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Abstract. Viral-marketing strategies are of significant interest in the online economy.
Roughly, in these problems, one seeks to identify which individuals to strategically
target in a social network so that a given proportion of the network is influenced at
minimum cost. Earlier literature has focused primarily on problems where a fixed
inducement is provided to those targeted. In contrast, resembling the practical viral-
marketing setting, we consider this problem where one is allowed to “partially in-
fluence” (by the use of monetary inducements) those selected for targeting. We thus
focus on the “least-cost influence problem (LCIP)”: an influence-maximization problem
where the goal is to find the minimum total amount of inducements (individuals to target
and associated tailored incentive) required to influence a given proportion of the population.
Motivated by the desire to develop a better understanding of fundamental problems in
social-network analytics, we seek to develop (exact) optimization approaches for the LCIP.
Our paper makes several contributions, including (i) showing that the problem is NP-
complete in general as well as under a wide variety of special conditions; (ii) providing an
influence greedy algorithm to solve the problem polynomially on trees, where we require
100% adoption and all neighbors exert equal influence on a node; and (iii) a totally
unimodular formulation for this tree case.
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1. Introduction
The increasing number of online communication chan-
nels has led to fast and easy exchange of experiences
(ideas, information, emotions, etc.), allowing influence
to play a significant role in purchasing (or product
adoption) decisions. Although social influence has been
recognized as a factor in decisionmaking for a long time
(see, for example, Bourne 1957, Brown and Reingen
1987, and Granovetter 1978), the interaction is now
tracked easily due to readily available online cus-
tomer footprints. Social networks play a fundamental
role in the spread of information, ideas, and influence
amongst their members. Consequently, there is signifi-
cant interest in understanding the dynamics of adoption
within a social network that may yield clues to better
marketing strategies.

In this paper, we focus on a viral-marketing problem
that has garnered significant interest amongst algorith-
mic researchers. Suppose we want to promote a new
product over a given social network and wish for this
product to be adopted by everyone (or by a given frac-
tion of individuals) in this network. We can initialize
the diffusion process by “targeting” some influential
people. Then, ideally, a cascade will be caused by

these initial adopters, and other people will start to
adopt this product due to the influence they receive
from earlier adopters. But how should we select these
influential people who are targeted initially? Kempe
et al. (2003) were the first ones to consider this prob-
lem in an operational framework using models from
mathematical sociology (Granovetter 1978) that ex-
plicitly represent the step-by-step dynamics of adop-
tion. They considered a budgeted version of the problem
(i.e., given a budget of k seed products, identify the k
individuals to target so as to maximize the adoption
of the product in the social network) in a randomized
setting and showed that it is NP-hard to find the
optimal initial set. Based on the submodularity prop-
erty of the objective function (which is due to the par-
ticular randomized assumption in the problem data
they make), they developed a (1 − 1/e)-approximation
algorithm for the problem. Their work led to a flurry of
follow-up work on the problem that mostly focused on
speeding up the algorithm (because their algorithm has
a costly simulation in each step). InitiatedbyChen (2009),
another stream of follow-up work has focused on
the problem in a deterministic setting with a cost-
minimization aspect (i.e., instead of the marketer
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being given a budget k, the desire is to find the min-
imum number of nodes to target in the network
so that the entire network is influenced). The recent
monograph by Chen et al. (2013) nicely summarizes
most of the relevant work in the area.

The mathematical model studied by earlier re-
searchers suffers from a significant practical short-
coming. It restricts the marketer to interventions
where those selected for targeting receive the prod-
uct gratis. Motivated by practical considerations, we
consider a version of this viral-marketing problem
where an individual can be partially influenced by
the use of monetary inducements (e.g., coupons that
reduce the price of a product instead of receiving the
product for free). We believe this is a crucial aspect,
and the use of tailored (i.e., partial) incentives that
allows for differentiated targeting is more natural in
a marketing setting. The problem we study is in a de-
terministic setting and seeks to minimize the cost of
tailored incentives provided to individuals in a social
network while ensuring that a given fraction of the
network is “influenced.” We refer to this problem as
the least-cost influence problem (LCIP). Günneç (2012)
and Günneç and Raghavan (2017) first describe the
LCIP, where it arose in a product-design setting that
took into account social-network effects.

1.1. Problem Definition
Consider a social network represented as an undi-
rectedgraphG � (V,E), where node setV � {1, 2, . . . ,n}
denotes the set of people in the network and edge set
E shows the connections between people on the social
network. Following a well-studied linear threshold
model on the diffusion of innovations (Granovetter
1978), we will use the term active if a node has
adopted the product and the term inactive if it has not
adopted the product. In the threshold model, each
inactive node i ∈ V is influenced by an amount dij
(referred to as the influence factor) by its neighbor node
j (i.e., there is an edge in the graph between nodes i
and j) if node j is active (i.e., has already adopted the
product). For each node in the network, i ∈ V, there is
a threshold, denoted by bi. This threshold represents
how easily a node can be influenced. We permit a
payment pi, which is the tailored incentives for a node
i ∈ V. Also, α is given as the desired penetration rate,
taking values between 0 and 1 (0 ≤ α ≤ 1).

All nodes are inactive initially. Then, we decide the
tailored incentives pi for each node i ∈ V. Now, a node
i becomes active immediately if pi ≥ bi. (That is, if the
payment is greater than or equal to the threshold.
Under linear scaling, it is without loss of generality
the units of the payments (typically monetary units)
and threshold (typically utility) are equivalent. For
example, if pi payment units at node i were equiva-
lent to γipi threshold units at the node, then we would

simply scale the threshold bi and incoming influence
dij by dividing them by γi.) After that, in each step, we
update the states of nodes by the following rule: An
inactive node i becomes active if the sum of the tai-
lored incentive pi and the total influence coming from
its active neighbors is at least bi. The process con-
tinues until there is no change in the state of the
network (i.e., no additional nodes are becoming ac-
tive). The goal is tofind theminimumtotal payment (i.e.,∑

i∈V pi), while ensuring that at least α|V| nodes are
active by the end of this activation process.
Note that the assumption that all nodes are inactive

is without loss of generality. If some nodes were
active at the outset, we can propagate their influence
and reduce the problem to a smaller one where all
nodes are inactive initially. We also note that in a
deterministic setting, there is no benefit to delaying
the payment of the tailored incentive. Hence, all in-
centives paid to a node imay be viewed as being paid
at the outset of the process.
A simple integer-programming model for the LCIP

introduces the notion of time periods t � 1, 2, . . . ,T
when nodes can become active. This is to capture the
order in which nodes become active in the social
network. Binary variable yit denotes whether node i
is active in time period t (note that in the diffusion
model, once a node becomes active, it remains active),
and so yiT � 1 indicates that node i is active at the end
of the diffusion process. Let a(i) denote the set of node
i’s neighbors. The formulation is as follows:

