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Abstract In this chapter, we focus on heuristics for network design problems.
Network design problems have many important applications and have
been studied in the operations research literature for almost 40 years.
Our goal here is to present useful guidelines for the design of intelligent
heuristic search methods for this class of problems. Simple heuristics,
local search, simulated annealing, GRASP, tabu search, and genetic al-
gorithms are all discussed. We demonstrate the effective application
of heuristic search techniques, and in particular genetic algorithms, to
four specific network design problems. In addition, we present a se-
lected annotated bibliography of recent applications of heuristic search
to network design.
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1. Introduction
Network design problems arise in a wide variety of application do-

mains. Some examples are telecommunications, logistics and transporta-
tion, and supply chain management. While the core network design
problems such as the minimum spanning tree problem, and the shortest
path problem are well-solved, adding additional (or different) restrictions
on the network design frequently results in an NP-complete problem.
Coincidentally, most network design problems that arise in practice are
NP-complete. When it is difficult to solve these network design prob-
lems using an exact approach, we are interested in finding good heuristic
solutions to them.
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In this chapter, we provide practitioners guidelines for designing heur-
istic search techniques for network design problems. Our guidelines en-
compass a wide variety of search techniques starting from simple heuris-
tics, to local search and large-scale neighborhood search, and finally to
genetic algorithms. We illustrate these guidelines by sharing our experi-
ence in developing and applying these heuristic search techniques to four
different network design problems: the minimum labeling spanning tree
problem, the Euclidean non-uniform Steiner tree problem, the prize col-
lecting generalized minimum spanning tree problem, and the multi-level
capacitated spanning tree problem. Finally, we provide an annotated
bibliography to selectively describe some recent research work in this
area.

We hope to convey through this chapter some of the key ideas in
developing good heuristic search techniques for network design problems.
In addition, we illustrate the level of success that one can expect when
applying heuristic search to specific problems involving network design.

The rest of this chapter is organized as follows. In Section 1.2 we
describe a set of general guidelines for developing heuristic search proce-
dures for network design problems. We then illustrate, in Sections 1.3–
1.6, the application of these guidelines on four different network design
problems. In Section 1.7 we provide a brief annotated bibliography on
some recent and successful applications of heuristic search techniques to
network design problems. Finally, in Section 1.8 we provide concluding
remarks.

2. Guidelines for Network Design Heuristics
In this section we present a set of guidelines to develop heuristic solu-

tion approaches for network design problems. Our goal is to inform the
reader about popular approaches that have been favored in the litera-
ture, discuss their strengths and weaknesses, and provide some notes on
how they can be used for related problems. The reader should keep in
mind that in almost every case procedures that achieve a high level of
performance take advantage of problem-specific structures. However, we
believe, that most network design problems share many common char-
acteristics and often the search for an efficient algorithm can follow the
same steps and adhere to the same principles regardless of the problem.
We will begin by presenting simple heuristic procedures that are usually
fairly shortsighted and obtain moderate to poor solutions. We then look
at more advanced local search (LS) procedures that rely on the defini-
tion of a neighborhood and specify the way in which this neighborhood
is explored. In the context of local search we also discuss metaheuris-
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tic procedures, such as simulated annealing, GRASP, and tabu search.
Finally, we discuss genetic algorithms (GA), which usually require a
significant amount of computation time but can find very high quality
solutions.

2.1 Simple Heuristics
It is always a good idea to experiment with simple heuristics first,

before exploring more complex procedures. They usually provide initial
feasible solutions for more advanced procedures, act as a benchmark
against which other algorithms are compared, and, if nothing else, help
better understand the structure of the problem. Moreover, these simple
heuristics are usually employed by more complex procedures for solving
smaller subproblems efficiently. Conceptually, we can split the different
types of heuristics into three different categories depending on how they
find solutions.

Construction. The most popular approach is to attempt to find
a solution by starting with the problem graph, without any edges, and
to construct the solution by adding edges one at a time. Usually this is
done by selecting the best edge, according to a specified rule, and adding
it to the solution only if it does not violate feasibility. The simplest
example of this is Kruskal’s algorithm [36] for the Minimum Spanning
Tree (MST) problem in which we select the cheapest edge in the graph
and add it to the solution if it does not create a cycle. Another equally
simple and well-known example is Prim’s algorithm [46] for the same
problem where the rule is to choose the cheapest edge that connects the
nodes in the partially constructed tree T with T \ V (V is the node set
of the graph, and initially T is a random vertex).

Deletion. A less favored approach works in the opposite way. That
is, to start with all the edges in the graph and delete the worst edge at
each iteration if its deletion results in a network that contains a feasible
solution. The procedure stops when no edges in the solution can be
deleted. Typically, for minimization problems, the edges are selected for
deletion by decreasing order of costs.

Savings. A somewhat different approach starts with a very simple
solution and attempts to improve that solution by calculating the sav-
ings generated when replacing existing edges with new edges while main-
taining feasibility. For tree network design problems these approaches
usually start with a MST or star solution (generated by connecting all
nodes to a given node). For example, the Esau-Williams heuristic [18]
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Figure 1.1. Two-exchange example for the CMST problem. (a) Original solution
with the proposed exchanges. (b) Final solution after the exchanges.

for the capacitated minimum spanning tree (CMST) problem and the
Clarke and Wright heuristic [9] for the vehicle routing problem (VRP)
are based on the savings approach.

The first two approaches are easy to understand and implement and
usually have very good running times (depending on the feasibility check)
but typically result in very poor solutions, especially for more complex
problems. The savings approach can give slightly better solutions and
has been used extensively in practice. It is advantageous to look into all
three types of simple heuristics since their performance is problem de-
pendent (i.e., some of them may work better in some cases than others).

2.2 Local Search
All of the above heuristics, although fast and easy to implement, have

the significant drawback of sometimes generating poor quality solutions
(especially for large problems). One approach that is widely used to
improve on the simple heuristic solutions uses the notion of a neigh-
borhood of feasible solutions and defines a search procedure to find a
more promising solution from the neighborhood. In each iteration of a
LS algorithm, the neighborhood of the current solution is explored for a
suitable alternative solution. If one is found, then it replaces the current
solution and the procedure starts over. If none is found, then the pro-
cedure terminates. In the case of LS, both the neighborhood structure
and the search algorithm play a significant role in the success of the
procedure and have to be designed carefully.

Neighborhood. Simple neighborhood structures are usually de-
fined through exchanges between nodes or edges and are evaluated by
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Figure 1.2. Multi-exchange example for the CMST. (a) Original solution with pro-
posed cyclic exchange. (b) Final solution after exchanges.

the savings generated much like the ones used in the savings heuristic
we discussed earlier. A popular way of generating neighboring solutions
is to first partition the node set in the graph into disjoint sets of nodes
and then define exchanges between the different sets. This approach re-
lies on the fact that solving the problem on the partition sets is usually
much easier than solving it over the entire set of nodes. An example
of a neighborhood used in this context is the so-called node-based, two-
exchange neighborhood (e.g., see Amberg et al. [4]) in which we perform
a shift move for a single node (i.e., the node moves from its current set
to a new one) or an exchange move between two nodes (i.e., the two
nodes exchange sets). In Figure 1.1 we give an example of a shift and an
exchange move and the resulting tree. In the figure, the sets that par-
ticipate in the move are highlighted with dashed ellipses while a dashed
arc (i, j) indicates that node i moves from its set to node j’s set. A
similar neighborhood is the tree-based, two-exchange neighborhood (see
Shariaha et al.[49]) in which multiple nodes (as opposed to single nodes)
shift from one set to another. More involved, multi-exchange neighbor-
hoods can be defined in the same way (see Ahuja et al. [2]). In these
neighborhoods, many sets (not just two) participate in the exchange
either by contributing a single node or multiple nodes. In Figure 1.2,
we present a simple multi-exchange move and the resulting tree. These
approaches (i.e., two-exchange, multi-exchange) have been extensively
used for problems like the CMST where the nodes in the different sub-
trees are considered to belong to the different sets of the partition. We
note that, in the CMST, after determining the assignment of nodes into
sets, the problem of interconnecting the nodes in the same set is a simple
MST problem.
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Figure 1.3. 2-opt and 3-opt example for the TSP. (a) Original solution (dashed edges
will participate in the exchanges). (b) Final solution after the exchanges (the edges
that have been added after the exchanges are noted in bold).

Another way of generating neighborhoods is by changing the place-
ment, number, or type of the edges for a given solution. A simple exam-
ple of this is the 2-opt neighborhood for the traveling salesman problem
(TSP) in which we delete edges (x, y) and (z, w) from the current solu-
tion and add edges (x, z) and (y, w). The 3-opt exchange that has also
been used for the TSP works in a similar way. Three edges are deleted
from the current solution and their endpoints are then connected in a
different way that guarantees a feasible tour. Figure 1.3 presents an
example of a 2-opt and a 3-opt exchange for a TSP instance. A few
indicative examples of the successful application of these ideas are the
2-opt neighborhood that was used on a survivable network design prob-
lem by Monma and Shallcross [39] and Park and Han [42], and a k-opt
neighborhood for a network loading problem by Gendron et al. [26].

In general, the most efficient neighborhood structures are going to be
problem specific. However, the ideas of two-exchange, multi-exchange,
2-opt, and 3-opt can serve as valid starting points for a wide variety of
problem contexts and lead to more suitable neighborhoods.

