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The United States (U.S.) Department of Health and Human Services is interested in increasing geographical

equity in access to liver transplant. The geographical disparity in the U.S. is fundamentally an outcome of

variation in the organ supply to patient demand (s/d) ratios across the country (which cannot be treated

as a single unit due to its size). To design a fairer system, we develop a nonlinear integer programming

model that allocates the organ supply in order to maximize the minimum s/d ratios across all transplant

centers. We design circular donation regions that are able to address the issues raised in legal challenges to

earlier organ distribution frameworks. This allows us to reformulate our model as a set-partitioning problem.

Our policy can be viewed as a heterogeneous donor circle policy, where the integer program optimizes the

radius of the circle around each donation location. Compared to the current policy, which has fixed radius

circles around donation locations, the heterogeneous donor circle policy greatly improves both the worst

s/d ratio and the range between the maximum and minimum s/d ratios. We found that with the fixed

radius policy of 500 nautical miles (NM), the s/d ratio ranges from 0.37 to 0.84 at transplant centers, while

with the heterogeneous circle policy capped at a maximum radius of 500 NM, the s/d ratio ranges from

0.55 to 0.60, closely matching the national s/d ratio average of 0.5983. Our model matches the supply and

demand in a more equitable fashion than existing policies and has a significant potential to improve the liver

transplantation landscape.
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List of highlights:

1. Problem specification: This paper focuses on improving geographic equity in access to liver

transplant in the United States (U.S.). Prior organ distribution policies have resulted in great

disparities in the organ supply to candidate demand (s/d) ratios across transplant centers, causing

large differences in waiting times and mortality rates across them.

2. Core insight: A fixed radius donor circle policy, where transplant centers within a fixed dis-

tance from a donor hospital get priority access to livers, does not reduce the variation in the s/d

ratio across transplant centers. Rather, a customized heterogeneous approach that accounts for

both the organ supply and candidate demand locations and adjusts the radii of the donor cir-

cles more effectively addresses geographic equity by equalizing the s/d ratios across all transplant

centers to closely match the national s/d ratio.

3. Practical implications: Explicitly accounting for the local variation in the organ supply and

candidate demand can lead to further improvements in organ distribution policy—which will ulti-

mately result in robust policies promoting greater equity for transplant candidates across the U.S.
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Figure 1 Pre February 4, 2020 policy divided the U.S. into 11 regions (left), which comprised 58 DSAs (right).

1 Introduction

In 2019, 8,896 liver transplants took place in the United States (U.S.), while 12,941 patients were

added to the waiting list. Unfortunately, in 2019, on average three people in the U.S. died every

day awaiting a liver transplant, for a total of 1,202 lives lost. Because demand for liver transplant

outstrips supply, allocating deceased donor livers judiciously and justly is extremely important.

For 30 years (from 1989 to Feb. 4, 2020) the transplant allocation policy divided the U.S. into

58 Donation Service Areas (DSAs), which were grouped into 11 geographical regions (Figure 1).

Livers were offered to candidates in a DSA in decreasing order of medical urgency, quantitatively

measured by the Model for End-stage Liver Disease (MELD) score (the Pediatric End-Stage Liver

Disease (PELD) severity score, a measure calculated slightly differently, is used for patients ≤ 12

years old). The MELD score reflects the probability of death within a three-month period and

ranges from 6 to 40; a higher score indicates a greater mortality risk (Freeman et al. 2002). More

serious patients are assigned Status 1A and 1B, and their number is fewer than 50 nationwide at

any time.

By law, the deceased donor organs are national resources in the U.S. The U.S. government created

the Organ Procurement and Transplantation Network (OPTN) in 1984 to coordinate a nationwide

transplant system and optimize the usage of the limited resource of donor organs for transplants.

Since 1986, the United Network for Organ Sharing (UNOS), a nonprofit private organization, has

overseen OPTN operations. A key regulatory framework guiding organ transplantation is the “Final

Rule,” which was adopted in 1998 by the Department of Health and Human Services (HHS) to

establish a more detailed framework for OPTN’s structure and operations (HHS 1998). The Final

Rule requires that policies shall not be based on the candidate’s place of residence or place of listing,

except to the extent required by the other conditions of the Rule.
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Geographic inequity in access to liver transplantation across DSAs is well documented in the

literature (see Yeh et al. 2011). Indeed, as early as 2008, an HHS Advisory Committee on Transplan-

tation recommended that organ allocation be evidence-based and not on the arbitrary boundaries

of the DSAs. In 2012, the OPTN board adopted a strategic plan that included reducing geographic

disparities in access to transplantation. Despite implementation in 2013 of broader organ sharing

in a region for candidates with MELD scores ≥ 35, geographic inequities remained in the system.

The U.S. Scientific Registry of Transplant Recipients’ (SRTR’s) Liver Transplant Waiting List

Outcomes Tool1 (built on historical data from 2017 to 2019) shows that for waitlisted candidates

in Los Angeles with MELD scores in the range of 25-29, only 15% received a transplant within 90

days, while for candidates in Indianapolis (with MELD scores in the range of 25-29), 72% received

a transplant within 90 days. The DSA/Region allocation policy resulted in significant disparities

even for candidates on transplant lists in close proximity. For example, SRTR’s Liver Transplant

Waiting List Outcomes Tool shows that for waitlisted candidates in New York City with MELD

scores in the range of 25-29, only 15% received a transplant within 90 days, while for similar candi-

dates in Newark, New Jersey, just 15 miles away, 41% received a transplant within 90 days. Because

MELD scores directly correlate with the probability of death in the absence of an organ transplant

in the next 90 days, different transplant wait times for candidates with the same MELD score

across DSAs imply (i) significantly different mortality rates for candidates with the same MELD

score in different DSAs, and (ii) significant variation in the median MELD score at transplant

(MMaT).2 Indeed, MMaT variance has typically been used by UNOS as a key metric in evaluating

a proposal’s effectiveness in mitigating geographic disparity (i.e., a lower value of MMaT variance

indicates less disparity).

In November 2017, New York City resident Miriam Holman (a patient with a rare form of

pulmonary hypertension for which there is no medical therapy, and which is rapidly fatal without

lung transplantation) filed a lawsuit (hereafter, “lung lawsuit”) against HHS.3 Due to the particular

lung allocation policy in place at that time, a donor lung could become available across the river

in New Jersey (less than four miles away). However, because the location of the donor lung was in

a different geographical DSA, it had to be offered to every candidate waiting for lungs in that New

Jersey DSA (even to candidates who were much farther away and far less medically critical) before

it could be offered to Holman (Glazier 2018). In July 2018, six liver transplant waiting list patients

in New York, California, and Massachusetts filed a lawsuit (hereafter, “liver lawsuit”) against

1 https://www.srtr.org/reports-tools/waiting-list-calculator/, accessed June 26, 2020.

2 This is seen for example in 2016 data (Kim et al. 2018) where the highest MMaT is 39 and the lowest MMaT is 20.

3 Miriam Holman v. HHS, (S.D.N.Y 17-CV-09041).
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HHS.4 The liver lawsuit pointed out the wide geographical variability in the median MELD scores

in recipients for deceased donor transplants, arguing that the place of residence largely determines

the chances of one’s survival in the existing policy.

To address these issues, in June 2018, the UNOS board (based on the recommendations of a

Geography Committee formed in December 2017) adopted the following set of principles to guide

future organ transplant policy relating to the geographic aspects of organ distribution (which were

also identified as being consistent with the final rule).

1. Reduce inherent differences in the ratio of the donor supply and demand across the country.

2. Reduce travel time expected to have a clinically significant effect on ischemic time and organ

quality.