MIP1 :

min
∑

i∈V
pi, (1)

s.t. yi0 � 0 ∀i ∈ V, (2)

pi +
∑

j∈a(i)
dijyj(t−1) ≥ biyit ∀i ∈ V, t � 1, 2, . . . ,T,

(3)∑

i∈V
yiT ≥ α|V|, (4)

yit ∈ {0, 1}, pi ≥ 0 ∀i ∈ V, t � 1, 2, . . . ,T. (5)

Here, the objective (1) is to minimize the sum of the
incentives given over the network. Constraint set (2)
models the initial condition that all nodes are inac-
tive initially. Constraint set (3) models the diffusion
process—an inactive node i becomes active if the sum
of the tailored incentive pi and the total influence
coming from its active neighbors is at least bi. Con-
straint set (4) ensures that the desired penetration rate
is achieved at the end of the diffusion process. Note
that because there are |V| nodes, the number of time
indices required for the diffusion process to complete
should be less than or equal to |V|. However, because

Günneç, Raghavan, and Zhang: Least-Cost Influence Maximization on Social Networks
2 INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2019 INFORMS



we do not know a priori how quickly the diffusion
process terminates, we set T � |V|.

1.2. Related Literature
Given a social network, finding a target set of cus-
tomers of the smallest possible size that could lead the
whole network to adopt the product through influ-
encing others is referred to as the Target Set Selection
(TSS) Problem (Chen 2009) in the literature. In the TSS
problem, given a connected undirected graph, each
node has associated with it a critical value gi, which
takes values between 1 and the degree of the node,
denoted by deg(i). All nodes are inactive initially.
A selected subset of nodes, the target set, is activated
(i.e., switched to an active state). Next, the states of
nodes are updated step by step with respect to the
following rule: An inactive node i becomes active if at
least gi of its neighbors are active in the previous step.
The goal is to find the minimum-size target set, while
ensuring that all nodes are active by the end of this
diffusion process. Chen (2009) showed that the TSS
problem ishard toapproximatewithinapolylogarithmic
factor. He also provided a polynomial algorithm for
the TSS on trees.

Raghavan and Zhang (2018c, 2019) discuss the
weighted TSS (WTSS) problem. In the WTSS problem,
for each node i ∈ V, there is a weight, denoted by bi,
that models the fact that different nodes require
differing levels of effort to become active (in practice,
it is reasonable to assume that different individuals
require different amounts of effort to be convinced to
adopt the product). Note that the WTSS problem is
closely connected to the LCIP. For theWTSS problem,
all neighbors have equal influence—that is, dij � di
for all neighbors j of node i. The assumption that all
neighbors of a node exert equal influence is relevant,
especially when privacy concerns are present in social
networks. In this way, the influence does not depend
on the identity of the neighbor and the information on
the strength of the relationship. Although an indi-
vidual is affected equally by each neighbor, this in-
fluence factor may be different for each individual.
The critical value gi (for theWTSS problem) is equal to
�bidi�. Unlike the LCIP, which allows for the payment
of a tailored incentive, in the WTSS problem, a node
is either paid the full amount bi or nothing at all.
This is where the two problems differ. Finally, the
WTSS problem is concerned with 100% adoption.
Raghavan and Zhang (2019) describe the polytope of
the WTSS problem on trees and cycles. Raghavan and
Zhang (2018c) describe a branch-and-cut approach
for arbitrary graphs and apply it to 180 real-world
graph instances (with up to approximately 155,000
nodes and 327,000 edges). Their branch-and-cut ap-
proach finds solutions that are on average 0.90% from

optimality and solves 60 out of the 180 instances to
optimality.
As mentioned earlier, Kempe et al. (2003) consid-

ered a budgeted version of the problem in a ran-
domized setting that we will refer to as the influence
maximization problem (IMP). They make a particular
assumption (for technical convenience and on which
the submodularity property their results critically
depend) on the distribution of the threshold values bi.
Roughly, this can be interpreted as the thresholds bi
being distributed uniformly in the range [0,L], where
L � maxi∈V{max{bi,∑j∈a(i) dij}}. (In their notation, the
threshold values lie between 0 and 1. The data in our
setting can be converted to theirs and vice versa by
dividing or multiplying all data values by L, respec-
tively.) Furthermore, their objective is to maximize
the number of people influenced given that only k in-
dividuals are allowed to be fully influenced (i.e.,
provided the product for free). Wu and Küçükyavuz
(2018) studied the IMP in a two-stage stochastic-
programming framework. They proposed a delayed
constraint-generation algorithm by taking advantage
of the submodularity property in the objective func-
tion and conducted computational experiments on the
stochastic version of the IMP. Although promising,
their approach is limited in that it is only compu-
tationally viable for seed sets of size five, whereas
heuristics in the literature easily deal with problems
where the size of the seed set is considerably larger
(e.g., Kempe et al. (2003) considered seed sets with
100 nodes).
Subsequent to Günneç (2012), Demaine et al. (2014)

presented a fractional version of the IMP considered
by Kempe et al. (2003). In their model, identically to
the LCIP, nodes can be partially influenced via a
payment, and the goal is to maximize the number of
nodes influenced for a given budget. They retain the
same technical assumption (as Kempe et al. 2003) on
the uniform distribution of thresholds and consider
the budgeted version of the problem with a budget of
kL. In theory, they showed that the fractional version
of the IMP has the same computational complexity as
the IMP. That is, the submodularity property of the
objective function holds (which is again due to the
particular randomized assumption on the uniform
distribution of thresholds), yielding the same (1 − 1/e)-
greedy approximation algorithm for the problem. In
practice, they showed that the solutions of the two
versions could be significantly different: The frac-
tional allocation can improve the influence greatly
(i.e., with a budget of k, where L � 1 in their setting,
the fractional allocation model can influence a larger
number of nodes).
Cordasco et al. (2015) studied a problem that cor-

responds to a specialized version of the LCIP where
the influence factor is the same over the whole network

Günneç, Raghavan, and Zhang: Least-Cost Influence Maximization on Social Networks
INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2019 INFORMS 3



(i.e., di � dj ∀i, j ∈ V) and provided a polynomial time
algorithm for complete graphs and trees. As we will
see, our results will provide a trivial algorithm for the
problem on trees (they provide a nontrivial algorithm
for the problem on trees).

Although the focus of our paper and discussion
of related literature has been on mathematical
models for influence maximization, we should point
out that there is a large body of (complementary)
experimental and behavioral research focused on
diffusion on real-world networks. These observa-
tional studies focus on understanding influence
dynamics such as identifying influencer charact-
eristics, the effect of network structure and influ-
encer location, and peer influence and types of
sharing on the final spread (Centola 2010, Tucker and
Zhang 2010, Aral and Walker 2012, Bapna and
Umyarov 2015).