Search. It is fairly easy to see that depending on the definition of the
neighborhood the number of possible neighbors ranges from exactly one
(in the 2-opt case for the TSP) to O(nK) (for the shift move of the node-
based two-exchange neighborhood), to O(n2) (in the tree-based two-
exchange case) to a significantly larger O(nK) (for the multi-exchange
case), where n is the number of nodes in the graph and K is the number
of sets participating in the exchanges. Because of the large number
of possible neighbors, we need to determine a procedure that searches
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the neighboring solutions efficiently and finds one with which to replace
the current solution. There are a few well-documented and extensively
tested procedures that concentrate on this step of the procedure. The
most prominent ones are steepest descent, simulated annealing (SA), and
the greedy randomized adaptive search procedure (GRASP). The main
idea behind most of these procedures is essentially the same. It specifies
that the neighboring solution could be chosen at random, characterized
as improving or non-improving, and accordingly accepted with a certain
probability specific for each case (i.e., improving or not). Compared to
steepest descent, SA and GRASP are more sophisticated local search
procedures. Due to their advanced search strategies, they are often
classified as metaheuristics in the literature.

Steepest descent is the simplest and the most short-sighted of the
search procedures. At each iteration, we compute all neighbors for the
existing solution and choose the one which reduces (in the case of a
minimization problem) the cost of the solution the most. A potential
disadvantage of this procedure is that it never accepts uphill moves (i.e.,
neighbors with higher cost than the existing solution) and as a result
can potentially terminate after a few iterations at a poor quality local
optimum. Moreover, in some cases it is impractical, because of the
computational effort required, to compute all neighbors. However, if the
neighborhood structure used is well suited to the problem and there is an
efficient way to find the best neighbor (i.e., other than enumeration) then
a Steepest descent procedure can still achieve a high level of performance
and will be computationally efficient. For applications of this approach
in the context of the CMST problem, see [2, 3].

Simulated annealing (SA) is a very popular local search procedure.
In Figure 1.4 we present the steps of a generic SA algorithm. The main
feature of this procedure is that it can accept uphill moves with a certain
probability that decreases at each iteration. The way in which this ac-
ceptance probability decreases (i.e., the so-called cooling schedule) plays
an important role in the efficiency of the procedure. If the decrease is
too steep then the procedure will terminate early at a poor solution. On
the other hand, if it is very gentle we will have to wait a long time before
we reach the final solution. However, the slower the cooling schedule,
the better the solution obtained by the procedure. In particular, for the-
oretical convergence to the optimal solution the temperature needs to
be reduced infinitesimally in each step. While this result is reassuring, it
also implies that there is no finite-time implementation that guarantees
the optimal solution. In practice, a balance is to be obtained between
the running time of the procedure, quality of solutions obtained, and the
cooling schedule. Determining an appropriate cooling schedule is not an
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Begin
randomly generate an initial solution fs

compute the cost of fs, C(fs)
set the effective temperature, T , to the initial value, T0

while T 6= TN do
randomly select a neighbor, fn, of the current solution, fs

compute the cost C(fn) and ∆ = C(fn)− C(fs)
if ∆ ≤ 0 then

fs ←− fn

else
with probability e−∆/T , fs ←− fn

end if
update the temperature T

end while
end

Figure 1.4. Steps of a Simulated Annealing procedure.

easy task, and most of the time it takes a lot of computational testing
to adequately justify a particular selection. Aarts et al. provide a nice
synopsis of the simulated annealing procedure in [1].

The GRASP procedure (see [43]) effectively searches the solution
space rapidly by implementing local search many times while starting
from different points in the solution space. In Figure 1.5 we present
the steps of a generic GRASP procedure. The different starting so-
lutions, fs, that GRASP uses are generated by a greedy construction
heuristic that in each iteration selects any edge that is within 100 ∗ α
percent of the cheapest edge. In this way starting solutions have con-
siderable variability, but are also fairly reasonable. GRASP then pro-
ceeds by repeatedly updating the current solution with the best known
neighbor, fn, until there are no more improvements. In the end, the
procedure returns the best solution it has encountered, fb. The total
number of iterations or the number of successive iterations without an
improvement can both be used as a termination condition. Most of the
criticism of GRASP has to do with the fact that successive iterations
of the procedure are independent and as a result the algorithm does
not learn from solutions found in previous iterations. More advanced
versions of GRASP attempt to resolve this issue. Some of them in-
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Begin
t ←− 0
fb = inf
while (not termination-condition) do

generate a random greedy solution, fs

using local search find fn from fs

if C(fn) < C(fb) then
fb ←− fn

end if
end while
return fb

end

Figure 1.5. Steps of a Greedy Randomized Adaptive Search Procedure.

clude path-relinking approaches (see [37]) that allow for intensification
and diversification strategies, and adaptive mechanisms, called Reactive
GRASP [45], that change the value of α depending on the results of
the search. Another issue with GRASP has to do with the fact that
starting points might in fact be identical solutions. An easy way to re-
solve this issue is to use hash tables (see [10]) to guarantee independent
starting points. For an extensive annotated bibliography of GRASP lit-
erature (including many applications in network design) see Festa and
Resende [21].

All these search procedures have been used successfully in different
contexts but, in general, greatest attention should be given to defining
the neighborhood structure. In our opinion, in most cases where local
search procedures have performed well in the literature, it has been due
to the properties of the neighborhood. Often, with an effective neighbor-
hood simple search strategies such as steepest descent can provide results
competitive with more sophisticated search strategies such as GRASP
and simulated annealing. Additionally, specifying the parameters used
in the search procedures—like the rate for decreasing the temperature
in SA, or the value of α for GRASP—is critical to their success and a
lot of testing is required to find values that work well for a wide range
of problem instances.
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2.3 Tabu Search
An approach that is similar to LS in some ways but deserves to be

noted separately is tabu search (TS). Tabu search, like LS procedures,
requires the definition of a neighborhood for each solution in the search
space. However, TS differs in the way it searches the neighborhood.
The main idea of TS is to incorporate memory in the search process.
The notion is that by effectively using memory, one may be better able
to guide the search to regions in the search space containing the global
optimum or near-optimal solutions to the problem.

In TS, memory concerning the search path is created by the use of a
tabu list. This list keeps a record of solutions, or solution attributes that
should not be considered (i.e., are tabu) in the next step of the search
process. By doing so, TS guides the search process away from local
optima and visits new areas in the solution space. Obviously, selecting
the rules under which a solution or a specific attribute becomes tabu
and the number of iterations for which it will remain tabu (i.e., the tabu
tenure) are of vital importance when applying this procedure.

To illustrate the use tabu moves, consider the k-th best spanning tree
problem. In this problem we wish to find the k-th best spanning tree in a
graph. A feasible solution is a spanning tree, and the neighborhood of a
solution can be defined as the set of spanning trees obtained by dropping
and adding an edge to the given spanning tree. Here are three different
ways in which a move can be classified as tabu. 1) The candidate move
is tabu if either the edge added or the edge dropped is tabu. 2) The
candidate move is tabu if a specific edge in the solution is tabu. 3) The
candidate move is tabu if both the edge added and the edge dropped
are tabu. In general, when evaluating choices for tabu moves, the tabu
rules should be simple and ensure that the search can escape from local
optima and visit new areas in the solution space.

Apart from the definition of the tabu rules another way to control the
search is by determining the tabu tenure associated with the different
rules. Defining these tenures plays a very important role since it greatly
affects the outcome of the search. Small tenures will result in cycling
(i.e., revisiting the same solutions) while large tenures will result in a
gradual degradation of the search results. It is possible to define tenures
as constant, in which case the tenure never changes during the search,
or as dynamic with either a deterministic or a random way in which the
value of the tenure can change. In any case it is important to experiment
until one finds good values for the tabu tenures.

The issues discussed so far although important usually come under the
label of short-term memory and do not cover the more powerful features
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of TS that have to do with long-term memory. We will not attempt to
give a complete account of all these possibilities nor provide guidelines
for their use. However, we would like to bring to the attention of the
reader some of the more important features of long-term memory like
frequency based measures, strategic oscillation, and path-relinking. The
use of long-term memory can significantly increase the efficiency of a TS
algorithm. Frequency based measures are built by counting the num-
ber of iterations in which a desirable attribute has been present in the
current solution. These measures can then be used to guide subsequent
explorations of the solution space to regions that are likely to contain
near-optimal solutions. Strategic oscillation allows the search to con-
tinue past a predetermined boundary which usually coincides with the
space of feasible solutions. Once the search process passes the bound-
ary we allow it to proceed to a specified depth beyond the oscillation
boundary before forcing it to turn around. This time the boundary is
crossed in the other direction (from infeasibility to feasibility) and the
search continues normally. Path-relinking generates new solutions by
exploring trajectories that connect elite solutions and has been found to
be very promising. TS procedures with long-term memory features can
significantly outperform simpler heuristic search algorithms, but can be
quite complex and intricate to design. For an in depth discussion on TS
and all of its features see the text by Glover and Laguna [29].

2.4 Genetic Algorithms
In this section, we describe a popular heuristic search procedure known

as an evolutionary algorithm or a genetic algorithm (GA). When care-
fully applied to a problem, GAs can generate high-quality solutions that
are often better than LS procedures.

Genetic algorithms are powerful search procedures motivated by ideas
from the theory of evolution. They have been successfully used for a va-
riety of problems. Although many different variations exist, the main
steps that GAs follow are essentially the same (see Figure 1.6). At first,
an initial population of solutions is generated and the fitness of all so-
lutions is evaluated. The fitness essentially describes how good each
solution is, and is usually a function of the cost of the solution. A spe-
cific set of solutions is then selected and on that set different genetic
operators are applied. The genetic operators are usually simple heuris-
tic procedures that combine two solutions to get a new one (crossover
operator) or transform an existing solution (mutation operator). The
new solutions generated by the genetic operators are then included in
a new population and the above steps are repeated until a terminat-
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Begin
t ←− 0
initialize P (t)
evaluate P (t)
while (not termination-condition) do

t ←− t + 1
select r solutions from P (t− 1)
apply genetic operators on the r solutions
insert the new r solutions to P (t)
evaluate P (t)

end while
end

Figure 1.6. Steps of a Genetic Algorithm.

ing condition is satisfied. The selection of solutions from a population
is done with respect to their fitness value. Specifically, fitter solutions
have a higher chance of being selected than less-fit solutions.