3. Increase organ utilization and prevent organ wastage.

4. Increase efficiencies of donation and transplant system resources.

The Geography Committee identified three potential distribution frameworks that fit with these

four principles: (1) fixed distance from the donor hospital, (2) mathematically optimized bound-

aries, and (3) continuous scoring (candidates to be ranked on the offer list on a combination of

their clinical characteristics and proximity to a donor). 5

Following public comment, on December 3, 2018, the UNOS board adopted an Acuity Circle

policy (an implementation of the fixed distance from the donor hospital framework that we discuss

in Section 2.2). Although there were legal challenges and political pressures from several quarters

to maintain the existing system, the new Acuity Circle policy was implemented on May 14, 2019.

However, within a day, on May 15, 2019, a federal court issued an injunction, and UNOS was

required to revert to the prior system while legal challenges to the policy were pending. On January

16, 2020, the federal court reversed itself and decided not to keep the injunction in place while the

case was pending. Subsequently, the Acuity Circle policy was once again implemented again on

February 4, 2020.

In this paper, we use UNOS’s stated principle of reducing inherent differences in the ratio of the

supply to demand (s/d) as our objective explicitly within a mathematical optimization framework

to design heterogeneous sized areas around the donation locations. One approach to reduce inequity

is through the central distributive principle, proposed by Rawls (1971): the least well-off group

in the society should be made as well off as possible. We use this maximin principle to design

heterogeneous sized areas that maximize the minimum value of the s/d ratio across all transplant

4 Cruz et al. v. HHS, (S.D.N.Y 18-CV-06371).

5 https://optn.transplant.hrsa.gov/media/2506/geography_recommendations_report_201806.pdf, accessed
April 30, 2022.
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centers (or DSAs). We then apply a secondary optimization to minimize the disparity between the

transplant centers (or DSAs) with the highest and lowest s/d ratios.

Our mathematical optimization model can be applied using zip codes or DSAs as the geo-

graphical units. When using zip codes as the geographical units, the model may be viewed as a

heterogeneous radii circle policy (as compared to a fixed radius circle policy6). When using DSAs

as the geographical units, the model may be viewed as a type of neighborhood model (Kilambi

and Mehrotra 2017), where the neighborhood around a DSA is somewhat circular in shape.

Without organ sharing among DSAs, we found that the s/d ratio ranges from 0.31 to 1.98. With

500 nautical-mile (NM) fixed circles, the s/d ratio improves and ranges from 0.37 to 0.84. We show

that when heterogeneous circles are used around the donation zip codes, the s/d ratio ranges from

0.55 to 0.60, meaning that there is a much lower disparity in organ access among the transplant

centers. Further, when we examine the s/d ratio disparity for transplant centers that are close to

one another (specifically, within 150 NM of each other) the heterogeneous circle policy reduces the

s/d ratio disparity to one-fourth compared to the fixed 500 NM circle policy.

We ran simulations with SRTR’s Liver Simulated Allocation Model (LSAM, version 2014) using

historical patient and organ donor data. The version of the tool available to us was based on

DSAs. Hence, we compared our optimized geographical neighborhoods using DSAs. The results

show that in comparison to the prior OPTN 11 region policy (in place until February 4, 2020),

an allocation policy based on our optimized heterogeneous circular neighborhoods (around DSAs),

with a maximum radius of 500 NM and full regional sharing of all organs with MELD scores ≥ 15,

drastically reduces the variance of MMaT across DSAs (from 13.66 to 2.00) and average annual

deaths (from 3,745 to 3,568), for a modest increase in average travel distance (from 199 NM to 258

NM).

A key policy insight is that the one-size-fits-all framework (i.e., the currently proposed Acuity

Circle policy) approach taken by UNOS does not adequately address the problem of reducing

differences in the ratio of the donor supply to demand across the country. Rather, a customized

approach that accounts for where the organ supply and demand occur and adjusts radii of the

circles more effectively addresses UNOS’ stated goal of equalizing s/d ratios. The remainder of the

paper is organized as follows. In the next section, we give a brief overview of the liver allocation

system in the U.S., and review proposals and related research. Section 3 presents our optimization

methodology. Section 4 describes our findings and projected outcomes. Section 5 summarizes and

provides concluding remarks.

6 In a fixed radius circle policy, the radii of the circles around the donor hospitals are identical, whereas in a heteroge-
neous radii circle policy, the radii of circles around the donor hospital can take different values. We drop radius/radii
and refer to them as a fixed circle and a heterogeneous circle policy.
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Sequence # Candidates that are within: And are:
1 OPO’s region Adult status 1A or pediatric status 1A/1B
2 OPO’s region MELD/PELD ≥ 35
3 OPO’s DSA MELD/PELD ≥ 15
4 OPO’s region MELD/PELD ≥ 15
5 Nation Adult status 1A or pediatric status 1A/1B
6 Nation MELD/PELD ≥ 15
7 OPO’s DSA MELD/PELD ≤ 15
8 OPO’s region MELD/PELD ≤ 15
9 Nation MELD/PELD ≤ 15

Table 1 Liver Allocation Policy (Share 35) prior to February 4, 2020

2 Liver Allocation Policy and Literature Review

UNOS supervises the transplantation network in the U.S. Its primary responsibilities are to manage

the national transplant waiting list, match organs from deceased donors to candidates, establish

medical criteria for allocating organs, facilitate organ distribution, frame equitable policies, etc.

Some of the main UNOS members are the 142 liver transplant centers and Organ Procurement

Organizations (OPOs) in the 58 DSAs. The OPO coordinates the local procurement of deceased

donor organs and allocation in a DSA.

Each transplant center evaluates patients and adds candidates to the waitlist. The medical data

about the candidates are shared with UNOS. These pooled data of candidates across all transplant

hospitals are constantly updated when new candidates get added, and existing candidates are

either removed or their medical conditions (e.g., MELD scores) are updated. When a deceased

donor organ becomes available, the OPO sends medical data about the organ donor to UNOS.

Subsequently, the UNOS matching system compares the donor information with the candidate

pool to rank candidates for the organ offer as per the allocation policy. Upon receiving an offer,

the transplant surgeon or physician, in consultation with the candidate, decides whether to accept

the offer.

2.1 Share 35 Policy

In the previous allocation policy (Share 35) in place from June 18, 2013, until February 4, 2020,

deceased donor livers were offered hierarchically to candidates in decreasing order of the MELD

scores within each hierarchy, according to the priority list in Table 1. First, an organ was offered to

Status 1A and 1B candidates in the region, followed by candidates with MELD scores ≥ 35. After

that, candidates with MELD scores between 15 and 35 in the OPO’s DSA were preferred over

candidates outside the DSA. Next in the hierarchy were candidates with MELD scores between 15

and 35 in the OPO’s region, followed by candidates with MELD scores between 15 and 35 outside

the OPO’s region. Finally, candidates with MELD scores ≤ 15 in the DSA were preferred over
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Figure 2 Lower supply to demand (s/d) ratios at a DSA (left) correspond to a higher MMaT at the DSA

(right). The time period of analysis is from July, 2013 to June, 2017.

candidates with MELD scores ≤ 15 outside the DSA but in the region, who in turn were preferred

over candidates with MELD scores ≤ 15 outside the region.

Due to differences in demographics, disease incidence, and mortality leading to organ donations

among the DSAs, there was a huge disparity in the s/d ratios across the DSAs. Figure 2 shows the

wide variability in the s/d ratio (left) and an inverse relationship of this variability with observed

MMaT scores (right). The s/d ratios (at DSAs) varied from 0.31 in NYRT (a DSA in New York) to

1.98 in FLWC (a DSA in Florida). This disparity primarily drove the differences in MMaT among

the DSAs. In a study by Wey et al. (2018), the s/d ratios in a DSA were found to be associated

with MMaT in DSAs (r=−0.56; P < 0.001).