1.3. Our Contributions
Much of the previous work involving influence maxi-
mization has focused on heuristics and approximation.
In the case of partial incentives, the only prior papers
(Demaine et al. 2014, Cordasco et al. 2015) in this area
that we are aware of focus on heuristics and approx-
imation. Our research is motivated by the desire to
develop optimization-based approaches for the LCIP.
In Section 2, we first study the complexity of the
LCIP and show that the LCIP is NP-complete. We
then consider several special conditions, including (1)
equal influence from neighbors, (2) 100% adoption,
and (3) restricting the problem to trees. Specifically,
we show that the LCIP is NP-complete, even on bi-
partite graphs when all neighbors exert equal influ-
ence, and we do not require 100% adoption. When
we require 100% adoption, the problem remains NP-
complete (and is in fact APX-hard). For trees, when
neighbors exert unequal influence andwe require 100%
adoption, the problem remains NP-complete.

Next, in Section 3, we focus on the case when neigh-
bors exert equal influence and 100% adoption is re-
quired. We study the LCIP on trees. Our contributions in
this regard are threefold. First, we propose two poly-
nomial algorithms for the LCIP on trees. We describe
a greedy algorithm that has O(|V|log|V|) running time.

Second, we show a dynamic programming (DP)
algorithm that has a better O(|V|) running time. The
DP algorithm also works in the unequal influence
case, although the running time is no longer polynomial
(it is dependent on that of the mixed 0-1 knapsack
problem). Third, we present a totally unimodular (TU)
formulation for the LCIP on trees. This TU formula-
tion is built on the influence propagation network and
makes use of special structures about the amount of
influence passing along an arc.

2. Problem Complexity
In this section, we show that the LCIP is NP-complete.
We then consider several special conditions and
establish their complexity. Table 1 summarizes our
results.
Consider the decision version of the LCIP. Given an

instance of the LCIP with (H,b,d, α, k), where H �
(VH,EH) is the graph, b is the threshold vector, d is the
influence factor vector, k the budget, and α is the
desired penetration rate; does there exist a payment/
inducement vector p satisfying

∑
i∈VH pi ≤ k that ach-

ieves the desired market penetration (i.e., the number
of nodes that are influenced is at least α|VH |)?
Theorem 1. The LCIP is NP-complete.

Proof. Given a graph G � (V,E) and a number t, the
decision version of the independent set problem asks
whether there is an independent set in G of cardinality
t. We will transform an instance of the independent set
problem to an instance of the LCIP. To do so, we
construct a bipartite graphH � (S1 ∪ S2,EH) as follows.
For each node i ∈ V, we create a node in S1. Then, we
create nodes in S2. For each edge {i, j} in E, we create a
node denoted by i-j in S2 and connect nodes i and j in S1
to it. For example, as shown in Figure 1, for edge (1, 2),
we create node 1-2 in S2 and connect it with nodes 1
and 2 in S1. For any edge {i, j} not in E (i.e., a possible
edge that does not exist in the graph), we create two
nodes in S2, denoted by i-j-1 and i-j-2. We connect node
i in S1 to node i-j-1 in S2 and node j in S1 to node i-j-2. In
Figure 1(a), edge (1, 3) is not present inG. We add nodes
(1-3-1) and (1-3-2) to S2 and connect them to nodes 1
and 3, respectively. The number of nodes in H is
|V| + |E| + 2(|V|2−|V|

2 − |E|) � |V|2 − |E|, and the number of

Table 1. Summary of Complexity Results

0<α< 1 α � 1

Equal influence Unequal influence Equal influence Unequal influence

Arbitrary graphs NP-hard NP-hard Arbitrary graphs APX-hard APX-hard
Bipartite graphs NP-hard NP-hard Trees P NP-hard
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edges in E is |V|(|V| − 1). Next, for each node i ∈ S1∪
S2, we set bi as 1. For the influence factors, if a node
i ∈ S1, we set dij � 0 ∀j ∈ a(i), and if a node i ∈ S2, we
set dij � 1 ∀j ∈ a(i). We set α � k|V|

|V|2−|E| and k � t.
We claim that there exists a payment vector p that

satisfies the budget (i.e.,
∑

i∈VH pi ≤ k) and meets the
desired penetration rate (i.e., the number of nodes
influenced is at least �α(|V|2 − |E|)� � k|V|) if and only
if G has an independent set of size t. Notice, in the
constructed LCIP instance, it suffices to only make
payments to nodes in S1. Because all bi values are 1 and
dij values are 0 for nodes i ∈ S1 and 1 for nodes i ∈ S2, if
we ever make a payment to a node j in S2 (i.e., pj � 1),
we can get (at least) the same market-penetration rate
by reallocating this payment to its neighbor in S1.
Hence, we can focus on solutions that only make
payments to nodes in S1. Each node in S1 has exactly
|V| − 1 neighbors, and two nodes in S1 share one
neighbor if and only if they are neighbors in G. So,
when S (⊆ S1) is the set of nodes receiving unit pay-
ment, the number of influenced nodes in VH can be
calculated as |V‖S| − |Sc|, where Sc � {{i, j} ∈ E : i, j ∈ S}.
Thus, we can see that for a given budget k, we can
influence at least k|V| nodes in VH if and only if |S| � k
and Sc � ∅. Looking at the definition of Sc, it implies
that S is an independent set of size t(� k) in G. □

Corollary 1. The LCIP is NP-complete even when all neigh-
bors of a node exert equal influence (i.e., dij � di for all
i ∈ V).

Proof. Notice that in the transformation used in the
proof of Theorem 1 all neighbors of a node exert equal
influence. □

Corollary 2. The LCIP is NP-complete on bipartite graphs.

Proof. The proof follows from the bipartite graph in-
stance constructed in Theorem 1. □

Consider the penetration rate α � k|V|
|V|2−|E| obtained

from the transformation. This can be written as
α � k

|V|−Δ
2
, where Δ represents the average degree of

nodes in a graph. It is easy to see that, by varying the

size of the graph, the average degree Δ, and k, a
continuum of values strictly between 0 and 1 may be
obtained for α. If the instance for the independent set
problem has at least one edge, we will never select all
nodes in S1, and thus 100% adoption is not feasible. It
is easy to see, then, if α ≥ 1, it means the specific t
value is infeasible for the independent set problem.
Or k ≤ |V| − Δ

2. As an aside, this implies that an upper
bound on the size of an independent set in a graphG is
given by min{|V| − Δ

2�, �|V| − Δ
2 − 1�}. This naturally

raises questions about the complexity of the problem
when we require 100% penetration. We answer this
question below.

Theorem 2. Unless NP ⊆ DTIME(|V|polylog(|V|)), the LCIP
with α � 1 cannot be approximated within O(2log1−ε |V| ) for
any fixed constant ε> 0.