Representation. The most challenging and critical aspect of using
a GA is the determination of the way in which solutions are represented.
A good representation can lead to near-optimal solutions while a bad
one will cause the GA to perform very poorly. Selecting a representa-
tion is by no means a trivial task. The main thing to keep in mind when
selecting a representation is that it should have meaningful blocks of
information that can be related to elements of a desirable solution and
that these blocks should be preserved from one generation to the next.
These are essentially the main ideas described in the Building Block Hy-
pothesis [38] and the guidelines presented by Kershenbaum in [34]. If we
are interested in representing trees, then we can look into some of the ap-
proaches already developed and tested for various tree problems. Some
of the more traditional approaches include the so-called characteristic
vectors, predecessor encoding, and Prüfer numbers. Characteristic vec-
tors represent trees by a vector v ∈ {0, 1}|E| where |E| is the set of edges
in the graph. In predecessor encoding each entry in the encoding corre-
sponds to a particular node and signifies the predecessor of that node,
with respect to a predetermined root node in the tree. Finally, Prüfer
numbers indirectly encode trees and require specific algorithms to con-
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vert a number into a tree and vice versa. All three of these approaches
have been criticized (see Palmer and Kershenbaum [41]) because they
violate some of the principles we mentioned above.

Palmer and Kershenbaum introduce a link-and-node-bias (LNB) en-
coding in [41]. In order to encode one tree with the LNB encoding we
need to specify one bias, bi, for each node i in the graph (|N | biases) and
one bias, bij for each edge, {i, j}, in the graph (|E| biases). The cost
matrix is then biased by using: C ′

ij = Cij +P1bijCmax +P2(bi +bj)Cmax,
where Cij is the original cost of edge {i, j}, Cmax is the maximum edge
cost in the graph and P1, P2 are two multipliers that are constant for
each GA run. The tree can then be found by running a MST algorithm
with the new costs. We observe that this representation can encode any
tree by setting bi = 0, for all nodes i, and bij = 0 for the edges {i, j} that
belong to the tree we wish to represent and bij = M , otherwise (where
M > Cmax). This encoding satisfies most of the guidelines discussed
earlier and has been found to work well for the optimal communication
spanning tree problem (OCSTP).

Sometimes, even when we are interested in constructing trees, it is
more efficient to look at other representations that do not specifically
deal with tree structures. One example is the CMST problem. As in
the case of the LS procedures for the CMST, it may be desirable to find
a partition of the nodes in the graph. Once a partition is found it is
much easier to construct a feasible solution by solving the subproblems
on the partition (for the CMST we find a MST on the union of the
central node and the nodes in the partition). In these cases, using a
representation that is geared towards groupings/partitions can prove to
be far more valuable. In Figure 1.7 we present an example of a capac-
itated tree encoded using Falkenauer’s [19] grouping representation. In
this representation there is an item part which defines the assignment
of nodes into groups and a group part that specifies the groups in the
solution.

Another example of a representation originally developed for prob-
lems that are not strictly associated with trees is the network random
key encoding (NetKey) originally introduced by Bean [5] for problems
where the relative order of tasks is important (e.g., scheduling problems).
Rothlauf et al. [47] present a way in which NetKey can be used for tree
representations in network design problems, compare it with character-
istic vector encoding, and experimentally show that NetKey is better.
The idea behind NetKey when used for tree representations is to intro-
duce a relative order in which the edges in the graph will be considered.
Based on the order represented in the encoding, edges are added to an
empty graph. When the addition of an edge introduces a cycle, we skip
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Figure 1.7. Example of a group assignment and the respective representation for a
CMST instance.

it and move on to the next edge until we have |N |−1 edges in the graph
and, therefore, a tree.

Operators. Genetic operators are usually distinguished as crossover
operators or mutation operators. Typical crossover operators like single-
point or two-point crossover are usually a good choice and can achieve
good results depending on the strengths and weaknesses of the repre-
sentation. On the other hand, mutation operators should be designed
carefully to complement what cannot be achieved by the crossover op-
erators. Historically, mutation operators started out as random changes
to individual solutions that were applied with very low probability. This
approach, however, makes the mutation operators very weak and hardly
ever adds true value to the search procedure. It would be much more
beneficial to design a mutation operator that is likely to improve the
solution and can be applied with a much higher probability. When we
think along these lines, a natural choice for a mutation operation is a
simple local search procedure. In most cases, the operators should be
defined with the specific characteristics of the representation in mind.
For example the strength of the grouping representation described ear-
lier lies in the fact that operators are applied on the group part of the
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representation and, therefore, allow for meaningful parts of the solution
(i.e., the subtrees) to be carried on from one generation to the next.

In general, GAs can be extremely involved procedures and as a result
the aim should be to keep the number of parameters as small as possible.
In any case, the selected values for the parameters should be able to
achieve high quality results regardless of the problem type.

2.5 Remarks
Obviously, the above discussion on heuristics, local search methods,

and metaheuristics is by no means exhaustive. However, we believe
that it showcases a set of directions that one can follow when approach-
ing a challenging problem in network design. In our opinion, a fruitful
attempt at problem solving should begin by the exploration of naive
heuristics that are easy to implement and understand. These first at-
tempts can then lead to a neighborhood definition. The development
of the neighborhood could possibly start with known and tested ideas
and expand to more sophisticated structures that are specifically tai-
lored to the problem. Depending on the efficiency of the neighborhood,
different algorithms for the search procedure can then be tested and
compared. Generally, strong and complex neighborhoods require very
simple search methods (i.e., steepest descent) while simpler neighbor-
hoods could benefit from more advanced search methods (e.g., simu-
lated annealing, GRASP, tabu search). For genetic algorithms we have
given a few examples of representations that have been used in network
design problems, commented on aspects such as parameter setting and
genetic operators, and recommended the use of local search procedures
as mutation operators. In the next few sections, based on our experi-
ence applying heuristic search, we discuss several NP-complete network
design problems, and illustrate the successful application of heuristic
search techniques to them.

3. The Minimum Labeling Spanning Tree
Problem

A problem in communications network design that has attracted at-
tention recently is the minimum labeling spanning tree (MLST) problem.
In this problem, we are given a graph with labeled edges as input. Each
label represents a type of edge and we can think of a label as a unique
color. For example, in Figure 1.8, there are six nodes, 11 edges, and
five labels (denoted by letters). We would like to design a spanning tree
using the minimum number of labels. For the example in Figure 1.8 an
optimal MLST is indicated in bold.



16

1

6

5

4

3

2

e

e

ec

d

a

a

b b

d

b

Figure 1.8. An MLST example and solution.

Chang and Leu [8] introduced the problem, proved that it is NP-hard,
and proposed two heuristics. One of these, called MVCA, clearly out-
performed the other. Krumke and Wirth [35] proposed an improvement
to MVCA and proved that the ratio of the (improved) MVCA solution
value to the optimal solution value is no greater than 2 lnn + 1. Wan et
al. [51] improved upon this bound and were able to show that the MVCA
solution value divided by the optimal solution value is no greater than
ln(n − 1) + 1. Brüggeman et al. [7] introduced local search techniques
for the MLST and proved a number of complexity results. For example,
they were able to show that if no label appears more than twice, the
problem is solvable in polynomial time. Building on some of these ideas,
Xiong et al. [53] were able to further improve the worst-case bound. In
particular, they proved that, in a graph where the label that appears
most frequently appears b times, the ratio of the MVCA solution value
to the optimal solution value is no greater than the bth harmonic number

Hb = 1 +
1
2

+ . . . +
1
b

< 1 + ln b.
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Figure 1.9. The crossover operator in the GA for the MLST problem.

In addition, Xiong et al. present a family of graphs for which this worst-
case ratio can be attained. Therefore, the worst-case ratio cannot be
improved.

In a second paper, Xiong et al. [52] present a simple genetic algorithm
for the MLST problem and they compare it with MVCA over a wide
variety of problem instances. The GA consists of crossover and mutation
operations.

Before we describe these operations, we must define what we mean by
a solution. Suppose we are given a graph G = (V, E,L), where V is the
set of nodes, E is the set of edges, and L is the set of labels. A solution
s[i] is a subset C of the labels in L such that all the edges with labels in
C construct a connected subgraph of G and span all the nodes in G. If
we consider the MLST instance in Figure 1.8, we can see that {a, c, d}
and {a, d, e} are two solutions. Thus, any spanning tree of s[i] will be a
feasible solution to the MLST problem.

Given an initial population of solutions, the crossover operator works
as follows. Two solutions s[1] and s[2] are selected for crossover. First,
we combine the labels from the two solutions. For example, if s[1] =
{a, c, d} and s[2] = {a, d, e} in Figure 1.9, then S = {a, c, d, e} is the
union of these two. Next, we sort S in decreasing order of label frequency,
yielding {a, d, e, c}. Finally, we add labels of S in sorted order to an
empty set, T , until T represents a solution. In this case, we output
{a, d, e} which is the same as s[2].
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Figure 1.10. Hexagonal tiling of a 2-dimensional space.

The mutation operator is also quite simple. Suppose we begin with
solution S. First, we randomly select a label c not in S and let T = S∪c.
Next, we sort T in decreasing order of label frequency. Finally, starting
at the end of the list, we delete one label at a time from T provided that
the result is itself a solution.

From the above description it should be evident that the GA is fairly
simple. To compare the performance of the GA to existing heuristics for
the MLST problem, the GA and MVCA were tested over 81 problem
instances. The largest of these involved 200 nodes and 250 labels. Both
procedures are extremely fast. The GA outperformed MVCA in 53 cases
(sometimes by a substantial margin), MVCA outperformed the GA in
12 cases (by a very small amount in each case), and there were 16 ties.

4. The Euclidean Non-uniform Steiner Tree
Problem

In Steiner tree problems, we are given a set of terminal nodes which we
seek to connect at minimum cost. Additional nodes, known as Steiner
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Figure 1.11. Horizontal crossover operator in the GA for the Euclidean non-uniform
Steiner tree problem.

points, may be added to the terminal nodes in order to reduce the overall
construction cost. The problem requires that specific Steiner points and
connecting edges be determined.