2.2 Current Policy: Acuity Circles

This policy progressively shares organs in circles of radii 150 NM, 250 NM, and 500 NM around the

donor hospital, with the following hierarchy: (1) Status 1 candidates within 500 NM; (2) candidates

with MELD scores ≥ 37 within 150 NM, then 250 NM, then 500 NM; (3) candidates with MELD

scores ≥ 33 within 150 NM, then 250 NM, then 500 NM; (4) candidates with MELD scores ≥ 29

within 150 NM, then 250 NM, then 500 NM; (5) candidates with MELD scores ≥ 15 within 150

NM, then 250 NM, then 500 NM, and then nationally.7 This is a “one-size-fits-all” policy because

it does not account for the organ arrival rate, the candidate waiting list, or the distances of the

transplant centers from a donor hospital.

7 https://unos.org/policy/liver-distribution/, accessed December 1, 2021.
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2.3 Related Research

Redistricting is a problem that occurs frequently in multiple domains (e.g., political redistrict-

ing, school redistricting, and sales territory assignments) where a finite, denumerable set of non-

overlapping geographical units are aggregated into regions/districts subject to some criteria. Hess

et al. (1965) and Garfinkel and Nemhauser (1970) introduced the use of optimization techniques for

political redistricting. Zoltners and Sinha (1983) discuss an application of redistricting in sales ter-

ritory assignments, and Caro et al. (2004) discuss school redistricting using integer programming.

Much of the redistricting literature focuses on political redistricting (see Gopalan et al. 2013, Kim

and Xiao 2017, Ricca et al. 2013). Two important considerations in redistricting problems are the

contiguity and compactness of the districts. In this regard, Shirabe (2009) proposed a flow-based

model for contiguity constraints, which has been typically used in subsequent integer programming

approaches. However, contiguity constraints make redistricting problems notoriously hard to solve

exactly (see Kim and Xiao 2017, Ricca et al. 2013).

Focusing on transplants, and disregarding geographical equity for the moment, Kong et al.

(2010) studied the problem of maximizing efficiency by maximizing total intraregional transplants

by redesigning of the liver allocation regions. They formulate the problem as a set-partitioning

problem and use a branch-and-price algorithm to approximate solutions. Stahl et al. (2005) consider

geographical equity as measured using intraregional transplant rates in their objective function

along with efficiency (measured by total intraregional transplants), but they restrict their regions

to contain up to eight DSAs due to computational challenges. Extending their work, Demirci et al.

(2012) developed a branch-and-price algorithm to incorporate a larger set of potential regions

and explored the efficient frontier in a trade-off between efficiency and geographical equity. Their

metric of geographical equity maximizes the minimum in-district viability-adjusted transplant rates

per waiting list candidate, which is sensitive to the number of waiting list patients added by

the transplant centers, and thus, is problematic. For low-MELD patients, the survival benefit of

transplantation is minimal (Merion et al. 2005), and the chances of receiving an organ vary across

geographies. Consequently, the transplant centers differ in their practices of adding low-MELD

patients to the waiting list.

Gentry et al. (2015) used optimization to reorganize DSAs into regions/districts to reduce geo-

graphical disparity. Their objective was to minimize the sum of the absolute differences between

the number of deceased-donor livers recovered in each district and the ideal number of livers that

would be offered in each district if each liver was given to the medically most urgent candidate

in the country. Working closely with the liver committee of UNOS, they proposed eight-district

and four-district (reorganized DSA) maps. The proposed maps were under active consideration by



10

Figure 3 Illustration of the difference between Regions/Districts and neighborhoods. (a) Let DSAs A, B, C and

D form a region or district. They all share with each other. (b) With the neighborhood displayed, the neighborhood

of A consists of DSAs A, B and C. Therefore, A shares only with A, B, and C. Similarly, B shares with B and D; C

shares with C and D; and D shares with A, B, C, and D.

UNOS from 2015 to 2017. However, ultimately after significant debate and public comment, they

were not adopted.

Kilambi and Mehrotra (2017) introduced the neighborhood framework in organ allocation as a

way to provide for broader sharing and improve geographic equity. Each DSA has its own neighbor-

hood, which consists of a unique set of other DSAs (or neighbors) with which it shares its organs.

A DSA can be part of multiple neighborhoods; therefore, the neighborhoods can be overlapping,

which makes it difficult to represent all neighborhoods on a single map. Interconnectivity and

overlap among neighborhoods provide resilience to supply and demand uncertainty. The neighbor-

hood framework reduces to redistricting when all the DSAs in a neighborhood have the identical

neighborhood. Thus, the redistricting framework can be viewed as a special case of a neighbor-

hood framework. Figure 3 illustrates the difference between regions/districts and the neighborhood

framework. Using the neighborhood framework, Kilambi and Mehrotra (2017) developed an opti-

mization model to design DSA neighborhoods to minimize the absolute deviation of the s/d ratios

across neighborhoods from the national average.

Ata et al. (2017) used fluid approximation and game theory to show that multiple listings (a

patient is listed at more than one transplant center, potentially in another DSA or region so that

he/she can get organ offers from multiple places) can reduce geographical disparity in kidney

allocation. However, fewer than 2% of patients waiting for a liver transplant multiple list (on April

14, 2021, the OPTN website shows that only 181 out of 11868 candidates are multiple listed).

Bertsimas et al. (2020) suggest the use of tradeoff curves to assess the three organ distribution

frameworks identified by the Geography Committee. Running a large number of simulations for the

three distribution frameworks, they plot tradeoff curves of efficiency (measured as average travel

distance) versus fairness (measured as deaths or variance of MMaT). For a given value of the
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efficiency metric, the tradeoff curve then identifies the policy with the greatest fairness. However,

they did not consider the neighborhood or heterogeneous circle distribution frameworks in their

study. In a recent study, Ata et al. (2021) analyze a broad class of ranking policies in kidney

allocation using an analytical framework. They find that allowing different patients’ ranking rules,

depending on the quality of the kidney, can reduce organ wastage.

There are two methods of organ donation: (1) living donation and (2) deceased donation. Alagoz

et al. (2004) study the optimal timing of living-donor liver transplantation when the patient is

either ineligible or has decided not to receive organs from deceased donors. They ignore the risk to

living donors in their model. Ergin et al. (2020) model liver exchange as a market-design problem,

where they account for risk to donors and compatibility issues. Using data from South Korea,

they show that their proposed mechanism can increase the number of living-donor transplants by

30%. However, deceased donation has been contributing to greater than 95% of liver donations in

the last 15 years in the U.S. Unlike living donation, which can be arranged privately between a

patient-donor pair, deceased donor organs are considered national resources (whose allocation is

determined by government policy). We focus on deceased donation in this study; the parameters

used in our model and their policy implications are likely to remain unaffected with recent promising

developments in living donation.

3 Model Formulation

Consistent with UNOS’ stated principles, our approach is to design an organ distribution policy

that equalizes s/d ratios across transplant centers, and thus, mitigates geographical disparities. We

start by aggregating the historical supply and demand of organs by geographical location for the

period of study. We assume that the distribution of organ quality (Appendix A compares transplant

organ quality on a four-year dataset used in our study; we find that there are no significant

differences in the distribution of organ quality at recovery across the different regions) and the

patient’s health characteristics are similar across donor hospitals and transplant centers. While

there are certainly differences currently in the patient health characteristics from state to state

(e.g., at present, California has a higher proportion of high-MELD candidates than Tennessee),

this is largely a function of accumulated disparity over the years; in steady state, the distribution

of MELD scores should be similar.

We formulate an Integer Programming model (IP) that uses a neighborhood framework. Each

supply location (e.g., a DSA, zip code, or donor hospital, depending on the context) is assigned a

unique set of demand locations (a DSA or transplant center), which is referred to as its neighbor-

hood. In a setting where the geographical units of supply and demand are DSAs, a neighborhood

of a DSA consists of other DSAs (including itself) with which it shares its organs.
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Figure 4 Comparing our s/d ratio measure with that of Kilambi and Mehrotra (2017). Their measure

artificially inflates the s/d ratio.