Proof. We will prove the theorem by a reduction from
the TSS problem. Consider a TSS problem instance on
an undirected graph Gt � (Vt,Et), where each node i in
Vt has critical value gi (recall for the TSS problem that
these are the number of nodes of a neighbor that must
adopt before node i is influenced). We construct an
LCIP instance based on the given TSS problem in-
stance and show that the two problem instances have
optimal solutions with identical costs. Because Chen
(2009) proves that the TSS problem cannot be ap-
proximated within a ratio of O(2log1−ε |Vt | ) for any fixed
constant ε> 0, unless NP ⊆ DTIME(|Vt|polylog(|Vt |)), the
same result for the LCIP follows.
FromGt for the TSS problem instance, we construct a

new graph G � (V,E) to create an LCIP instance as
follows. First, we copy the entire graph Gt into G. We
denote these nodes and edges as V1 and E1, re-
spectively (they are identical to Vt and Et), and for each
node i in V1, set its bi � gi and di � 1 (for notational
convenience, we use di for node i’s influence factor
when its neighbors exert equal influence). This is il-
lustrated in Figure 2(b). Next, for each node i in V1, we
add gi nodes and connect all of them to node i. These
new nodes and edges are denoted by Vi2 and Ei2,
respectively. For each of these nodes j ∈ Vi2 set bj �

Figure 1. Illustration of the Reduction from the Independent Set Problem
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dj � 2bi. Let V2 � ∪i∈V1Vi2 and E2 � ∪i∈V1Ei2. This is il-
lustrated in Figure 2(c). Finally, for each i in V1, one
more node is added and connected to all nodes in Vi2.
vi3 and Ei3 are used to denote this new node and its
associated edges. Also, let V3 � ∪i∈V1vi3 and E3 � ∪i∈V1

Ei3. For each node i in V3, set bi � 1 and di � 1. This is
illustrated in Figure 2(d). We consider the LCIP in-
stance (with α � 1) onG � (V1 ∪ V2 ∪ V3,E1 ∪ E2 ∪ E3).
Notice in the LCIP instance created if a node in
i ∈ V1 is activated, it will activate all nodes in Vi2,
which will activate vi3. Similarly, if node vi3 is ac-
tivated, it will activate all nodes in Vi2, which will
activate node i.

If the TSS problem instance (on Gt) has an optimal
target set S with size k, then we can find a payment
vector with total amount k for the LCIP instance to
activate the entire graph (G) in the following way. For
each node i in S, we find its corresponding node in V1
(continue denoting this node as i) and pay node vi3 an
amount 1. By the preceding arguments, this will ac-
tivate all nodes corresponding to S in V1. But because
G1 and Gt are identical, all nodes in V1 will become
active as S is a feasible target set, which again by the
preceding arguments will activate the rest of the
graph G.

If the LCIP instance has an optimal payment
vector with total amount k, we can find a feasible
solution for the TSS problem instance with size k.
Observe, in the LCIP instance created, any nonzero
payment to a node (in an optimal solution) must be
at least 1. Hence, it suffices to focus on solutions to
the LCIP that only make nonzero payments to nodes
in V3 (because any payment of 1 to a node vi3 will
activate all nodes in Vi2, which will activate node i).
Consider such an optimal solution. For each node vi3
in V3 that receives a payment (of 1), we add the
corresponding node i (in V) to the target set S. The
cardinality of S is k and by the previous arguments S
is a feasible target set for Gt (because G1 and Gt are
identical). □

2.1. Unequal Influence Factors
We prove that when a node i receives unequal in-
fluence from its neighbors and 100% penetration is
required, the LCIP is NP-complete on trees. Recall
that each node i has a threshold value bi. Also, we use
dij to denote the influence factor, which captures how
much node j influences node i if node j has become
active before node i.

Theorem 3. The LCIP with unequal influence and 100%
adoption is NP-complete on trees.

Proof. Without loss of generality, we assume all input
data are positive integers. The decision version of the
0-1 knapsack problem is defined as follows: Given a set
N of n items numbered from 1 up to n, each item iwith
a weight wi and a value ri, along with a maximum
weight capacityW, can we select a subset of these items
such that a value of at least R will be achieved without
exceeding the weight W?
We construct a star network (which is a tree) from

this 0-1 knapsack problem. For each item i, we put a
node i in the graph as a leaf node. After that, we add
one extra node and label it as node 0, which is the
central node. All leaf nodes connect to the central node,
but do not connect to each other. Thus, there are n + 1
nodes numbered from 0 up to n in the graph. Next, we
find a valuem � max{wi + 1 : i ∈ N}. Then, for each leaf
node i, we have bi � di0 � wi

m . For the central node 0, we
have d0i � ri for all i ∈ a(0) and b0 � R. The constructed
star is shown in Figure 3. The decision question is: Can
we find a payment vector without its total cost ex-
ceeding W

m to activate the whole network? In the con-
structed LCIP instance, each leaf has weight strictly less
than 1 and provides an integer amount of influence to
the central node 0. Given that R is an integer, it is easy
to see that we should never pay the central node 0 any
incentives. So, it is equivalent to ask: Can we select a
subset of leaf nodes such that the incoming influence of
the central node is at least R and the total cost of those

Figure 2. An Illustration of the Reduction from the Target Set Selection Problem
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selected leaf nodes does not exceed W
m? Therefore, if

the answer is “yes,” those selected leaf nodes also
solve the 0-1 knapsack problem. □

3. LCIP on Trees
The study of the LCIP on trees is important for sev-
eral reasons. First, Adcock et al. (2013) empirically
demonstrated that realistic social and information
networks have meaningful large-scale tree-like struc-
ture in terms of decomposability. Equally important,
the proposed solution techniques for trees play a cru-
cial part in developing a branch-and-cut approach
to solving the LCIP on arbitrary graphs (Günneç
et al. 2018).

From here on, for the LCIP, we assume that all
neighbors of a node exert equal influence (recall that
this is appropriate in settings with privacy concerns
in social networks), and we require 100% adoption
(α � 1). Consequently, each node i in the network has
associated with it two parameters, bi and di, that
represent the threshold and the influence factor for
that node. Without loss of generality, we assume
di ≤ bi ≤ deg(i)di. If bi ≤ di, we would either pay node
i the full amount bi to activate it, or it will become
active from the influence of a single neighbor (i.e.,
either pi � 0 or pi � bi). Thus, we can simply update
di � bi in cases where bi < di. If bi >deg(i)di node imust
be paid a minimum of bi − deg(i)di. This cost can be
taken care of in preprocessing and bi is updated to
equal deg(i)di.