Many variants of the Steiner tree problem have been studied in the
literature including the Euclidean Steiner problem, the Steiner problem
in graphs, and the rectilinear Steiner problem (see Du et al. [15] for
recent work on different variants of the Steiner tree problem). In most
variants, the cost of an edge typically depends on its distance only. That
is, costs are uniform with respect to the location of the edge.

Coulston [11] recently introduced an interesting variant. In this prob-
lem, the cost of an edge depends on its location on the plane as well
as its distance. Suppose the problem involves laying cable, constructing
pipeline, or routing transmission lines. In such a setting, certain streets
(routes) are more expensive to rip apart and re-build than others. The
Euclidean non-uniform Steiner tree problem reflects this realism. To
begin with, the 2-dimensional region is covered with a hexagonal tiling.
Each tile has an associated cost and terminal nodes (located at specific
tiles), which must be connected, are given as input. Other nodes (equiv-
alently, tiles) may be selected for use as Steiner nodes. Two nodes can
be directly connected if and only if a straight line of tiles can be drawn
between the nodes (see Figure 1.10). The total cost of the Euclidean
non-uniform Steiner tree is the sum of the cost of tiles in the tree. Coul-
ston uses heuristic search techniques such as genetic algorithms and ant
colony optimization in his computational work.

In Frommer et al. [22], a simple genetic algorithm is introduced that
exploits the geometric nature of the problem (i.e., it makes use of (x, y)
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Figure 1.12. MST solution (cost = 56.24) for the Euclidean non-uniform Steiner tree
problem.

coordinates). In addition, Frommer et al. allow an additional charge for
each Steiner node.

At the heart of their genetic algorithm is a spatial crossover operator.
In its simplest implementation, the grid is split in half horizontally. Let
A, B, C, and D be sets of Steiner nodes. A and C can have some
common nodes, as can B and D. The parents and offspring are shown
in Figure 1.11. In each of the four cases, there are a set of terminal nodes
also (not shown). If we combine Steiner nodes and terminal nodes and
solve a minimal spanning tree problem over these nodes, we can obtain
a Steiner tree. (Note, we must eliminate degree-1 Steiner nodes first.)

The genetic algorithm is tested over a wide variety of problem in-
stances and is compared with a heuristic based on the progressive ad-
dition of Steiner nodes. The overall performance is comparable, but
progressive addition is significantly slower as problem size grows.

The GA behaves quite reasonably as indicated by Figures 1.12 and
1.13. In Figure 1.12, a minimal spanning tree solution is presented. The
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Figure 1.13. GA solution (cost = 29.01) for the Euclidean non-uniform Steiner tree
problem.

lightest regions have the highest costs. The terminal nodes are connected
in a least cost way, without using any Steiner nodes. In Figure 1.13, the
GA finds a better solution, by using Steiner nodes in order to avoid the
lightest (most expensive) regions.

5. The Prize-Collecting Generalized Minimum
Spanning Tree Problem

The prize-collecting generalized minimum spanning tree (PCGMST)
problem occurs in the regional connection of local area networks (LAN),
where several LANs in a region need to be connected with one another.
For this purpose, one gateway node needs to be identified within each
LAN, and the gateway nodes are to be connected via a minimum span-
ning tree. Additionally, nodes within the same cluster are competing to
be selected as gateway nodes, and each node offers certain compensation
(a prize) if selected.
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Formally, the PCGMST problem is defined as follows: Given an undi-
rected graph G = (V, E), with node set V, edge set E, cost vector c ∈ R

|E|
+

on the edges E, prize vector p ∈ R
|V |
+ on the nodes V, and a set of K

mutually exclusive and exhaustive node sets V1, ..., VK (i.e., Vi
⋂

Vj = ∅,
if i 6= j, and

⋃K
k=1 Vk = V ), find a minimum cost tree spanning exactly

one node from each cluster. This problem represents a generalization
of the NP-hard generalized minimum spanning tree (GMST) problem,
where all nodes are equally important, that is, each node offers equal
compensation if selected for the regional network design.

Several exact and heuristic procedures have been developed for the
GMST problem so far. Myung et al. [40] developed a dual-ascent pro-
cedure based on a multicommodity flow formulation for the problem.
Feremans [20] developed a branch-and-cut algorithm that uses a tabu
search algorithm for the initial upper bound, and a local search algorithm
that improves upper bounds found during the course of the branch-and-
cut procedure. Pop [44] developed a relaxation procedure based on a
polynomial-size MIP formulation for the GMST problem. Golden et
al. [31] developed several upper bounding procedures including simple
local search and genetic algorithm heuristics.

Building upon our previous work in Golden et al. [31] for the GMST
problem, we describe the application of a local search procedure and a
genetic algorithm to the PCGMST problem.

5.1 Local Search Procedure
The local search (LS) procedure we developed in [31] for the GMST

problem may be directly applied to the PCGMST problem. It differs
only in that an additional objective function term for node prizes needs
to be taken into account here.

The LS procedure is an iterative 1-opt procedure. It visits clusters
in a wraparound fashion following a randomly defined order. In each
cluster visit, the neighborhood of a feasible generalized spanning tree is
explored by examining all feasible trees obtained by replacing the node
(in the tree) from the current cluster. In other words, a GST of least cost
(the cost of the tree is the sum of the edge costs minus the rewards on
the nodes) is found by trying to use every node from that cluster, while
fixing nodes in other clusters. The local search procedure continues with
visiting clusters until no further improvement is possible. The procedure
is applied to a pre-specified number of starting solutions (denoted by t).
The steps of the procedure are outlined in Figure 1.14.
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Local Search Heuristic (LS):

Step 0. Specify the number of feasible solutions to be generated -
t. Repeat Steps 1 through 3 t times.

Step 1. Generate a feasible solution as follows. Randomly select
a single node from each cluster, and build an MST on the
selected nodes (using any MST algorithm). If no MST exists
on the selected nodes, repeat Step 1. Otherwise, continue to
Step 2.

Step 2. Randomly define an order in which clusters will be searched.

Step 3. Follow the order defined in Step 2 in visiting clusters. Re-
peat the following steps until K sequential cluster visits result
in no improvement.

While visiting a cluster, consider each node in the cluster
as a replacement for the current node in the cluster con-
tained in the GST. Compute the cost of the solution for
each replacement.

Among the solutions computed in the previous step, iden-
tify the one giving the greatest improvement in the ob-
jective function. If there is an improvement, implement it
by replacing the node representing the cluster, and update
the current tree.

Figure 1.14. Steps in the Local Search procedure for the PCGMST problem.

5.2 Genetic Algorithm
We present a genetic algorithm for the PCGMST problem that is

similar to the one we developed in [31], with a few differences in the
initial population and genetic operators applied. Figure 1.15 shows an
outline of our genetic algorithm. The initial population is created by
randomly generating a pre-specified number of feasible GSTs. Before
adding a new chromosome to the population P (0), we apply local search
and add the resulting chromosome as a new population member. Within
each generation t, new chromosomes are created from population P (t−1)
using two genetic operators: local search enhanced crossover and random
mutation. The total number of offspring created using these operators is
equal to number of chromosomes in the population P (t−1), with αP (t−
1) offspring created using crossover, and βP (t−1) offspring created using
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Begin
t ←− 0
initialize P (t)
while (not termination-condition) do

t ←− t + 1
Generate αP (t− 1) offspring using local search enhanced

crossover operator
Generate βP (t− 1) offspring using random mutation

operator
Select new generation P (t), with population size equal

to θ(1 + α + β)P (t− 1)
end

end

Figure 1.15. Steps of our Genetic Algorithm for the PCGMST problem.

mutation (fractions α and β are experimentally determined). Once the
pre-specified number of offspring is generated, a subset of chromosomes
is selected to be carried over to the next generation. The algorithm
terminates when the termination condition, a pre-specified number of
generations, is met.

We now give a more detailed description of the genetic algorithm.

Representation. We represent a chromosome by an array of size
K, so that the gene values correspond to the nodes selected for the gen-
eralized spanning tree. Figure 1.16 provides an example of a generalized
spanning tree and its corresponding chromosome representation.

Initial Population. The initial population is generated by random
selection of nodes for each cluster. If possible, a minimum spanning
tree is built over the selected nodes. Otherwise, the chromosome is dis-
carded, since it represents an infeasible solution. Each feasible minimum
spanning tree built in this way is then used as input for the local search
procedure. The resulting solution is then added to the initial popula-
tion as a new chromosome with a fitness value defined as the difference
between the cost of the MST and the prizes associated with the nodes
in the chromosome.



Heuristic Search for Network Design 25

Feasible generalized 
spanning tree

Corresponding chromosome 
representation

1210854 1210854

C1

C2

C3

C4

C5

1

2

3

6

7

4

95

8

10

11

12
13

14

16
15

Feasible generalized 
spanning tree

C1

C2

C3

C4

C5

1

2

3

6

7

4

95

8

10

11

12
13

14

16
15

Figure 1.16. An example of a feasible GST and the corresponding chromosome rep-
resentation

1610763 159851

Parent 1: Parent 2:

159863 1610751

Child 1: Child 2:

Crossover site

Figure 1.17. One-point crossover operator example.

Crossover. We apply a standard one-point crossover operation
as shown in Figure 1.17. As in the initial population, only the feasible
solutions are accepted. Each child chromosome created using this op-
erator is used as input to the local search procedure, and the resulting
chromosome is added to the population.

Random Mutation. A random mutation operator randomly se-
lects a cluster to be modified and replaces its current node by another,
randomly selected, node from the same cluster. The new chromosome
is accepted if it results in a feasible GST. In order to maintain diversity
of the population, we do not apply local search to new chromosomes
created by random mutation.