Kilambi and Mehrotra (2017) pioneered the idea of defining neighborhoods for DSAs. However,

their definition of a supply-to-demand ratio at a DSA is somewhat problematic. They model the s/d

ratio of a DSA as the ratio of the total supply to the total demand in the DSA’s neighborhood. In

other words, they treat all DSAs in that neighborhood as a single unit. However, a DSA can also be

part of another neighborhood, which results in the artificial inflation of the s/d ratio. To illustrate,

consider three DSAs A (Supply: 1, Demand: 5), B (Supply: 10, Demand: 6), and C (Supply: 4,

Demand: 15), as shown in Figure 4. A shares with B and receives from B; B shares with and receives

from both A and C; and C shares with B and receives from B. The neighborhood of A consists of

A and B; the neighborhood of B consists of A, B, and C; and the neighborhood of C consists of B

and C. Kilambi and Mehrotra (2017) compute the s/d ratios of A, B, and C as 1.00 (11/11), 0.58

(15/26), and 0.67 (14/21), respectively. However, in aggregate, the s/d ratio for this three-region

system is only 0.58! Further, their objective function is to minimize the absolute deviation of the

s/d ratios from a target value (the national average), which effectively treats deviations below the

average identically to deviations above the average. Unfortunately, locations with deviations below

the average (i.e., lower s/d ratios and higher MMaT scores) have poorer outcomes (greater chances

of dying while waiting for a transplant) than locations with deviations above the average. Thus, in

a setting where the desire is to minimize disparities, it does not seem appropriate to treat these two

deviations identically. By maximizing the worst s/d ratio, our primary focus is on minimizing the

deviation below the national average. Finally, we note that our model does not require symmetric

organ sharing (which they enforce), giving more flexibility in optimization.

3.1 Supply-Demand Ratio Calculation

First, we define our s/d ratio measure. Recall that we assumed the MELD scores of candidates

across geographies are independent and identically distributed (i.i.d.); and when an organ is recov-

ered, all locations in the neighborhood are treated alike. For a given demand location j in the
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Notation Description
i∈ I = {1, ...,Nsup} Supply locations (e.g., a DSA, zip code, or donor hospital)
j ∈J = {1, ...,Ndem} Demand locations (e.g., a DSA or transplant center)

Parameters:
si Number of livers from deceased donors recovered (or supply) at i
dj Number of incident waiting list additions (or demand) at j
τij Distance between locations i and j
τmax Maximum permissible distance from a supply location to a demand

location
cj Number of transplant centers in demand location j

c
(r)
i Number of transplant centers that are ≤ r distance units away from

supply location i
cmin Minimum number of transplant centers with which a supply loca-

tion must share its organs
λ∗[S−1] Minimum s/d ratio value to be used in Stage 2 optimization

s
(r)
ij Apportioned share of organs from i to j when the farthest demand

location in i′s neighborhood is r units away
Decision variables:
xij (General model) 1 if i shares its organs with j, and 0 otherwise

xir (Set-partitioning model) 1 if the farthest member in the neighborhood of i is r units away
from i, and 0 otherwise

λ Minimum s/d ratio for an allocation
β Maximum s/d ratio for an allocation

Table 2 Model Notation

neighborhood of supply location i, we model the expected supply received (by j) from i to be

proportional to j′s demand over the total demand competing for i′s supply. Using this expected

allocation of the supply in the example in Figure 4, we find that 5/11 units of the supply from

A are allotted to A, and 6/11 units of the supply from A are allotted to B. Similarly, (5/26)×10,

(6/26)×10, and (15/26)×10 units of the supply from B are allotted to A, B, and C, respectively.

Finally, (6/21)×4 units of the supply from C are allotted to B, and (15/21)×4 units of the supply

from C are allotted to C. Dividing the expected supply provided to each location by its demand,

we find the s/d ratios of 0.47, 0.67, and 0.58 for A, B, and C, respectively, with our measure. Using

the notation described in Table 2, we formally calculate,

Expected supply from i to j =
dj∑Ndem

k=1 dk xik

si xij

To determine the overall supply-to-demand ratio, we first sum the expected supply over all supply

locations and then divide by j′s demand, dj giving:

s/d ratio at j =

Nsup∑
i=1

1∑Ndem
k=1 dk xik

si xij

We note that the way we calculate the expected s/d ratio does not account for organs that a

DSA may receive only due to national sharing. However, these organs are generally a very small

fraction (less than 4% in a four-year dataset used in our study) and should not significantly impact

the s/d ratios realized in practice.
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Figure 5 Illustration of sharing and receiving contiguity. If x14 = 1, with sharing contiguity, x12 = x13 = 1; and

with receiving contiguity x24 = x34 = 1.

3.2 General Model

We now describe our model, which solves the problem in two stages. In Stage 1, we apply the

maximin equity principle to maximize the performance of the worst demand location (i.e., we

maximize the value of the lowest s/d ratio across all demand locations). In Stage 2, we reduce the

disparity among the different demand locations. To do this, we minimize the disparity between the

best and worst demand locations, while ensuring the s/d ratio of the worst demand location remains

at the optimum value obtained from the Stage 1 optimization. We now present the Mixed-Integer

Linear Programs (MIPs) for the different stages.

3.2.1 Stage 1 Formulation

In Stage 1, we seek to maximize the s/d ratio of the worst demand location.

[S-1] Maximize λ (1)

subject to: λ≤
Nsup∑
i=1

1∑Ndem
k=1 dk xik

si xij ∀j ∈J (2)

xij τij ≤ τmax ∀i∈ I, j ∈J (3)

xij = 1 ∀i= j, i∈ I, j ∈J (4)
Ndem∑
j=1

cjxij ≥ cmin ∀i∈ I (5)

Contiguity constraints (6)

xij ∈ {0,1} ∀i∈ I, j ∈J (7)

Constraint (2) models λ as the lower bound of the s/d ratios across all the demand locations, and

the objective is to maximize this lower bound. Constraint (3) limits the size of the neighborhood

(by limiting how far an organ can be transported for transplantation); constraint (4) implies that



15

if a supply-and-demand location coincide (e.g., a DSA or zip code that has both a donor hospital

and a transplant center), it must share with itself; and constraint (5) ensures that there are at

least cmin transplant centers in a neighborhood.8 We also include contiguity constraints to ensure

that the designed neighborhoods are contiguous and somewhat compact in shape. This is enforced

by an adjacency matrix, which describes locations that are geographically adjacent to each other,

and two types of contiguity constraints. Sharing contiguity ensures that if location r supplies

organs to location t (which is not adjacent to it), then all locations between r and t also receive

organs from location r. Receiving contiguity ensures that if location r supplies organs to location

t (which is not adjacent to it), then all locations between r and t also supply organs to location t.

Figure 5 illustrates receiving and sharing contiguity, ensuring that if location 1 shares its organs

with location 4, locations 2 and 3 also share their organs with location 4, and locations 2 and 3

also receive organs from location 1. Appendix B describes flow-based mathematical constraints,

applying Shirabe (2009)’s approach, which can be used to enforce sharing and receiving contiguity

with any geographical shapes, as well as a linearization of constraint (2) in the nonlinear integer

programming model [S-1].

3.2.2 Stage 2 Formulation

In Stage 2, we minimize the maximum absolute difference of the s/d ratios among demand locations.

This is achieved by constraining the lowest s/d ratio value to be greater than or equal to the Stage

1 objective λ∗[S−1], and by minimizing the maximum s/d ratio value across all demand locations.

[S-2] Minimize β

subject to: β≥
Nsup∑
i=1

1∑Ndem
k=1 dk xik

si xij ∀j ∈J (8)

λ≥λ∗[S−1] (9)

All constraints from [S-1] (10)

The optimal values of xij obtained by optimizing [S-1], followed by [S-2], are used to construct the

new optimized geographical scheme.