3.1. Greedy Algorithm
We now describe an O(|V|log|V|) greedy algorithm. In
each step, from among the inactive nodes, we select
the node with the smallest value of di (ties can be
broken arbitrarily) and pay it the amount of its threshold
bi. Next, we carry out the propagation process from
this newly activated node. We update the thresholds
by lowering the value of bi by the amount of (in-
coming) influence. After that, all active nodes are
removed from the graph.
Figure 4 illustrates the greedy algorithm. Figure 4(a)

shows the instance of the LCIP on a tree. There are
13 nodes, and the numbers next to each node show the
threshold and the influence factor for that node. Node
10 has the smallest influence factor (d10 = 1), so it is
selected and paid b10 � 1. Newly activated node 10
sends influence to node 3, causing its threshold to be
lowered to b3 � 4. Because d3 > b3, nowwe also update
d3 � b3 � 4. Next, node 8 is selected because it has the
lowest influence factor value (d8 � 2, recall ties are
broken arbitrarily) and paid b8 � 2. Its influence
causes the threshold on node 2 to be lowered to 6.
Then, node 11 is selected and paid b11 � 2, which
causes node 3 to become active. This propagates to
node 5 and reduces its threshold to 10. After that,
node 12 is selected and paid b12 � 2, which causes the
threshold and influence factor of node 4 to be updated
to 3. Then, node 6 is selected and paid b6 � 3, which
causes the threshold of node 1 to be updated to 9.
Next, node 9 is selected and paid b9 � 3, which causes
node 2’s threshold and influence factor to be updated
to 1. Then, node 2 is selected and paid b2 � 1, which
causes node 5’s threshold to be updated to 5. Next,
node 4 is selected and paid b4 � 3, which causes nodes
5 and 13 to become active. This influence propagates
from node 5 to 1, causing node 1’s threshold and
influence factor to be updated to 4. Finally, node 1 is
selected and paid b1 � 4, which causes node 7 to be-
come active resulting in all nodes being active.
We show the correctness of the greedy algorithm

by proving that there exists an optimal solution to the

Figure 3. Transforming a 0-1 Knapsack Problem to the LCIP
with Unequal Influence on Stars

Figure 4. Greedy Algorithm for the LCIP on a Tree
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LCIP on a tree where node k � argmin{di : i ∈ V} is
paid its full threshold value bk. The greedy algorithm
recursively applies this property to obtain an optimal
solution.

Claim 1. Given an instance of the LCIP on a tree, there exists
an optimal solution where node k � argmin{di : i ∈ V} is
paid its full threshold value bk.

Proof. In the LCIP, to initialize the influence-propagation
process, at least one nodemust be paid its full threshold.
Such a node will propagate influence out (i.e., it will
not receive influence). Consider an optimal solution
P*, where node k is not paid its full threshold value bk.
That means it must receive influence from at least one
of its neighbors (say, node l). This node lmust either be
paid its full threshold value (bl) in P* or it must receive
influence from at least one of its neighbors (different
from node k). Repeating this process, we can identify a
node j that is paid its full threshold value and from
whom influence propagates to node k via a directed
path. Furthermore, along this path from node j to node
k, all nodes other than node j are receiving payments
strictly less than their full threshold values. We can
now change the solution as follows. We will reverse
the propagation of influence on this path from node k
to node j. This means the payment to node j decreases
by an amount of dj its influence factor (and it is no longer
paid its full threshold value), and the payment to node k
increases by atmost dk its influence factor. The payments
for all other nodes remain the same. Because dk ≤ dj, the
cost of this solution does not increase. Repeating this
argument until node k no longer receives any influence
from one of its neighbors proves the claim. □

Theorem 4. The greedy algorithm solves the LCIP on a tree
optimally in O(|V| log |V|) time.

Proof. The greedy algorithm is based on repeatedly
applying Claim 1. In the first step, the node with the
smallest influence factor is paid its full threshold value.
Once influence is propagated from the node that has
just received its full payment and been removed from
the graph and the solution is updated, we are left with
smaller LCIPs on separate trees. Claim 1 holds sepa-
rately to each one of these trees, and so in the next step,
the node with the smallest influence factor can be se-
lected and paid its full threshold value (in this updated
graph). It takes O(|V| log |V|) time to initially sort the
nodes based on their di values. After that, in each step,
updating the sorted list (when the di value of a node
changes) takes O(log |V|) time, and there are at most
|E| � |V| − 1 updates. □

3.1.1. SpecialCaseofEqual InfluenceFactors. Cordasco
et al. (2015) studied a problem that corresponds to a
specialized version of the LCIP where the influence

factor is equal to 1 over the entire network and pro-
vided a polynomial time algorithm for complete
graphs and trees. This can also be viewed as a setting
where all the influence factors are equal (i.e., di � dj ∀i,
j ∈ V) and the threshold values are integral multiples
of the influence factors. They provide a fairly complex
algorithm for this specialized version of the LCIP on
trees. On the other hand, when we apply the greedy
algorithm to this problem, the result is a trivial al-
gorithm! Pick any node and pay it the remaining value
of its threshold.

3.2. Dynamic Programming Algorithm
We now describe a dynamic programming algorithm
with a better O(|V|) running time. Another advantage
of the DP algorithm over the greedy algorithm is the
fact that the DP algorithm can be applied when
neighbors of a node have unequal influence (the
running time is dependent on that of the mixed 0-1
knapsack problem and is no longer polynomial),
whereas the greedy algorithm becomes a heuristic.
The DP algorithm decomposes the tree into sub-

problems. Each subproblem is used to find the most
promising solution candidates (at most two), where
one of themwill be part of the final solution of the tree.
A subproblem is defined on a star network, which
has a single central node and (possibly) multiple leaf
nodes. By solving the subproblem, we have one so-
lution candidate for the case where there is influence
coming into the central node along the edge that con-
nects the star to the rest of the tree and one solution
candidate for the case where influence goes out of the
central node on this link (to its parent). Next, the star is
compressed into one single leaf node for the next star
network. This process is repeated until we are leftwith a
single (last) star with its central node as the root node
of the tree. After we exhaust all subproblems, a back-
tracking method is used to combine the solutions from
star subproblems and obtain the final solution (set of
nodes that are paid incentives along with the incentive
amounts) for the tree. The pseudocode of the proposed
algorithm is shown inAlgorithm 1. The global variable
TC has the cost of the optimal solution.

Algorithm 1 (DP Algorithm for the LCIP on Trees)
1: Arbitrarily pick a node as the root node of the tree
and let TC � 0.

2: Define the order of star problems based on the
bottom-up traversal of the tree.