Selection/Replacement. At the end of each generation, a frac-
tion, θ, of the current population is selected to be carried to the next
generation, while the remaining chromosomes are discarded. This selec-
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tion is a combination of elitism and rank-based selection, where the top
10% of the current population is selected using elitism and the remaining
90% is selected using rank-based selection (see Michalewicz [38]).

5.3 Computational Experiments
In this subsection, we provide a summary of some computational ex-

periments with the local search (LS) heuristic and the genetic algorithm
(GA) procedure. Both LS and GA were coded in Microsoft Visual C++
on a workstation with 2.66 GHz Xeon processor and 2GB RAM. The
heuristics were tested on two classes of instances—those from TSPLIB
(identical to those in [20], with edge costs satisfying the triangle inequal-
ity) and those with random edge costs (identical to those in [31]). For
these experiments we have added integer node prizes generated randomly
in the range [0, 10].

The TSPLIB instances consist of 5 sets of problems differing in terms
of a user-defined parameter µ that may be thought of as the average
number of nodes per cluster. The size of these instances varies from 7
to 84 clusters, with 47 to 226 nodes, and up to 25,118 edges. The size of
random instances varies from 15 to 40 clusters, with 120 to 200 nodes,
and up to 15,000 edges.

Parameter settings for LS and GA. Based on the initial testing
over a separate set of large instances with random edge costs, we selected
the GA parameters as follows. The size of the initial population P (0)
was set to 100. α and β were both set to 0.5. θ, the fraction of the
population to survive, was set to 0.5. The stopping criterion was 15
generations. For LS the number of starting solutions was set to 500.

Computational results. For the TSPLIB instances, we were
able to find optimal solutions for 133 of 169 instances using a branch-
and-cut algorithm for the PCGMST problem that we proposed in [30].
The branch-and-cut procedure was able to find optimal solutions for all
random instances. The summary of results for these instances is shown
in Table 1.1.

The first two columns in the table represent the type of problem set
and number of instances within each set. The third column in the table
indicates the number of instances where the optimal solution is known
(from the branch-and-cut procedure). The first column under LS and
GA indicates the number of instances where these procedures found the
optimal solution. In all TSPLIB instances where the optimal solution
is known (there are 133 such instances), our GA and LS found the op-
timum. In the remaining 36 TSPLIB instances, GA always provided
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Table 1.1. Summary of computational results for the PCGMST problem.

Problem Set Inst Opt LS GA
Known Opt Time (sec) Opt Time (sec)

TSPLIB, geog 41 35 35 14.44 35 7.48

TSPLIB, µ = 3 32 22 22 70.95 22 24.34

TSPLIB, µ = 5 32 22 22 28.82 22 11.13

TSPLIB, µ = 7 32 27 27 8.61 27 5.35

TSPLIB, µ = 10 32 27 27 2.60 27 3.09

TSPLIB 169 133 133 24.51 133 10.25

Random 42 42 40 6.33 40 5.96

Summary 211 175 173 20.89 173 9.39

solutions that were at least as good as the ones obtained by LS. In 8
of these instances, GA provided a solution better than the one obtained
by LS. In the case of random instances, where the optimum solution is
known for all 42 instances, both LS and GA did not find the optimum
in 2 of 42 instances. In one of these instances, GA provided a better
solution than LS, and in the other instance LS was better than GA. The
branch-and-cut algorithm took an average of 726 seconds per instance to
solve the 175 instances to optimality, while LS and GA take an average
of 20.89 and 9.39 seconds per instance respectively for all 211 problem
instances.

5.4 Remarks
The computational results with the two heuristic search techniques,

local search and the genetic algorithm, presented in this section have
shown that relatively simple heuristic search techniques can provide high
quality results for the PCGMST problem, while requiring only a small
fraction of time compared to an exact procedure like branch-and-cut.

It is noteworthy that we obtained similar compelling results with local
search and a genetic algorithm for the GMST problem in [31]. The LS
procedure provided results that were on average 0.09% from optimality
(where the optimal solution was known), while the genetic algorithm
(with a different structure than the one described here) provided results
that were on average only 0.01% from optimality.

Finally, we note that there is a slightly different version of the GMST
problem that has been studied in the literature. In this version the clus-
ters are collectively exhaustive, but not necessarily mutually exclusive,
and at least one node from each cluster needs to be selected for the
GMST. Several heuristic search procedures have been applied to this at
least version of the GMST problem. Dror et al. [14] developed a genetic
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algorithm for the at least version of the GMST problem. Shyu et al. [50]
developed an ant colony optimization procedure for this version of the
GMST problem, with faster but similar results (in terms of solution
quality) to the GA developed by Dror et al. More recently, Duin and
Voß [17] use a transformation of the at least version of the GMST prob-
lem to the Steiner problem in graphs, and show that the problem can
be efficiently solved using heuristic pilot methods (the pilot method is
a technique proposed by Duin and Voß [16] that is designed to improve
solutions obtained by other heuristics, referred to as sub-heuristics or
pilots, through tailored repetitions of these heuristics).

6. The Multi-Level Capacitated Minimum
Spanning Tree Problem

In this section, we describe the multi-level capacitated minimum span-
ning tree (MLCMST) problem, a generalization of the well-known ca-
pacitated minimum spanning tree (CMST) problem, and discuss two
heuristics for it. In the CMST problem, we are given a set of terminal
nodes, each with a specific traffic requirement that we wish to transport
to a given central node. Furthermore, a single type of facility with a
fixed capacity is available for installation between any two nodes. We
wish to design a feasible, minimum cost, tree network to carry the traffic.
The CMST is a fundamental problem in network design and has been
extensively studied by many researchers over the years (see [25] for a
nice survey).

In many practical applications in telecommunications, utility net-
works, etc., there is more than a single facility type available to the net-
work planner. The MLCMST addresses this practical issue and general-
izes the CMST by allowing for multiple facilities with different costs and
capacities in the design of the network. Other than our own work [23, 24],
little has been done on the MLCMST problem.

Formally, the MLCMST problem can be defined as follows. Given a
graph G = (V, E), with node set V = {0, 1, 2, . . . , N} and edge set E.
Node 0 represents the central node (which we will also denote by c) and
the rest are terminal nodes. Wi is the traffic requirement (or weight) of
node i to be transported to the central node c. We are also given a set
of facility types Λ = {0, 1, . . . , L} with capacities Z0 < Z1 < . . . < ZL

and cost functions C l
ij denoting the cost of a facility of type l installed

between nodes i and j. We wish to find a minimum cost tree network
on G to carry the traffic from the terminal nodes to the central node.

We will restrict our attention to (realistic) cost functions that exhibit
economies of scale and are typical in communication networks. In other
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Figure 1.18. Multi-Level Capacitated Minimum Spanning Tree. (a) Nodes in the
network. (b) Feasible Multi-Level Capacitated Spanning Tree.

words, the cost of each facility satisfies the relationship Cy
ij ≤ Zy

Zx
Cx

ij for
every edge {i, j} ∈ E, and x < y. We also impose the condition that
only a single facility type is permitted to be installed on an edge. This
condition is actually not restrictive as a problem without this restriction
can be transformed to one with this restriction (see [48]). Finally, in the
following discussion, we only deal with the homogenous demand case in
which Wi = κ, ∀i ∈ V . Like most of the capacitated network design
problems, the MLCMST is very difficult to solve and since the CMST is
a special case for |Λ| = 1, it is NP-hard.

6.1 Savings Heuristic
We first briefly describe a savings heuristic for the MLCMST problem

(complete details of this heuristic procedure are in a working paper [23]).
This heuristic starts with a feasible star solution in which all nodes in
V are connected to the central node c, with the lowest capacity link
(i.e., type 0). The central idea behind the heuristic is to upgrade the
connection of a node i that is currently connected with a type 0 link, to
a higher capacity link, while connecting other nodes to i. Obviously, we
would like to reduce the overall cost of the network after the upgrade and
the reconnections. In order to ensure this for each node i, we compute
the savings, Dl

i introduced by upgrading to a type l link,

Dl
i = C0

ipred(i) − C l
ipred(i) +

∑

j∈H

dij , (1.1)

where pred(i) denotes the first node on the path from node i to the
central node. The first two terms in (1.1) represent the change in cost
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involved in upgrading the current connection of i to a type l link. The
third term is the sum of the savings introduced when reconnecting the
nodes j in H, to i. Note that Dl

i is only defined for nodes that are
currently connected with a type 0 link (for all other nodes, we assume
Dl

i = 0). For a given node j, dij = C0
jpred(j)−C0

ji is the savings obtained
by reconnecting node j from its current connection to node i. Again,
notice that the reconnection is only possible if node j is currently con-
nected with a type 0 link. We would like to define the set H in a way
that maximizes the sum of the savings in (1.1). This can be done by
finding all j for which dij > 0 and sorting them in decreasing order.
Next, consider all j in sorted order and attempt to connect them to i. If
j can be connected to i without violating any of the capacity constraints
of the links that are on the path from i to the central node, we add j to
H. Otherwise, we consider the next node.

The heuristic starts with l = L. Once the calculation of all savings
Dl

i, for i = V \{c}, is complete, we select the largest one and implement
the upgrade and the reconnections. We then repeat the computations
and implement the changes as long as Dl

i > 0. When we can no longer
find positive savings, we set l := l − 1 and repeat the same steps while
l ≥ 0.

6.2 Genetic Algorithm
The solutions provided by the savings heuristic, although reasonable,

can be significantly improved. We now discuss the main characteristics
of a genetic algorithm (GA) developed for the MLCMST that improves
upon the savings heuristic. Conceptually, our genetic algorithm ap-
proach splits the MLCMST problem into two parts: a grouping problem
and a network design problem. The grouping problem aims at finding
the lowest cost, feasible partition, S1, S2, . . . , Sm of the set V \{c}. The
partition is feasible if

∑
i∈Sµ

Wi ≤ ZL, for all µ = 1, 2, . . . , m. The
cost of a partition is determined by finding a minimum cost tree Tµ on
all of the sets Sµ ∪ {c} and then summing the costs of the individual
trees. Although the network design problem on the partition (finding
Tµ) is also an MLCMST problem, in practice, we will have to solve it
on a much smaller graph than the original. Our GA algorithm searches
through possible partitions and evaluates their cost by calling on the
savings heuristic we presented earlier.