8 Deceased-donor livers vary in quality, and marginal livers are more likely to be used and less likely to be discarded
when more competition exists among transplant centers (Halldorson et al. 2013, Garonzik-Wang et al. 2013). Thus
UNOS requires that a minimum number of transplant centers be in contention for organs from a supply location.
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Figure 6 Illustration of circular contiguity: If a neighborhood is r units in radius around the supply location,

then all demand locations within r units must be in the neighborhood.

3.3 Circular Contiguity and a Set-Partitioning Model

One of the chief complaints in the liver and lung lawsuits was that a candidate receiving the

transplant organ may be geographically farther away from the donated organ than another sicker

candidate. In other words, neighborhood boundaries that allow an organ to be transported farther

away to a less sick candidate than a closer sicker candidate (because the sicker candidate is outside

the neighborhood) goes against generally accepted perceptions of fairness. This notion suggests

that we consider (roughly) circular contiguity for neighborhoods. If the radius of a neighborhood

is r units around the supply location, then all demand locations within r units away are in the

neighborhood (Figure 6).

Circular contiguity allows for a more computationally tractable reformulation of the previous

model. For a neighborhood of a given radius r, one can easily calculate (a priori) the amount of

supply allocated to each demand location in the neighborhood. This enables us to reformulate

[S-1] and [S-2] linearly as Set-Partitioning Problems, which also makes them scalable. In the set-

partitioning formulation, xir is a binary decision variable that takes a value 1 if the radius of the

neighborhood of i is r units (all demand locations ≤ r units from i are part of the neighborhood),

and 0 otherwise.

3.3.1 Stage 1 Formulation

[SP-1] Maximize λ (11)

subject to: λ≤
Nsup∑
i=1

∑
r∈Ri

xir s
(r)
ij

dj
∀j ∈J (12)∑

r∈Ri

xir = 1 ∀i∈ I (13)∑
r∈Ri

c
(r)
i xir≥ cmin ∀i∈ I (14)
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xir ∈ {0,1} ∀i∈ I, ∀r ∈Ri (15)

For a given radius r, s
(r)
ij denotes the apportioned share of i′s organs that are expected to be

offered to location j. In other words, s
(r)
ij =

dj∑
k:τik≤r

dk
si, which can be precomputed for a given

radius r. Note that for a given supply location i, we do not need to consider a continuum of possible

neighborhood radii. Rather (because this apportionment of organs will only change when a new

demand location is added to the neighborhood), we only need to consider a finite set of values of

r that correspond to the distance from i to each of the other demand locations that are within

τmax. In [SP-1], the set Ri contains the possible values of r created accordingly. Constraint (12)

models λ as the lower bound of the s/d ratios across all demand locations; and the objective is to

maximize this lower bound. Constraint (13) allows one assignment of r to each supply location;

and constraint (14) ensures a minimum number of transplant centers in the neighborhood.

3.3.2 Stage 2 Formulation

Once the optimal solution λ∗[SP−1] to [SP-1] is obtained, we can solve [SP-2] to minimize the

maximum s/d ratio while ensuring that the minimum s/d ratio remains at least λ∗[SP−1].

[SP-2] Minimize β

subject to: β≥
Nsup∑
i=1

∑
r∈Ri

xir s
(r)
ij

dj
∀j ∈J (16)

λ≥λ∗[SP−1] (17)

All constraints from [SP-1] (18)

4 Data and Results

This study used data from SRTR. The SRTR data system includes data on all donors, waitlisted

candidates, and transplant recipients in the U.S., submitted by members of the OPTN. The Health

Resources and Services Administration (HRSA), U.S. Department of Health and Human Services,

provides oversight to the activities of OPTN and SRTR contractors.

In the data, encompassing the four years starting from July 2013 and ending in June 2017, the

supply or the total number of livers (from deceased donors) donated from all donor hospitals in

the U.S. is 26,899. The patient pool is dynamic: new patients enlist, waiting candidates die or

become too sick for transplant and are removed, and the MELD scores get updated periodically.

We measure demand (44,959) as the total incident9 adult patients whose MELD scores became at

least 15 during the four years, which gives a national s/d ratio of 0.5983. There are two reasons

9 We consider incident patients so that the model parameters are not biased due to accumulated disparity, and thus
are exogenous to the geographical scheme.
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for excluding low-MELD patients from the demand: (1) patients with MELD scores <15 have no

survival benefit from transplantation (Merion et al. 2005); therefore, our demand measure is less

sensitive to the number of low-MELD patients added to the waiting list and (2) transplant centers

differ in their practices of listing low-MELD patients, across the country (which would create an

artificial increase in demand for a transplant center listing low-MELD patients compared to a

transplant center that does not). In practice, the fraction of transplants to low-MELD patients

is relatively very low—about 1.08% (in the four years encompassing our study), supporting the

decision to exclude them.

We apply the set-partitioning optimization model to two versions of the data: a zip-code cluster

version where the supply locations are zip-code clusters (clustered by the first three digits and

first four digits) and the demand locations are the 142 transplant centers, and a DSA version

where the supply and demand locations are the DSAs. We restrict r (radius around the supply

locations) within the range 150 NM to τmax for every Ri, constraining the minimum and maximum

size of the neighborhoods. We set cmin = 3, ensuring that at least three transplant centers are

present in a neighborhood.10 We used R 3.5.1 and the commercial solver Gurobi 8.1.1 to solve the

set-partitioning optimization models on a 3.2 GHz 6-Core Intel Core i7 iMac with 32 GB RAM.

4.1 Zip-code Cluster Version

The locations of the zip codes and transplant centers are indicated by their latitude and longitude

values. To calculate the distance between a three-digit (four-digit) zip-code cluster and a transplant

center, we first find the centroid of the zip-codes in the cluster having the same first three digits

(four digits) and then use the “geosphere” package in R to calculate the shortest distance between

two points (centroid of the zip cluster and transplant center) according to the “Vincenty (ellipsoid)”

method.

There are a total of 641 three-digit and 1,380 four-digit zip-code clusters with the supply in our

data.11 We vary τmax from 350 NM to 700 NM in steps of 50 NM. We do not include the zip codes

in Hawaii and Puerto Rico in our analysis, given that they are more than 1,000 miles from the

transplant centers in the mainland U.S. Consistent with the current policy zip codes in Alaska are

considered to be situated at the Seattle Tacoma Airport in Washington State. We require that

the minimum radius of a neighborhood be 150 NM (to try and keep parity with the radius of

the innermost concentric circle in the Acuity Circle policy). Because a transplant hospital may

not necessarily be exactly 150 NM from a zip-code cluster, this is enforced by ensuring that the

10 For every DSA with demand, there are close to three (142/52=2.73) transplant centers.

11 Recall that the optimization variable is xir. In the zip-code cluster version, i is the three-digit (four-digit) zip-code
cluster, and r is the radius selected (from the discrete set of possible radii choices).
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Allocation Policy s/d ratio Maximum (Median) s/d ratio
Range Std. deviation difference within 150 NM from TC

τmax = 350 NM
Fixed radius circles (Three-digit zip) 0.39-1.09 0.123 0.59920 (0.04611)
Fixed radius circles (Four-digit zip) 0.38-1.09 0.123 0.60235 (0.04559)
Three-digit zip-code cluster model 0.51-0.88 0.098 0.33043 (0.05047)
Four-digit zip-code cluster model 0.51-0.88 0.103 0.33813 (0.07085)

τmax = 400 NM
Fixed radius circles (Three-digit zip) 0.37-0.85 0.112 0.23255 (0.03690)
Fixed radius circles (Four-digit zip) 0.37-0.84 0.112 0.22818 (0.03633)
Three-digit zip-code cluster model 0.53-0.62 0.033 0.08571 (0.00042)
Four-digit zip-code cluster model 0.53-0.61 0.030 0.07763 (0.00028)

