. Then, Q̃ik
ik � Qik

ik � Sij
i � Qkj

k .
(b) Y2E nodes are present in the component containing

node j in the network induced by Q̃ik
ik on Gjk.

Then, Q̃ik
ik � Qik

ik � Sij
ij � Qkj

kj.
(3) j is in Q̃ik

ik and the network induced on Gij is discon-
nected. These cases are symmetrical to subcases 2(a)
and 2(b) for Q̃ik

ik.

Cases for R̃ik. There are 19 cases for R̃ik.

(1) j is not in R̃ik.
(a) All Y2E nodes are contained within Gik. Then, R̃ik

� Rik � Tij � Tkj. For feasibility, bij and bkj

must be zero.
(b) All Y2E nodes are contained within Gij. Then, R̃ik

� Qik � Tij � Tkj. For feasibility, bik and bjk

must be zero.
(c) All Y2E nodes are contained within Gjk. Then, R̃ik

� Qik � Tij � Tkj. For feasibility, bji and bki

must be zero.
(d) All the Y2E nodes are contained within Gij and the

component containing node i in the network in-
duced on Gik, and both contain a Y2E node distinct
from i. Then, R̃ik � Qik

i � Tij
i � Tkj. For

feasibility, bjk must be zero.
(e) All the Y2E nodes are contained within Gjk and the

component containing node k in the network in-
duced on Gik, and both contain a Y2E node distinct
from k. Then, R̃ik � Qik

k � Tkj
k � Tij. For

feasibility, bji must be zero.
(2) j is in R̃ik and the network induced on Gij by R̃ik is

disconnected.
(a) All Y2E nodes are contained within Gik. Then, R̃ik

� Rik � Qij � Pkj. For feasibility, bij and bkj

must be zero.
(b) All Y2E nodes are contained within Gij. Then, R̃ik

� Qik � Rij � Pkj. For feasibility, bik and bjk

must be zero.
(c) All Y2E nodes are contained within Gjk. Then, R̃ik

� Qik � Qij � Skj. For feasibility, bji and bki

must be zero.
(d) All the Y2E nodes are contained within the com-

ponents containing node i in the networks induced
by R̃ik on Gij and Gik, and both components
contain a Y2E node distinct from i. Then, R̃ik

� Qik
i � Qij

i � Pjk. For feasibility, bkj and bjk

must be zero. (We use both bkj and bjk to ensure
both j and k do not belong to Y2E.)

(e) All the Y2E nodes are contained within Gjk and the
component containing node k in the network in-
duced on Gik, and both contain a Y2E node distinct
from k. Then, R̃ik � Qik

k � Qij � Skj
k . For

feasibility, bji must be zero.
(f) All the Y2E nodes are contained within Gjk and the

component containing node j in the network in-
duced on Gij, and both contain a Y2E node distinct
from j. Then, R̃ik � Qik � Qij

j � Skj
j . For

feasibility, bki must be zero.
(g) The component containing node k, but not the

component containing node i, in the network in-
duced on Gik contains Y2E nodes, and the compo-
nent containing node j, but not the component
containing node i, in the network induced on Gij

contains Y2E nodes. Then, R̃ik � Qik
k � Qij

j � Skj
kj.

For feasibility, wi must be zero.
(3) j is in R̃ik and the network induced on Gjk by R̃ik is

disconnected. These cases are symmetrical to subcases
2(a)–2(g) for R̃ik.
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