The steps of the GA procedure are described in Figure 1.19. First,
an initial population of feasible partitions (or individuals) P (t) is cre-
ated. Next, the fitness of each individual in that population is evalu-
ated. In this case, the fitness of a partition is equal to

∑
µ=1...m c(Tµ)
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Begin
t ←− 0
initialize P (t)
evaluate P (t)
while (not termination-condition) do

t ←− t + 1
select r parents from P (t− 1)
let the r parents crossover and generate r offspring
insert the r offspring to P (t)
select (pop size− r −m) individuals from P (t− 1) and

copy them to P (t)
take the best m individuals of P (t− 1) and mutate them
insert the mutated individuals to P (t)
evaluate P (t)

end while
end

Figure 1.19. Steps of the Genetic Algorithm for the MLCMST problem.

(c(Tµ) denotes the cost of Tµ). The evaluation of the fitness of the pop-
ulation is required to check the termination condition of the algorithm
and during the selection of individuals. At first, we select r individuals
(parents) from the old population P (t− 1) for reproduction (crossover).
The crossover operation results in r new individuals (children) which are
assigned to the new population, P (t). Next, (pop size − r − m) indi-
viduals are selected from P (t− 1) and are copied to P (t). Additionally,
the best m individuals are chosen from P (t − 1) to be mutated. The
mutated individuals then become part of P (t). Finally, the new popula-
tion is evaluated and the procedure starts over. Note that all selections
throughout the algorithm are done with regard to the fitness values of
the individuals (i.e., fitter individuals have a higher chance of being se-
lected than less-fit individuals). We now give a brief overview of the
most important aspects of the GA. Additional details can be found in
our working paper [23].

Initial Population. The initial population is generated by running
our savings heuristic and the Esau-Williams [18] heuristic (with link
capacity ZL) on perturbed versions of the problem graph.
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Selection. All selections are done with the typical roulette wheel
mechanism on fitness values that were transformed through a Sigma
Truncation function [38]. This function, f ′(i) = f(i)+(f−γσ), computes
the transformed fitness value f ′(i) of an individual i, from the original
f(i), the population average f , and the population standard deviation
σ. γ is a constant that can be used to control selective pressure.

Representation. Our genetic algorithm uses a representation pro-
posed by Falkenauer [19] for grouping problems in general. This rep-
resentation consists of an item part and a group part. The item part
consists of the group labels assigned to each node and the group part
contains a list of the group labels. The representation is shown in Fig-
ure 1.7 in the context of the CMST problem. In that case, nodes that
belong in the same group are connected with a MST. In our problem,
nodes in the same group have to still be connected by a multi-level ca-
pacitated spanning tree.

Crossover. Crossovers are handled as suggested by Falkenauer [19].
The crossover operator is a typical two-point crossover but acts only on
the group part of the representation. The item part of the representation
is updated once the crossover is complete based on the changes done in
the group part.

Mutation. Mutations can be handled in many different ways.
We use an elaborate local search procedure, which we briefly discuss in
Section 1.6.4.

6.3 Computational Results
Extensive computational testing on both the savings heuristic and the

genetic algorithm was done on problem instances with different problem
sizes (N = 20, 30, 50, and 100) and different central location positions
(center, edge, and random). Each problem set (combination of size and
central location position) contained 50 randomly generated problem in-
stances. The results of the heuristics were compared to optimal solutions
for smaller problems (for which N = 20 and some of the instances for
which N = 30) and to lower bounds. The lower bounds were generated
by linear programming relaxations of mathematical formulations for the
MLCMST problem. Both procedures were coded in C++ and all runs
were done on a Dual Processor Pentium III PC running Windows 2000
with 1GHz clock speed and 512MB of RAM.

When compared to the optimal solutions, the savings heuristic and
the GA found solutions that were on average, within 4.29% and 0.25% of
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the optimal solutions, respectively. Specifically, the GA solutions were
never more than 2.12% away from optimality. For the savings heuristic,
however, in the worst case the results were almost 12% away from opti-
mality. When compared to the lower bounds, the savings heuristic was,
on average, within 9.91% of the bound with 20.00% being the worst case.
The GA was within 6.09% of the lower bound, on average, and never
exceeded 11.18%. It is important to note here that for smaller problems
the lower bounds were found to be within 6.14% of the optimal solution,
on average. In terms of running times, the savings heuristic runs within
0.05 of a second for all problems and the GA runs on average within 45
minutes for larger problems (i.e., N = 100).

6.4 Remarks
The MLCMST problem is a challenging network design problem that

arises in practice. The results presented here reveal a fairly strong per-
formance from the GA. The savings heuristic provides weaker solutions
than the GA, which might be expected from a greedy heuristic for a
challenging problem like this. One possible avenue for research is to
develop local search (LS) procedures that use neighborhood structures
similar to those originally developed for the CMST problem. As we
mentioned earlier Ahuja et al. [2, 3] present a multi-exchange neighbor-
hood structure that defines a very extensive neighborhood for CMST
problems, and present efficient search procedures for this neighborhood
structure. Based on this neighborhood, and in conjunction with our
savings heuristic, we have developed a LS algorithm for the MLCMST
problem that performs quite well. Complete details on this procedure
are in our working paper [23].

There are many potential directions for future research. Different
possibilities include improving the savings heuristics, genetic algorithms
based on tree (instead of group) representations, and alternative local
search procedures. Finally, the heterogenous demand case is even more
challenging and many promising directions for a solution procedure exist.

7. Selected Annotated Bibliography
In this section, we provide an annotated bibliography of recent and

interesting applications of heuristic search to network design. While the
list is certainly not complete, it includes representative work in network
design. We have also limited the list to the less extensively studied prob-
lems, so we did not include problems such as the Steiner tree problem.
The following selection of papers is classified into five groups depending
upon the heuristic search technique used: local search, tabu search, ge-
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netic algorithms, simulated annealing, and finally approaches that use
multiple heuristic search techniques in one place. Under each classifica-
tion we describe a few papers (usually containing a novel idea or with
very good computational results) that are representative of the recent
work in that particular heuristic search area.

Interested readers may find more on the general use of these heuris-
tic search techniques in the following references. Surveys of different
strategies related to local search, such as iterated local search, variable
neighborhood, and guided local search, along with applications of these
procedures can be found in the recently edited handbook on metaheuris-
tics by Glover and Kochenberger [28]. More recent applications of tabu
search can be found in the survey paper by Hindsberger and Vidal [33],
while additional selected applications of heuristic approaches in telecom-
munication networks can be found in the special issue of the Journal of
Heuristics edited by Doverspike and Saniee [13].

Applications of Local Search

R.K.Ahuja, J. B.Orlin, and D. Sharma, 2001. “A composite
neighborhood search algorithm for the capacitated minimum
spanning tree problem,” Operations Research Letters, Vol. 31,
pp. 185–194.
Ahuja et al. present a neighborhood structure for the CMST problem
that allows for multiple exchanges between the subtrees of a feasible tree.
Each subtree can be part of the exchange by contributing one of its nodes
or one of its subtrees. A new, directed graph is constructed on which all
the exchanges and their savings are represented by cycles. The authors
also present an exact algorithm that finds the best multi-exchange by
searching this new graph. Their computational results indicate that a
local search procedure based on this large-scale multi-exchange neigh-
borhood is able to find the best-known solutions for a set of benchmark
problems and improve upon the best-known solution in 36% of the cases.

B.Gendron, J.-Y. Potvin, and P. Soriano, 2002. “Diversifica-
tion strategies in local search for a nonbifurcated network load-
ing problem,” European Journal of Operational Research, Vol.
142, pp. 231–241.
Gendron et al. studied the impact of different diversification strategies
on the performance of the local search procedure for a nonbifurcated
network loading problem. This problem occurs in telecommunications
networks, where we are given a central supply node and a set of demand
nodes. We are also given multiple facilities of different capacity and cost
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Type 1 facility
Type 2 facility

Central supply node
Demand node

Type 3 facility

Figure 1.20. An example of a nonbifurcated network loading problem.

that can be installed on links between the nodes. The goal is to lay out
facilities in the network so that all demand requirements are met and the
total network cost is minimized. Figure 1.20 shows an example of this
problem. The proposed solution procedure alternates between construc-
tion and local search phase. Gendron et al. presented four diversification
strategies: adaptive memory [6], greedy multistart, 2-opt neighborhood,
and greedy k-opt. Computational experiments on networks with up to
500 nodes indicate that the best diversification strategy is greedy k-opt,
which significantly outperforms other diversification strategies.

M.G. C. Resende, and C. C. Ribeiro, 2003. “A GRASP with
path-relinking for private virtual circuit routing,” Networks,
Vol. 41, No. 3, pp. 104–114.
Resende and Ribeiro have developed a version of GRASP for the pri-
vate virtual circuit (PVC) routing problem, where the goal is to route
off-line a set of PVC demands over a backbone network, so that a linear
combination of propagation and congestion-related delays is minimized.
The PVC problem occurs in a frame relay service, which provides pri-
vate virtual circuits for customers connected through a large backbone
network. Each customer’s request can be seen as a commodity speci-
fied by its origin and destination, and required bandwidth, and must be
routed over a single path, that is, without bifurcation. The backbone
network may consist of multiple links between pairs of nodes and any
given link can support a limited bandwidth and a limited number of
PVCs. Resende and Ribeiro discussed different path-relinking strategies
(a technique described in Glover [27]) that can be used along with their
GRASP procedure, and tested their performance on networks with up to
100 nodes and 9900 commodities. These tests showed that, among the
tested variants, the most effective variant of GRASP is backward path-
relinking from an elite solution to a locally optimal solution. These
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experiments also showed that the proposed version of GRASP for the
PVC routing significantly outperforms other, simpler, heuristics used by
network planners in practice.