τmax = 450 NM
Fixed radius circles (Three-digit zip) 0.38-0.88 0.124 0.20629 (0.02900)
Fixed radius circles (Four-digit zip) 0.38-0.87 0.124 0.19770 (0.02048)
Three-digit zip-code cluster model 0.54-0.61 0.023 0.05277 (0.00108)
Four-digit zip-code cluster model 0.54-0.61 0.024 0.06125 (0.00043)

τmax = 500 NM
Fixed radius circles (Three-digit zip) 0.37-0.84 0.137 0.20941 (0.03632)
Fixed radius circles (Four-digit zip) 0.37-0.84 0.137 0.20851 (0.04489)
Three-digit zip-code cluster model 0.55-0.60 0.022 0.04621 (0.00009)
Four-digit zip-code cluster model 0.55-0.60 0.021 0.04922 (0.00025)

τmax = 550 NM
Fixed radius circles (Three-digit zip) 0.37-0.91 0.145 0.17331 (0.03808)
Fixed radius circles (Four-digit zip) 0.36-0.91 0.146 0.17213 (0.03882)
Three-digit zip-code cluster model 0.55-0.60 0.020 0.05070 (0.00029)
Four-digit zip-code cluster model 0.55-0.60 0.019 0.04387 (0.00025)

τmax = 600 NM
Fixed radius circles (Three-digit zip) 0.34-0.97 0.152 0.17767 (0.04866)
Fixed radius circles (Four-digit zip) 0.34-0.96 0.152 0.17819 (0.04473)
Three-digit zip-code cluster model 0.55-0.60 0.018 0.05407 (0.00113)
Four-digit zip-code cluster model 0.55-0.60 0.018 0.03613 (0.00015)

τmax = 650 NM
Fixed radius circles (Three-digit zip) 0.33-0.94 0.152 0.16743 (0.02449)
Fixed radius circles (Four-digit zip) 0.33-0.93 0.152 0.17091 (0.02457)
Three-digit zip-code cluster model 0.55-0.60 0.017 0.05049 (0.00016)
Four-digit zip-code cluster model 0.55-0.60 0.018 0.03336 (0.00012)

τmax = 700 NM
Fixed radius circles (Three-digit zip) 0.32-0.94 0.145 0.17881 (0.04773)
Fixed radius circles (Four-digit zip) 0.32-0.94 0.145 0.18275 (0.04654)
Three-digit zip-code cluster model 0.55-0.60 0.016 0.05100 (0.00010)
Four-digit zip-code cluster model 0.55-0.60 0.017 0.03402 (0.00007)

Table 3 Comparison of the s/d ratios between fixed and heterogeneous circles (supply and demand locations are

zip-code clusters and transplant centers (TCs), respectively).

closest transplant center greater than or equal to 150 NM away is included in the neighborhood,

unless it is greater than τmax miles away. Appendix C provides computational details—the problem

size, running times, cutting planes, simplex iterations, etc.—for the set-partitioning model on the

four-digit zip-clusters.

Table 3 provides a comparison of the s/d ratios. To compare against the fixed radius type of

policy currently in place (i.e., Acuity Circle), we also computed the s/d ratio for homogeneous radii
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circles by fixing the radius of each zip-code cluster to τmax. Compared to the heterogeneous radius

circle policy, the “one-size-fits-all” fixed radius policy does a poor job at equalizing the s/d ratios

across transplant centers. The heterogeneous circle policy at τmax = 500 NM is able to keep the

ratio at transplant centers between 0.55 and 0.60 (compared to the national s/d ratio of 0.5983),

while the fixed 500 NM radius circle policy has an s/d ratio variation between 0.37 and 0.84.

We also examine the difference in the s/d ratio of nearby transplant centers (defined as being

within 150 NM). Table 3 provides both the maximum and median values of this difference. As is

evident, in the heterogeneous circles policy, the value of the s/d ratio at nearby transplant centers is

very similar—which can hopefully lead to more equitable transplant outcomes in nearby transplant

centers. For most of the transplant centers, the difference in the s/d ratio is at the scale of 10−4,

as implied by the median values.

As we increase τmax from 350 NM to 700 NM, the minimum s/d ratio increases, and the range

of the s/d ratio decreases. When τmax = 400 NM, the s/d ratio range is already quite narrow

at 0.53-0.61, and once τmax = 500 NM, the s/d ratio range stays steady at 0.55-0.60. Figure 7

shows the quartiles of the radii when using four-digit zip-code clusters. When τmax is 500 NM, the

first, second, and third quartiles of the radii are 211, 305, and 415 NM, respectively. Compared

to the fixed radius circle policy, the heterogeneous radii circle policy achieves an equalization in

the s/d ratio (near the national average) while keeping transport distances lower. This has an

added benefit. Because the radii of the circles are smaller, each donor zip-code cluster on average

has 24 (median of 20) transplant centers, as compared to the fixed radii circles that have on

average 39 transplant centers (median of 43). The logistics of a donor hospital (zip-code cluster)

coordinating with a smaller number of transplant centers can be much simpler. One may wonder

whether fixed population circles (i.e., the radius of the circle around each transplant center is set

so that they all cover the same number of people) would reduce disparity. Using the s/d metric

defined and introduced in this paper, Haugen et al. (2019) analyze the disparity in the s/d ratios

across transplant centers with fixed population circles. They find that circles covering a population

of 12 million individuals provides s/d values ranging from 0.27 to 2.14. Increasing the size of the

circles to cover 50 million individuals decreases the s/d variation to 0.43–1.01.

To check whether our solution is robust to variations in the supply and demand across time,

using the optimal radii obtained with the four years of data, we recalculate the s/d ratio range,

skipping one year of (supply and demand) data at a time. We find that, on average, the minimum

(absolute) s/d ratio changes by 0.016 points, and the maximum (absolute) changes by 0.018 points

(based on τmax = 500,550,600,650, and 700 NM), which indicates that the results are fairly robust

to variations in the data.
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Figure 7 Quartiles of radii in the four-digit zip-code cluster models.

Allocation Policy s/d ratio τmax, τ̄ Max. (Median) s/d ratio
Range Std. deviation (in NM) difference among adjacent DSAs

OPTN 11 regions 0.42-0.76 0.109 843, 401 0.228 (0.117)
Gentry et al. (2015) 0.52-0.69 0.054 975, 569 0.120 (0.036)

Kilambi and Mehrotra (2017) 0.35-0.99 0.157 1380, 666 0.615 (0.246)
[SP-2], τmax = 500 NM 0.50-0.65 0.054 500, 349 0.151 (0.086)
[SP-2], τmax = 600 NM 0.52-0.65 0.051 600, 409 0.132 (0.077)
[SP-2], τmax = 700 NM 0.53-0.63 0.033 700, 422 0.096 (0.036)

Table 4 Comparison of the s/d ratios among different allocation policies in the DSA version (supply and demand

locations are 58 DSAs and 52 DSAs, respectively). τmax and τ̄ represent the maximum and average distance,

respectively, of the farthest DSA in a neighborhood/region/district in each allocation policy.

Given that the current implementation of LSAM does not support schemes based on zip-code

clusters, we could not evaluate our zip-code based allocation policy via the LSAM simulation

model. Instead, we use the results of the DSA version described in the next section and run the

LSAM simulation on the neighborhoods it generates to evaluate the effectiveness of our allocation

policy in reducing geographical disparity.

4.2 DSA Version

Using DSAs as the geographical unit preserves the existing important relationships between donor

hospitals and the OPO in each DSA. If indeed, the court rules in a manner that reinstates DSAs

as a geographical unit, then our method shows how they could share organs to achieve equitable

outcomes with regard to the s/d ratio.