3: for each star subproblem do
4: StarHandling
5: end for
6: SolutionBacktrack

We now discuss how to solve the LCIP on a star. Let
c denote the central node of a star (all the other nodes
are leaf nodes) and refer to this star as star c. To select
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which nodes to give incentives to on a star, we focus
on the central node c. Any leaf node iwith bi ≥ dc can
be neglected (recall for all leaf nodes their thresholds
are equal to their influence factors). When bi ≥ dc,
giving bi units of incentives to a leaf node i sends dc
units of influence to node c; thus, the decrease in
threshold is less than or equal to what we spend
(dc ≤ bi). We are no worse off giving the incentive
directly to the central node c and never use such leaf
nodes (this can also be seen by invoking the greedy
algorithm on the star). We collect the nodes with
thresholds less than dc in set S and sort them in in-
creasing order of their thresholds. The nodes in S are
candidates to receive incentives (in addition to the
central node). Let gc � �bcdc� be the number of active
neighbors required to activate node c if no incentives
are paid to it. The cost of the solution to the LCIP on a
star depends on the size of the set S. When |S| ≥ gc
(i.e., there are more than enough leaf nodes), the
solution is to pay thefirst (gc − 1)nodes in San amount
equal to their threshold and then to compare the
threshold of the gc-th leaf node in S (bgc ) against the
remaining threshold (bc − (gc − 1)dc) needed to acti-
vate the central node c. If bgc < (bc − (gc − 1)dc), we pay
the gc-th leaf node bgc ; else, we pay the central node
(bc − (gc − 1)dc). If |S|< gc, then all nodes in the set S
are paid incentives equal to their thresholds, and the
remaining amount of the threshold of the central node
(bc − |S|dc) is paid directly to the central node.Here,we
assumed that there is no influence coming into the
central node from its parent. For the situation where
the central node receives influence from its parent, we
simply reduce bc to bc − dc on the star and, accord-
ingly, update dc � min{bc, dc}, gc � �bcdc�, and solve the
problem on the star.

Algorithm 2 (StarHandling)
Input: star c

1: (Xc
NI,p

c
NI,C

c
NI)← SOLVESTAR(star c, no-influence).

2: if star c is the last star then
3: TC � TC + Cc

NI .
4: else
5: (Xc

I ,p
c
I ,C

c
I )← SOLVESTAR(star c, with-influence).

6: The compressed node’s threshold is Cc
NI − Cc

I .
7: TC � TC + Cc

I .
8: end if
9: function SOLVESTAR(a star c, flag)

10: if flag is with-influence then
11: bc � bc − dc and dc � min{bc, dc}.
12: end if
13: Let gc � �bcdc� and S � {i | bi < dc, i ∈ L(c)}.
14: if |S| ≥ gc then
15: Let Sgc and Sgc−1be the sets of the first gc and(gc − 1)nodes in S, respectively.
16: if

∑
i∈Sgc bi ≤

∑
i∈Sgc−1 bi + bc − (gc − 1)dc then

17: X ← Sgc , pi � bi for i ∈ X.

18: else
19: X ← Sgc−1, pi � bi for i ∈ X, and pc �

bc − (gc − 1)dc, X ← X ∪ c.
20: end if
21: else
22: X ← S, pi � bi for i ∈ S, and pc � bc − |S|dc,

X ← X ∪ c.
23: end if
24: C � ∑

i∈X pi.
25: return X,p,C.
26: end function

After we determine the two solution candidates for
the current star subproblem, the star is compressed
into a single node for the next star subproblem. If in
the optimal solution, the central node c receives in-
fluence from its parent, the cost of the solution is
denoted by Cc

I . If in the optimal solution, the central
node c sends influence to its parent, the cost of the
solution on the star is denoted by Cc

NI. Thus, the
amount Cc

I (which is smaller) must be incurred for
the star at a minimum in the optimal solution. The
incremental amount Cc

NI − Cc
I must be paid if the star

sends influence to its parent in the optimal solution.
Thus, when we compress the star into a single node
for the next star subproblem, the threshold for the
compressed star is Cc

NI − Cc
I . Because the compressed

star is a leaf node for the next star, its influence factor
is also set toCc

NI − Cc
I . This DP calculation procedure is

repeated until we arrive at the root node of the tree.
Here, because there is no possibility of external in-
fluence to the root node, there is only one solution
candidate.
Algorithm 2 provides the pseudocode associated

with this calculation procedure. At its core is the
function SOLVESTAR that finds the optimal solution for
a given star. The function returns X (set of nodes that
are given incentives), p (vector of partial incentives
given, i.e., {pi|i ∈ V}) and C (total cost of the star). In
Algorithm 2, the subscriptsNI and I and superscript c
(for X, p, and C) represent the outputs in the cases of
no influence, influence, and star c, respectively. Also,
L(c) denotes the set of leaf nodes for star c.

Algorithm 3 (SolutionBacktrack)
Input: the last star r and its solution

1: Let p ← pr
NI.

2: ∀l ∈ {L(r) ∩ Xr
NI ∩NL} call NO-INFLUENCE(l, p, X).

3: ∀l∈ {L(r) \Xr
NI ∩NL} call WITH-INFLUENCE(l, p, X).

4: return p, X.
5: function WITH-INFLUENCE(c, p, X)
6: X←(X \ c)∪Xc

I , update pc � 0, and p�p+pc
I .

7: ∀l ∈ {L(c) ∩ Xc
I ∩NL} call NO-INFLUENCE(l, p,X).

8: ∀l∈{L(c)\Xc
I∩NL} call WITH-INFLUENCE(l, p, X).

9: return p, X.
10: end function
11: function NO-INFLUENCE(c, p, X)
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12: X←(X\c)∪Xc
NI, update pc�0, and p�p+pc

NI.
13: ∀l∈ {L(c) ∩Xc

NI∩NL} call NO-INFLUENCE(l, p,X).
14: ∀l∈{L(c)\Xc

NI∩NL} callWITH-INFLUENCE(l,p,X).
15: return p, X.
16: end function

After we obtain the solution of the last star, which
has the root node as its central node, we invoke a
backtracking procedure to obtain the final solution
for this tree (if we are simply interested in the cost of
the optimal solution, no backtracking is necessary, as
global variable TC contains the cost of the optimal so-
lution). Let r denote the root of the tree (as determined
in Algorithm 1) andNLdenote the set of nonleaf nodes
in the tree. After solving the last star subproblem, we
know (fromAlgorithm 2) that leaf nodes inXr

NI do not
receive influence from their parent (the root), but the
remaining leaf nodes do. With this information, we can
proceed down the tree, incorporating partial solutions

at each node based on whether it receives influence
from its parent or not. Algorithm 3 describes this
backtracking procedure. It contains two recursive
functions: WITH-INFLUENCE for the case where a central
node receives influence from its parent and NO-INFLUENCE

for the case where a central node does not receive in-
fluence from its parent.
Figure 5 illustrates the DP algorithm for the in-

stance shown in Figure 4(a). Figure 5(a) shows so-
lutions for the star subproblems in the DP algorithm.
The first row of Figure 5(a) displays the solutions for
the no-influence case (i.e., no influence from parent
node), and the second row displays the solutions for
the with-influence case (i.e., influence from parent
node). Figure 5(b) shows the final star at the root node
(after all other stars have been compressed). From
Figure 5(a), one can see that star 1 has cost 12 and 7
for the no- and with-influence solutions, respectively.