D.Fontes, E. Hadjiconstantinou, and N. Christofides, 2003. “Up-
per bounds for single-source uncapacitated concave minimum-
cost network flow problems,” Networks, Vol. 41, No. 4, pp.
221–228.
The single-source uncapacitated concave min-cost network flow problem
(SSU concave MCNFP) is a network flow problem, with a single source
node and concave costs on the arcs. This models many real-world ap-
plications. Fontes et. al. proposed a local search algorithm for the SSU
concave MCNFP. It starts by finding a lower bound obtained by a state-
space relaxation of a dynamic programming formulation of the problem.
This lower bound is improved by using a state-space ascent procedure
(that considers penalties for constraint violations and state-space modi-
fications). The solutions obtained by the lower bound procedure are first
corrected for infeasiblities by an upper-bounding procedure and then it-
eratively improved by applying local search over extreme flows (extreme
flows correspond to spanning tree solutions rooted at the source node
and spanning all demand vertices). The extensive tests for two types
of cost functions (linear fixed-charge and second-order concave polyno-
mial) over a large set of instances with up to 50 nodes and 200 arcs
have shown that the new procedure provides optimal solutions in most
instances, while for the remaining few, the average percent gap is less
than 0.05%.

Applications of Tabu Search

S.Chamberland, B. Sanso, and O. Marcotte, 2000. “Topologi-
cal design of two-level telecommunication networks with mod-
ular switches,” Operations Research, Vol. 48, No. 5, pp. 745–
760.
Chamberland et al. have developed a tabu search algorithm that im-
proves upon a greedy heuristic for the design of two-level telecommuni-
cation networks. In this problem we are given a set of possible switch
sites that need to be connected by high capacity links (OC-192 links)
into a tree or ring backbone network. We are also given a set of user
nodes that need to be connected to a backbone network using low capac-
ity links (OC-3 links) and a star network structure. Figure 1.21 shows
an example of a two-level telecommunication network with a tree back-
bone network. The low capacity (OC-3) links from users are connected
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OC-192
OC-3

User site

Unused switch site

Backbone switch site

Figure 1.21. An example of a two-level telecommunication network with a tree-
backbone network and a star-access network.

to the switch either directly or via a multiplexer. In either case a “port”
of the appropriate capacity must also be installed on the switch (in a
“slot” on the switch). There are multiplexers of different capacities and
costs, and each switch port can connect to at most one multiplexer. By
using a multiplexer, multiple users can be connected to a single port
(for example an OC-12 multiplexer can handle 4 users). A backbone
link between two switches occupies a port on each switch. Each port is
installed into a slot on the switch. There is a constraint on the number
of slots at each switch site. The network design must be determined so
that the total traffic requirements are met and the total network cost is
minimized. Chamberland et al. created initial solutions using a greedy
heuristic, which were then improved by a tabu search algorithm where
the neighborhood structure is defined by the states of slots at switch
sites (these states indicate whether a slot is occupied, and if so by what
type of port). The tabu search algorithm was tested on networks with
up to 500 users and 30 potential switch sites. The proposed algorithm
provided results that were, on average, 0.64% and 1.07% from the opti-
mum for the ring and tree topologies, respectively.

D.Berger, B. Gendron, J. Potvin, S. Raghavan, and P. Soriano,
2000. “Tabu search for a network loading problem with mul-
tiple facilities,” Journal of Heuristics, Vol. 6, No. 2, pp. 253–
267.
Berger et al. presented the first tabu search algorithm for a network
loading problem with multiple facilities. (This is the same problem as
in [26], and an example can be seen in Figure 1.20). The neighborhood
of the search space is explored by using the kth shortest path algorithm
to find alternative paths for demand nodes in a given solution. Compu-
tational experiments on networks with up to 200 nodes and 100 demand



38

nodes indicated that tabu search provides solutions better than using
a steepest-descent local search heuristic based on the 1-opt and 2-opt
neighborhoods.

L.A.Cox and J.R. Sanchez, 2000. “Designing least-cost sur-
vivable wireless backhaul networks,” Journal of Heuristics, Vol.
6, No. 4, pp. 525–540.
Cox and Sanchez developed a short-term memory tabu search heuristic,
with embedded knapsack and network flow problems for the design of
survivable wireless backhaul networks. In this problem we need to se-
lect hub locations and types of hubs along with types of links used in
the network so that capacity and survivability constraints are satisfied
and network cost is minimized. The tabu search algorithm solved to
optimality all problems where the optimum is known in less than 0.1%
of time needed to solve the corresponding MIP. On the real-world prob-
lems, this algorithm provided 20% improvement over the previously best
known designs.

M.Vasquez and J.-K. Hao, 2001. “A heuristic approach for
antenna positioning in cellular networks,” Journal of Heuris-
tics, Vol. 7, No. 5, pp. 443–472.
Vasquez and Hao developed a three-step procedure utilizing a tabu
search algorithm for antenna positioning in cellular networks. In this
problem, we need to determine the position, number, and type of anten-
nas at a set of potential locations, while satisfying a set of constraints
and optimizing multiple objectives (minimization of the number of the
sites used, minimization of the level of the noise within the network,
maximization of the total traffic supported by the network, and maxi-
mization of the average utilization of each base station). The authors
developed a heuristic procedure that was successful in finding feasible
solutions for problems where no feasible solution was known previously.

T.G.Crainic and M.Gendreau, 2002. “Cooperative parallel
tabu search for capacitated network design,” Journal of Heuris-
tics, Vol. 8, pp. 601–627.
Crainic and Gendreau developed a parallel cooperative tabu search met-
hod for the fixed charge, capacitated multicommodity flow network de-
sign problem. In this problem we are given a set of demand nodes, and
we need to route all the traffic through links of limited capacity. How-
ever, aside from routing cost, which is proportional to the number of
units of each commodity transported over any given link, there is also
a fixed charge cost for the use of a link. The proposed method is based
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on using multiple tabu search threads, which exchange their search in-
formation through a common pool of good solutions. Computational
experiments indicate that cooperative parallel tabu search outperforms
sequential tabu search algorithms, including the version of tabu search
developed by the authors previously in [12]. (The previous tabu search
algorithm works in combination with column generation, and, in the
earlier paper, was found to significantly outperform other solution ap-
proaches in terms of the solution quality.)

I.Ghamlouche, T. G.Crainic, and M. Gendreau, 2003. “Cycle-
based neighborhoods for fixed-charge capacitated multicom-
modity network design,” Operations Research, Vol. 51, No. 4,
pp. 655–667.
Ghamlouche et al. have defined a new neighborhood structure that can
be used for heuristics for fixed-charge capacitated multicommodity net-
work design. The new neighborhood structure differs from the previous
ones in the sense that moves are implemented on cycles in the network,
instead of individual arcs. More specifically, the proposed neighborhood
structure is based on identifying two paths for a given node pair (thus
identifying a cycle) and deviating flow from one to another path in this
cycle so that at least one currently used arc becomes empty. The explo-
ration of the neighborhood is based on the notion of γ-residual networks,
which together with a heuristic for finding low-cost cycles in these net-
works, is designed to identify promising moves. The new neighborhood
structure was implemented within a simple tabu search algorithm, and
computational experiments on problems with up to 700 arcs and 400
commodities show that the proposed tabu search algorithm outperforms
all existing heuristics for fixed-charge capacitated multicommodity net-
works.

Applications of Genetic Algorithms

L.Davis, D.Orvosh, L. Cox, and Y.Qiu, 1993. “A genetic
algorithm for survivable network design,” in Proceedings of
the Fifth International Conference on Genetic Algorithms, pp.
408–415, Morgan Kaufmann, San Mateo, CA.
Although this paper is more than a decade old, we include it in this
bibliography, since it represents a nice example of how a chromosome
structure can be used to simplify evaluation of chromosomes in prob-
lems with complex constraints/requirements. Davis et al. developed a
GA with a hybrid chromosome structure for the survivable network de-
sign problem where a set of links in the network needs to be assigned a
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bandwidth (capacity) so that all the demand is routed and survivabil-
ity requirements are met (these requirements may impose only a certain
percentage of the traffic be routed in case of a single link failure in the
network). The proposed hybrid chromosome structure contains three
groups of genes designed to reduce the complexity of chromosome eval-
uation with respect to routing and survivability requirements. The first
group is the list of capacities assigned to each link, while the remaining
two groups represent ordered lists (permutations) of traffic requirements
used for the approximate evaluation of the chromosome using greedy
heuristics. Computational experiments indicate that the GA provides
near optimal solutions (obtained by solving an MIP for this problem)
on small problems with 10 nodes and up to 21 links. On the larger
problems, with 17 nodes and up to 31 links, where the optimum is not
known, the GA outperforms greedy heuristics.

C.C.Palmer and A. Kershenbaum, 1995. “An approach to
a problem in network design using genetic algorithms,” Net-
works, Vol. 26 pp. 151–163.
In the optimal communication spanning tree problem (OCSTP) we are
given a set of nodes, flow requirements between pairs of nodes, and an
underlying graph with the cost per unit of flow for each edge. We would
like to design a minimum cost tree network to carry the flow. The cost
of an edge in this tree network is the product of cost per unit flow of
the edge and the total flow (over all demand pairs) carried on that edge
in the tree network design. Palmer and Kershenbaum proposed a set
of criteria that can be used for selection of adequate genetic encoding
for the OCSTP. They discuss applicability of existing encodings (Prüfer
number, characteristic vector, and predecessor encoding), and present
a new type of chromosome encoding called link and node bias (LNB)
that meets desired criteria for encodings to a greater extent. The GA
with the LNB encoding was tested on networks with up to 98 nodes.
The results indicate that the proposed procedure provides results up to
7.2% better than results obtained by pure random search or a previously
developed heuristic for the OCSTP.