The distance between any two DSAs i and j, τij, is calculated as the mean of the transplant-

volume-weighted distance between donor hospitals in DSA i and the transplant centers in DSA j,

and the reverse. Because six DSAs do not have a transplant hospital, there are 58 DSAs with

supply and 52 DSAs with demand. Consistent with Gentry et al. (2015) and Kilambi and Mehrotra

(2017), we allow (as exceptions to τmax) the DSAs located in Hawaii and Puerto Rico to share and

receive organs from other DSAs located in California and Oregon, and Florida, respectively.
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Table 4 summarizes the results for τmax set to 500 NM, 600 NM, and 700 NM, and compares it

with the prior 11-region system and other proposed geographical allocation policies. As is evident,

our model produces a neighborhood that results in the narrowest range of s/d ratios across DSAs:

0.15 when τmax = 500 NM, 0.13 when τmax = 600 NM, and 0.10 when τmax = 700 NM, as compared

to 0.34 (OPTN 11 regions), 0.17 (Gentry et al. 2015, 8 districts), and 0.64 (Kilambi and Mehrotra

2017). Our model also produces relatively more uniform and smaller-sized neighborhoods. It does

not contain any unusually large neighborhoods (as evidenced by the value of τmax). Our solutions

have a fair degree of reciprocity (that is, if DSA i shares its organs with DSA j, then DSA j

shares its organs with DSA i). About 56.0% of DSA pairs had reciprocity when τmax = 500 NM,

62.1% when τmax = 600 NM, and 52.7% when τmax = 700 NM. Further, the average distance of

the farthest DSAs in the neighborhoods (τ̄) is much smaller than that of Gentry et al. (2015) and

Kilambi and Mehrotra (2017), and is comparable with OPTN 11 regions. The maximum s/d ratio

difference among adjacent DSAs is also reduced significantly. For example, with τmax = 700 NM,

the maximum difference of the s/d ratio among adjacent DSAs is 0.096, much smaller compared

to OPTN 11 regions (0.228).

Table 5 presents the s/d ratios for each DSA in the different proposals. This allows a deeper

examination of how each DSA is affected by the proposed reallocations. The maximum and min-

imum s/d ratio values in every proposal are highlighted in bold. Appendix D describes the DSA

neighborhoods obtained by our models for τmax = 500, 600, and 700 NM, respectively. Figure 8(a)

depicts the neighborhoods (when τmax = 500) using a directed graph.12 An arc from a node (i.e.,

DSA) i to a node j means that DSA i is sharing its organs with DSA j. In the event of reciprocity

between DSA’s i and j, the link between the two nodes is bidirectional. It is interesting to observe

that in the mainland U.S., the DSA CORS (which comprises Colorado and Wyoming) forms a cut

node (i.e., its removal separates the graph representing the neighborhood into two components).

Although there are additional arcs (and sharing between DSAs) with τmax = 600 and 700 NM,

CORS remains a cut node separating the DSAs to the east and west. This suggests that shar-

ing between DSAs largely occurs exclusively between DSAs to the east of CORS, and exclusively

between DSAs to the west of CORS (i.e., DSAs to the east of CORS do not share with DSAs to

the west of CORS and vice versa). Given that there is a lot of information packed into Figure 8(a),

Figure 8(b) focuses on the neighborhood of DSA ALOB. It shows the DSAs with which ALOB

shares its organs and also shows which DSAs share their organs with ALOB. Figure 8(c) provides

a few additional details and adds in sharing and receiving between the DSAs identified in Figure

8(b) (it excludes information about sharing and receiving between the 14 DSAs in the figure and

the remaining DSAs).

12 To represent a DSA on the map, we averaged the latitude and longitude values of the transplant centers in that
DSA.
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Figure 8 (a) Illustration of optimized neighborhoods when τmax = 500. (b) DSAs to which ALOB shares and

receives. (c) Sharing and receiving between DSAs identified in (b).

The computational benefit of [SP-1] over [S-1] is easily seen in the DSA version. For example,

when τmax = 500 NM, the size of [S-1] using only sharing contiguity was 16,286 rows and 18,883

columns, and the MIP gap (MIP gap = |Objective bound−Objective value|
|Objective value| ) was 1.19% after two hours of

running time. Meanwhile, the size of [SP-1] was 110 rows and 742 columns, and took only 0.66

seconds to reach optimality.

4.2.1 Liver Simulated Allocation Model (LSAM) Results

Next, we wanted to see how the proposed (DSA-based) allocation policies perform on metrics that

policymakers have traditionally examined to evaluate policies, such as the variance of MMaT across

geographies, distance traveled, and number of deaths. To this end, we use LSAM to simulate our

neighborhoods [SP-2], OPTN 11 regions, Gentry et al. (2015) (8 districts), and Kilambi and Mehro-

tra (2017)’s neighborhoods. There are two main inputs to LSAM: (1) patient and organ arrival

processes, and (2) the allocation policy that includes geographical schemes and offer prioritization

rules.
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DSA
s/d ratio

Local, or OPTN 11 regions Gentry et al. (2015) Kilambi and Mehrotra (2017) [SP-2]

no sharing τmax = 843 NM τmax = 975 NM τmax = 1380 NM τmax: 500 NM 600 NM 700 NM
ALOB 0.72 0.76 0.61 0.56 0.62 0.65 0.63
AROR 0.97 0.76 0.61 0.96 0.65 0.52 0.58
AZOB 0.55 0.52 0.54 0.88 0.53 0.53 0.59
CADN 0.38 0.52 0.52 0.45 0.51 0.52 0.53
CAOP 0.39 0.52 0.52 0.5 0.54 0.53 0.53
CASD 0.55 0.52 0.52 0.35 0.5 0.53 0.59
CORS 0.37 0.64 0.54 0.77 0.51 0.54 0.53
CTOP 0.95 0.42 0.57 0.4 0.56 0.62 0.59
DCTC 0.58 0.57 0.57 0.46 0.64 0.64 0.63
FLFH 1.3 0.76 0.61 0.65 0.54 0.52 0.62
FLMP 0.5 0.76 0.61 0.65 0.61 0.65 0.61
FLUF 0.47 0.76 0.61 0.81 0.65 0.58 0.61
FLWC 1.98 0.76 0.61 0.65 0.64 0.52 0.62
GALL 0.72 0.76 0.57 0.99 0.65 0.65 0.62
HIOP 0.97 0.66 0.52 0.37 0.63 0.64 0.54
IAOP 1.23 0.64 0.64 0.58 0.62 0.64 0.61
ILIP 0.69 0.55 0.69 0.62 0.65 0.62 0.62
INOP 0.78 0.66 0.69 0.67 0.62 0.63 0.59
KYDA 0.66 0.76 0.69 0.69 0.65 0.64 0.6
LAOP 0.55 0.76 0.61 0.64 0.63 0.65 0.63
MAOB 0.39 0.42 0.57 0.4 0.54 0.61 0.56
MDPC 0.34 0.57 0.57 0.67 0.64 0.65 0.63
MIOP 0.68 0.66 0.69 0.49 0.54 0.64 0.63
MNOP 0.4 0.55 0.64 0.53 0.51 0.56 0.56
MOMA 0.71 0.64 0.61 0.73 0.65 0.63 0.63
MSOP 1.49 0.76 0.61 0.56 0.58 0.55 0.63
MWOB 1.04 0.64 0.64 0.7 0.5 0.52 0.56
NCCM 0.73 0.76 0.57 0.44 0.65 0.64 0.62
NCNC 0.77 0.76 0.57 0.63 0.65 0.6 0.62
NEOR 0.41 0.64 0.64 0.44 0.51 0.54 0.63
NJTO 1.19 0.57 0.57 0.47 0.65 0.65 0.63
NYFL 0.56 0.42 0.69 0.59 0.53 0.53 0.62
NYRT 0.31 0.42 0.57 0.47 0.65 0.65 0.63
OHLB 0.47 0.66 0.69 0.67 0.65 0.65 0.62
OHLP 0.9 0.66 0.69 0.83 0.65 0.61 0.62
OHOV 0.33 0.66 0.69 0.51 0.65 0.65 0.61
OKOP 0.91 0.53 0.64 0.81 0.58 0.52 0.63
ORUO 0.71 0.66 0.52 0.62 0.62 0.65 0.58
PADV 0.62 0.57 0.57 0.6 0.62 0.65 0.63
PATF 0.58 0.57 0.69 0.83 0.64 0.59 0.63
PRLL 1.69 0.76 0.57 0.56 0.54 0.6 0.53
SCOP 1.02 0.76 0.57 0.38 0.65 0.62 0.62
TNDS 1.17 0.76 0.69 0.77 0.65 0.64 0.63
TNMS 0.36 0.76 0.61 0.85 0.65 0.64 0.62
TXGC 0.36 0.53 0.61 0.52 0.64 0.58 0.63
TXSA 0.5 0.53 0.61 0.44 0.53 0.52 0.53
TXSB 0.77 0.53 0.61 0.5 0.64 0.55 0.62
UTOP 0.53 0.52 0.54 0.47 0.54 0.55 0.56
VATB 0.6 0.76 0.57 0.85 0.63 0.65 0.62
WALC 0.6 0.66 0.52 0.6 0.62 0.62 0.55
WIDN 0.4 0.55 0.69 0.5 0.5 0.54 0.62
WIUW 0.61 0.55 0.69 0.72 0.62 0.63 0.63