Figure 5. The DP Algorithm for the LCIP on a Tree
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Thus, the threshold (and influence factor) for com-
pressed node 1 is 5 in this final star. Similarly, the
thresholds (and influence factors) are 3, 2, and 3 for com-
pressed node 2, 3, and 4, respectively, in this final star.
In Figure 5(c), the influence propagation directions
are displayed for the optimal solution of the final
star. This identifies which stars receive influence
from their parents and which ones do not. Thus, star
1 uses the with-influence solution; and stars 2, 3, and
4 use the no-influence solution. Figure 5(d) provides
this final solution, which is identical to the one found
by the greedy algorithm.

Theorem 5. The DP algorithm solves the LCIP on trees
optimally in O(|V|) time.

Proof. The bottleneck is the calculation to solve each
star subproblem. There are at most |V| stars in a tree.
For each star, we need to find the gi cheapest children,
and it takes O(deg(i)) time. (Finding the gith order
statistics can be done in O(deg(i)) time by the Quick-
select method in chapter 9 of Cormen et al. (2009); thus,
it takes O(deg(i)) time to go through the list to collect
the gi cheapest children.) For the whole tree, this
sum is bounded byO(|V|) (because∑i∈Vdeg(i) � 2|E| �
2|V| −2). □

In addition to a better time complexity, another ad-
vantage of the DP algorithm is the fact that it also applies
for the LCIP on trees with unequal influence factors. The
DP recursion remains the same. However, as we now ex-
plain, the solution to the no-influence andwith-influence
cases corresponds to a mixed 0-1 knapsack problem
(Marchand andWolsey 1999). Given an LCIP on stars
with unequal influence factors, let the central node c
have threshold bc and influence factor dcj for all j in
L(c). Each leaf node j in L(c) has bj � dj, given that it only
has one neighbor. Then, finding the optimal solution for
this star is equivalent to solving the following problem:

MixedKP Min pc +
∑

j∈L(c)
bjxj, (6)

Subject to pc +
∑

j∈L(c)
dcjxj ≥ bc, (7)

pc ≥ 0, xj ∈ 0, 1{ } ∀j ∈ V, i ∈ L(c),
(8)

where pc represents the incentive we give to node c.
For a node j in L(c), binary variable xj decides whether
it receives payment. Note that for a leaf node, it either
receives full payment or no payment in an optimal
solution. For the with-influence solution, we update the
threshold bc as bc − dcp, where dcp is the influence from
node c’s parent. Thus, we need to solve twomixed 0-1
knapsack problems. Although the running time is no
longer polynomial, a mixed 0-1 knapsack problem can
be solved quite efficiently in practice (Lin et al. 2011).

3.3. Totally Unimodular Formulation
The mixed-integer programming (MIP) model in Sec-
tion 1.1 for the LCIP tracks influence propagation by
creatingartificial timeperiods. In this section,wepropose a
different MIP formulation for the LCIP on trees (recall
that we have equal influence and 100% adoption) that
uses the directed influence propagation network (i.e.,
the direction influence travels over edges in the network).
First, consider the following formulation (MIP2).

MIP2 Min
∑

i∈V
pi, (9)

Subject to yij + yji � 1 ∀{i, j} ∈ E, (10)

pi +
∑

j∈a(i)
diyji ≥ bi ∀i ∈ V, (11)

pi ≥ 0 ∀i ∈ V, (12)
yji ∈ 0, 1{ } ∀j ∈ V, i ∈ a( j). (13)

In MIP2, pi is a continuous variable denoting the
amount of incentive paid to a node i, and yij is a binary
variable that tells us whether node i influences node j
(it is 1 if node i influences node j). Constraint set (10)
says that for each edge {i, j} in the network, either
node i influences node j or node j influences node i.
Constraint set (11) ensures that for each node i in V,
the total of the incoming influence and the payment it
receives is greater than or equal to its threshold. Al-
though this model is much smaller than MIP1, its
linear relaxation does not provide integral solutions
on trees (nor does MIP1).
We will build upon MIP2 to derive a TU formu-

lation for trees. Observe that if constraint set (11)
always held at equality, we could replace pi by bi −∑

j∈a(i) diyji in the objective function and eliminate the
payment variables from the model. In that case, we
are left with constraint set (10), which is totally
unimodular. Unfortunately, constraint set (11) does
not necessarily hold at equality because a node may
have gi or greater incoming arcs in a feasible solution
(i.e., it may receive influence from gi or more neigh-
bors). Ourmodel will instead categorize the incoming
influence to node i on an arc into three types: H with
incoming influence di, L with incoming influence
li � bi − (gi − 1)di, and Zwith incoming influence 0, so
that the incoming influence is exactly equal to the dif-
ference between its threshold bi and its payment pi.
We first consider the situationwhere gi ≥ 2 for node i

and explain this categorization. Consider the example in
Figure 6. Here, bi � 12 and di � 5. Thus gi � 3 and li � 2.
Observe that there are gi+1� 4 possible scenarios. Ei-
ther the node receives no payment (i.e., pi � 0), which
means that it must receive incoming influence of type H
on gi−1� 2 arcs, and an incoming influence of type L
on one arc. Any remaining incoming arcs are of type Z
and provide an incoming influence of 0. Or, the node
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receives a payment of li+λdi (where λ�0, . . . ,gi−1) and
has exactly gi−1−λ incoming arcs of type H. Figure 6
shows these scenarios with pi�0,2,7,12, respectively.

We now consider the situation where gi � 1 for
node i and explain this categorization. In the example
in Figure 7, bi � di � 4. Thus, gi � 1 (recall without loss
of generality when gi � 1, bi � di) and li � di. There are
gi + 1 � 2 possible scenarios. Either the node receives
no payment, which means that it must receive an in-
coming influence of type L on one arc. Any remaining
incoming arcs are of type Z and provide an incoming
influence of 0. Or, the node receives a payment of pi �
li and has no incoming arcs. Figure 7 shows these
scenarios with pi � 0, 4, respectively.

Taken together, we observe that when there is no
payment to a node, there are exactly (gi − 1) arcs with
the incoming influence of typeH and one arc with the
incoming influence of type L.When there is a payment
(notice the payment set is discrete), the incoming arcs
can only provide influence of type H, and there are at
most (gi − 1) of them. Finally, the payment at a node is
easily recovered by subtracting the sum of incoming
influences from its threshold bi.