Y.Li and Y. Bouchebaba, 1999. “A new genetic algorithm for
the optimal communication spanning tree problem,” in Artifi-
cial Evolution, 4th European Conference, Dunkerque, France,
November 3-5, 1999, Lecture Notes in Computer Science, 1829,
Springer, 2000.
Li and Bouchebaba developed a new genetic algorithm for the optimal
communication spanning tree problem, where a chromosome is repre-
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sented by a tree structure. The genetic operators are specific for the
proposed tree chromosome representation, and work directly on the tree
structure through exchange of paths and subtrees (crossover operators),
or insertion of randomly selected paths or subtrees (mutation operators).
Experiments over a small set of instances on complete graphs with up
to 35 nodes indicate that the proposed GA provides higher quality so-
lutions than previously developed GAs.

H.Chou, G.Premkumar, and C.-H.Chu, 2001. “Genetic algo-
rithms for communications network design–An empirical study
of the factors that influence performance,” IEEE Transactions
on Evolutionary Computation, Vol. 5, No. 3, pp. 236–249.
Chou et. al. looked at the impact of three factors on the performance
of the GA developed for the degree-constrained minimum spanning tree
problem: two forms of genetic encoding (Prüfer and determinant encod-
ing) and different versions of mutation and crossover operators. Com-
putational experiments indicated that, in terms of solution quality, the
best combination of genetic factors is determinant encoding, exchange
mutation (randomly selects two positions in a given chromosome and ex-
change genes), and uniform crossover (a set of positions, called a mask,
is chosen for a chromosome, and their alleles are exchanged with each
other based on the generated positions). The results also indicate that,
among tested factors, genetic encoding has the greatest impact on solu-
tion quality.

F.G. Lobo and D. E.Goldberg. “The parameter-less genetic
algorithm in practice,” to appear in Information Sciences.
Lobo and Goldberg provided an overview of a parameter-less genetic al-
gorithm that was introduced by Harik and Lobo [32]. The notion behind
a parameter-less genetic algorithm is to minimize or eliminate the spec-
ification of parameters for a genetic algorithm. Typically, a significant
amount of testing is necessary to come up with a good choice of values
for GA parameters. The parameter-less genetic algorithm solely uses the
crossover operator. It uses a fixed value for the selection rate and prob-
ability of crossover. These values are shown to comply with the schema
theorem and ensure the growth of building blocks (see [38] for more on
the schema theorem). The parameter-less genetic algorithm continu-
ously increases the population size until a solution of desired quality is
obtained. This is done in a novel fashion, by running the genetic al-
gorithm on multiple populations. Larger number of iterations are run
on smaller populations, while a smaller number of iterations are run on
larger populations (in particular if population a is 2k times larger than
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Type 1 facility
Type 2 facility

Level two group

Figure 1.22. An example of a two-level hierarchical network. Type 1 facilities have
higher capacity than type 2 facilities.

population b, the algorithm runs 4k iterations on population b for every
iteration on population a). When the average fitness of a small popula-
tion is lower than the average fitness of a larger population, the smaller
population is eliminated. The algorithm is run until a user-specified
stopping criteria, is met. The authors illustrate the parameter-less ge-
netic algorithm by applying it to an electrical utility network expansion
problem.

Applications of Simulated Annealing

T.Thomadsen and J. Clausen, 2002. “Hierarchical network
design using simulated annealing,” Technical report, Informat-
ics and Mathematical Modelling, Technical University of Den-
mark, DTU.
Thomadsen and Clausen define a problem in which a minimum cost
hierarchical network has to be designed to satisfy demands between ori-
gin/destination pairs of nodes. In this problem, we are given a set of
different facility types Γ = {1, 2, . . . , L} with varying capacities that
can be installed between a pair of nodes. We are also given the cost
of installing these facilities. We would like to design a minimum cost
hierarchical network with sufficient capacity to route the traffic. The
requirements of a hierarchical network are specified as follows. The net-
work must be connected. Further, each connected subgraph defined by
facilities of type l defines a group of level l. A hierarchical network re-
quires that every group, other than those groups defined by the highest
capacity facility in the network, contains exactly one node that is con-
nected to a higher capacity facility. In other words, a group of level l
contains exactly one node that is connected to a facility with capacity
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greater than that of facility type l. Figure 1.22 provides an example
of a two-level hierarchical network. Thomadsen and Clausen develop a
simulated annealing algorithm that is based on a two-exchange neigh-
borhood and report solutions with up to 100 nodes and two levels in the
network hierarchy.

K.Holmberg and D.Yuan, 2004, “Optimization of Internet
protocol network design and routing,” Networks, Vol. 43, No.
1, pp. 39–53.
Holmberg and Yuan developed a simulated annealing (SA) heuristic for
the network design and routing of Internet Protocol traffic. In this prob-
lem, we need to determine both the topology of the network and the ca-
pacity of the links so that the total network cost is minimized. (In this
version of the problem, two types of costs are encountered: link costs
represented by a fixed charge and linear capacity expansion cost, and a
penalty cost for lost demand.) Computational experiments on networks
with up to 24 nodes and 76 arcs have shown that, in general, SA provides
results as good as a MIP-based sequential procedure developed in the
same paper. SA, however, proves to be much better in instances with a
large number of commodities.

Other Applications

F.Altiparmak, B. Dengiz, and A.E. Smith, 2003, “Optimal de-
sign of reliable computer networks: A comparison of meta-
heuristics,” Journal of Heuristics, Vol. 9, pp. 471–487.
Altiparmak et al. looked at the design of reliable computer networks,
where network topology is fixed, i.e., the node locations and links con-
necting nodes are already specified. However, the type of equipment
(differing in reliability and cost) used at each node and link needs to
be determined, so that subject to a given budget, the total network
reliability is maximized. This paper provides a comparison between
three heuristic search techniques—steepest descent, simulated anneal-
ing, and genetic algorithm—and hybrid forms of SA and GA (referred
to as seeded SA and GA), where both SA and GA use the best solution
found by steepest descent at the initial stage of the search. Addition-
ally, a memetic algorithm, a GA with steepest descent applied to all
new solutions generated in the reproduction phase, was tested against
other proposed heuristic search techniques. Computational experiments
performed on graphs with up to 50 nodes and 50 links indicated that SA
and GA outperform steepest descent, while seeded SA and GA provide
only minor improvements over the original SA and GA. The memetic
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algorithm, on the other hand, turned out to be the best heuristic search
technique for this problem in terms of solution quality.

G.Carello, F. Della Croce, M. Ghirardi, and R. Tadei, “Solv-
ing the hub location problem in telecommunication network
design: a local search approach,” to appear in Networks.
Carello et al. developed a two-step solution procedure for the hub lo-
cation problem in telecommunication networks. In this problem, we are
given a set of access nodes with certain traffic demand, and a set of
candidate transit nodes that are used to interconnect the access nodes.
The selected transit nodes represent a fully connected backbone network,
and the access nodes along with the links connecting these nodes to the
backbone network form the tributary network. The costs encountered
in this problem include fixed costs for opening a given transit node and
installing the necessary node equipment, and the connection costs for all
links deployed in the network. More formally, the network hub location
problem can be defined as follows: Given a set of access nodes, a set
of candidate transit nodes, and a traffic matrix for each type of traffic,
select a set of transit nodes and route all the traffic in the network so
that all capacity constraints are satisfied and the total network cost is
minimized. In the first step of the solution procedure, where only transit
nodes are selected, four heuristic procedures were proposed: local search,
tabu search, iterated local search, and a random multistart procedure.
For the second step, a local search procedure with a choice of limited
or complete neighborhood search was proposed. Computational experi-
ments over 19 test instances indicated that a version of tabu search with
quadratic neighborhood and with a complete neighborhood search in the
second step produces the best results with average error of 0.2%.

8. Conclusion
The number of applications of heuristic search approaches to network

design problems in the literature has significantly increased over the last
decade. There are several reasons for this. First, these procedures are
often simpler to implement compared to more complex exact procedures.
Second, researchers have made significant advances in developing neigh-
borhoods and searching effectively through them. Third, there have
also been significant advances in the design of genetic algorithms, and
in particular in combining genetic algorithms with other heuristic search
procedures. Finally, there has been a rapid and steady increase in the
average processor speed of desktop/personal computers. Due to all of
these factors, when artfully applied, heuristic search techniques enable
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us to obtain near-optimal (i.e., high-quality) solutions for difficult prob-
lems where existing exact procedures fail or require prohibitively long
computation times.

In this chapter, we have tried to provide specific guidelines applicable
to a wide class of network design problems. First, we have described
some general guidelines, where we have tried to cover a broad range
of solution approaches, starting from the most basic ones to the more
complex procedures such as local search, steepest descent, GRASP, sim-
ulated annealing, tabu search, and genetic algorithms. We have paid
special attention to guidelines for using genetic algorithms in network
design, since in our experience, this heuristic search technique can pro-
vide very good results for this class of problems. To illustrate the ap-
plication of GAs, we have provided four examples of GAs applied to
different network design problems. These four applications differ in the
complexity of the GA design, which varies with the nature of the prob-
lem. Our sample applications show that for certain problems, such as
MLST and PCGMST, very simple genetic algorithms can provide excel-
lent results. More complex design problems, such as the Euclidean non-
uniform Steiner tree problem and MLCMST, on the other hand, require
more complex GA designs tailored to specific problem characteristics.
Finally, we have provided an annotated bibliography that includes a se-
lection of recent applications of heuristic search techniques for numerous
network design problems found in the literature.

As a final remark, we would like to emphasize once again that al-
though heuristic search techniques can be a powerful tool for network
design problems, the degree to which they are successful depends upon a
careful selection of procedures used in the algorithm design. In order to
develop a good algorithm, one must keep in mind the specific properties
of a particular problem as well as general guidelines for the intelligent
application of heuristics.
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