We use these observations and develop our third-
formulation BIP3 (a pure 0-1 integer program). Es-
sentially, the binary variable yji in MIP2 is decom-
posed into three binary variables, xHji , xLji, and xZji ,
to represent the type of incoming influence. In other
words, xHji , x

L
ji, and xZji are set to 1, when node i receives

incoming influence of type H, L, and Z, respectively,
from node j, and is 0 otherwise.

BIP3: max
∑

i∈V

∑

j∈a(i)

∑

k∈{H,L,Z}
cki x

k
ji, (14)

subject to
∑

k∈{H,L,Z}
(xkij + xkji) � 1

∀{i, j} ∈ E,
(15)

∑

j∈a(i)
xHji ≤ gi − 1 ∀i ∈ V, (16)

∑

j∈a(i)
xLji ≤ 1 ∀i ∈ V, (17)

xkji ∈ 0, 1{ } ∀i ∈ V, j ∈ a(i),
k ∈ {H, L,Z}.

(18)

Constraint set (15) is the analog of constraint set (10).
It specifies that for each edge {i, j} in the network,

either node i influences node j or node j influences
node i; and the amount of influence may only be one
of the three types. Constraint set (16) ensures that a
node i has no more than gi − 1 of its incoming arcs
having type H influence. Constraint set (17) ensures
that a node i has at most one incoming arc with
type L influence. The objective is to maximize the
influence propagation on the network. The objective
coefficient cHi � di provides the amount of incom-
ing influence into node i when it receives type H in-
fluence on an arc; cLi � li provides the amount of
incoming influence into node iwhen it receives type L
influence on an arc; and cZi � 0 provides the amount
of incoming influence into node i when it receives
typeZ influence on an arc. Because ourmodel ensures
that the total sum of incoming influences never ex-
ceeds the threshold, minimizing the sum of the
payments (

∑
i∈V pi) is the same as minimizing the

sum of the thresholds minus the incoming influ-
ences at each node (

∑
i∈V(bi −∑

j∈a(i) ·
∑

k∈{H,L,Z} cki xkji).
However,

∑
i∈V bi is a constant, and so minimizing the

sum of the payments is equivalent to maximizing∑
j∈a(i)

∑
k∈{H,L,Z} cki xkji, the total incoming influence over

the network.

Theorem 6. The constraint matrix of BIP3 is totally
unimodular.

Proof. Let A denote the constraint matrix of BIP3—
composed of constraint sets (15), (16), and (17)—and aij
denote its elements. A is a 0–1 matrix that has at most
two nonzero elements in each column. Observe that we
can partition the rows of A into two subsets Q1 con-
taining constraint set (15) and Q2 containing constraint
sets (16) and (17). With this, columns that have two
nonzero elements have one of the nonzero coeffi-
cients in Q1 and one of the nonzero coefficients in Q2.
Thus, from corollary 2.8 in Nemhauser and Wolsey
(1988), A is a TU matrix. □

Because the right-hand sides of the constraint sets
are integers, the linear relaxation of BIP3 provides
integral solutions to the LCIP on trees.

Figure 7. Categorization of Incoming Influence when gi � 1

Figure 6. Categorization of Incoming Influence when gi ≥ 2
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4. Conclusions
With the widespread use of online social networks,
there is significant interest in solving problems deal-
ing with viral marketing and influencing maximi-
zation on social networks. This paper defines and
studies theNP-hardLCIP,whereweare concernedwith
finding the least-expensive way of maximizing influ-
encing over a social network. In contrast to previous
literature, where an individual selected for targeting is
paid a fixed amount, the LCIP allows those selected for
targeting to be paid fractions of the fixed amount with a
corresponding partial influence. This model is more
closely aligned with marketing practice, where it is
common to provide tailored incentives (e.g., coupons
that reduce the price of a product) instead of receiving a
product gratis.

We addressed the complexity of the LCIP, including
several special cases. We then considered the LCIP with
equal neighbor influence (recall, this is particularly
relevant in a setting where privacy concerns are present
in social networks) and 100% adoption. This variant of
the LCIP is polynomially solvable on trees via both a
greedy and a DP algorithm. We presented a TU for-
mulation for the LCIP on trees built on the influence-
propagationnetwork thatmakesuseof special structures
about the amount of influence passing along an arc.

Using the observation that the influence-propagation
network must be a directed acyclic graph (DAG),
Günneç et al. (2018) embed this TU formulation for
trees into a formulation on arbitrary graphs, where an
additional exponentially sized set of constraints is
added to ensure that the arcs selected form a DAG.
They design and implement a branch-and-cut approach
for the LCIP on arbitrary graphs (when neighbors exert
equal influence and 100% adoption is required). In their
computational study, onreal-worldgraph instanceswith
up to 10,000 nodes and 40,000 edges, they obtain solu-
tions that are on average 1.95% from optimality within
a 10-minute time limit.

A recent paper by Fischetti et al. (2018), published
after the present paper was first submitted, cites an
earlier version of the present paper that also included
the branch-and-cut approach described in Günneç
et al. (2018). Fischetti et al. (2018) proposed a rather
novel set covering formulation that applies even when
neighbors have unequal influence; the influence struc-
ture is nonlinear (e.g., diminishing influence or in-
creasing influence from each additional neighbor); or
when it is not necessary to achieve 100% adoption.
Their formulation has an exponential number of var-
iables as well as an exponential number of constraints to
address these three issues. Using this formulation, they
describe a branch-price-and-cut approach that dynam-
ically generates both columns (variables) and cuts
(constraints). In the settingwhere neighbors have equal

(linear) influence and 100% adoption is required, they
apply their approach to simulated graph instances
with up to 100,000 nodes, with an average degree of
4, obtaining solutions ranging from 0% to 53.2% from
optimality. In the more general setting (unequal influ-
ence, nonlinear influence structure, and without 100%
adoption), they apply their approach to simulated
graph instances with up to 100 nodes and average
degree of a node up to 16. Their branch-price-and-cut
approach finds optimal solutions when the average
degree of a node is 4, but the quality of the solutions
rapidly deteriorates when the average degree in-
creases, reaching a maximum of 94.8% from optimality
when the average degree of a node is 16.
The model we consider allows the influence prop-

agation process to take as many steps/time periods
as necessary. A natural direction is to consider the
influence maximization (e.g., the LCIP and the WTSS
problem) with a constraint on the time allowed for the
diffusion of influence (we call these latency constraints).
Raghavan and Zhang (2018a, b) begin to address this
question. They discuss the LCIP and WTSS problem
in the scenario where there is only one time period
for the influence-propagation process. We note that a
latency constraint of 1 may be relevant for networks
like Twitter. Goel et al. (2015) investigated the diffu-
sion of nearly a billion news stories, videos, pictures,
and petitions on Twitter and found that the vast ma-
jority of influence cascades (over 99%) terminate
within a single time period.
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