Table 5 Comparison of the s/d ratios among different DSA-based allocation policies (supply and demand

locations are 58 DSAs and 52 DSAs, respectively).

LSAM uses the historical data of donors and patients to simulate the waitlisted patient’s health

state transitions, organ acceptance behavior, and post-transplant survival outcomes. When an

organ becomes available, candidates on the waiting list are prioritized for the organ offer as per the

allocation policy. When a candidate receives a transplant, the simulation determines the survival

time of the transplanted organ and uses this information to determine when in the future the

candidate may die or relist. Using LSAM in its current form does have some limitations. It uses

a probability acceptance function built on past data, where distance is more strongly correlated

with acceptance of an organ due to the lack of broader sharing. It also does not account for organ

availability in determining organ acceptance. These limitations may underestimate the effects of

broader sharing and the equalization of the s/d ratios. Despite these limitations, it is instructive

to use LSAM as a first step in evaluating the potential benefit of the heterogeneous radii circle

policy.

In the simulation study (to model broader sharing within a circle), we allow for full sharing

of organs to Status 1A/1B and MELD ≥ 15 candidates in the neighborhood or region/district in

which the organ is recovered in the first level of allocation. In the next allocation level, the organ
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Allocation Policy
Avg. (Quartiles) Waitlist Total Across DSAs
travel distance deaths deaths Var/Avg Std. deviation of avg

(in NM) (annual) (annual) of MMaT travel distance (NM)
OPTN 11 regions 258 (75, 194, 347) 1411.6 3658.8 7.26/30.0 109

Gentry et al. (2015) 309 (101, 226, 429) 1376.1 3600.0 5.22/31.1 124
Kilambi and Mehrotra (2017) 305 (124, 240, 395) 1348.2 3555.4 2.68/31.6 142

[SP-2], τmax = 500 NM 258 (112, 220, 341) 1356.4 3567.7 2.00/31.3 56
[SP-2], τmax = 600 NM 283 (125, 251, 384) 1343.6 3551.4 1.98/31.7 55
[SP-2], τmax = 700 NM 293 (125, 250, 399) 1343.4 3544.6 1.61/31.7 64

Table 6 Comparison of LSAM simulation results for DSA-based allocation policies under Enhanced Share 15.

is offered nationally to Status 1A/1B, then nationally to candidates with MELD ≥ 15. Next, it is

offered to candidates with MELD < 15 locally (the DSA in which the organ is recovered), then in

the neighborhood or region/district, and then nationally before being discarded after 100 offers.

The above policy (which we refer to as “Enhanced Share 15”) skips sequences # 2 and 3 of the

Share 35 policy described in Table 1. For benchmarking, we also compared using the prior Share 35

policy. We simulated the different DSA-based geographical allocation policies using the organ and

patient arrival data, consisting of three years (July 2013 to June 2016). We ran the simulation 10

times (the maximum allowed by LSAM) by resampling the input files.

Table 6 compares the simulation results under Enhanced Share 15. The average number of

annual waitlist deaths and total deaths is smallest for [SP-2], τmax = 700 NM, with a projected

savings of 114 lives annually, compared to OPTN 11 regions. The average travel distance, although

slightly higher in our allocation policy compared to OPTN 11 regions, is smaller than that of

the other policies. To measure the differences between DSAs, we consider the variance of MMaT

and the standard deviation of the average organ travel distance across DSAs. The variance of

MMaT across the DSAs is smallest in our allocation policies (2.00 when τmax = 500 NM, 1.98 when

τmax = 600 NM, and 1.61 when τmax = 700 NM), compared to 7.26, 5.22, and 2.68 in OPTN 11

regions, Gentry et al. (2015), and Kilambi and Mehrotra (2017), respectively. Because the different

proposals vary in their efficiency (travel distance) and fairness (MMaT) metrics, it is instructive to

compare the fairness of the proposals with similar efficiency levels. To this end, comparing [SP-2],

τmax = 500 NM against OPTN 11 regions shows a significant reduction in both total deaths and

variance of MMaT. Similarly, comparing [SP-2], τmax = 700 NM against Gentry et al. (2015) and

Kilambi and Mehrotra (2017) shows a significant reduction in the variance of MMaT. Overall,

we see that greater fairness can be achieved by DSA-based geographical allocation policies that

equalize s/d ratios. The standard deviation of the average travel distance across the DSAs (Hawaii

and Puerto Rico are excluded from our distance analysis) in our allocation policies is less than half

that of the others. This finding indicates that there is less disparity in the travel distance between

DSAs because our neighborhoods have relatively similar sizes.
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Allocation Policy
Avg. (Quartiles) Waitlist Total Across DSAs
travel distance deaths deaths Var/Avg Std. deviation of avg.

(in NM) (annual) (annual) of MMaT travel distance (NM)
OPTN 11 regions 199 (20, 105, 258) 1455.5 3744.9 13.66/28.5 88

Gentry et al. (2015) 231 (25, 130, 314) 1419.5 3696.4 10.49/29.5 102
Kilambi and Mehrotra (2017) 230 (32, 150, 309) 1389.0 3656.3 11.87/30.2 104

[SP-2], τmax = 500 NM 203 (29, 142, 291) 1399.9 3664.8 10.30/29.7 57
[SP-2], τmax = 600 NM 221 (32, 157, 326) 1384.8 3645.2 8.80/30.3 57
[SP-2], τmax = 700 NM 233 (36, 162, 344) 1397.3 3636.4 10.04/30.3 64

Table 7 Comparison of LSAM simulation results for DSA-based allocation policies under Share 35.

Table 7 compares the LSAM simulation results under Share 35. We note that our neighbor-

hoods are optimized under the assumption of full sharing, which is closer to Enhanced Share 15

than Share 35; and thus, the full benefits of the improved MMaT are less likely to be seen.

Given that there is less sharing under Share 35 (organ offers are restricted to within-DSA patients

(15≤MELD<35) before being offered broadly (neighborhood or region/district and nationally)),

the average travel distance significantly decreased, and the number of waitlist and total deaths

increased for all policies. Even so, comparing [SP-2], τmax = 500 NM against OPTN 11 regions

shows a significant reduction in both total deaths and variance of MMaT. Similarly, comparing

[SP-2], τmax = 600 NM against Gentry et al. (2015) and Kilambi and Mehrotra (2017) shows a

significant reduction in the variance of MMaT. Similar to Enhanced Share 15, we observe again

that the standard deviation of the average travel distance (across DSAs) is much lower for our

allocation policies.

Ultimately, comparing our allocation policy τmax = 500 NM under Enhanced Share 15 against

the OPTN 11 regions under Share 35 shows that a drastic reduction in the variance of MMaT

across DSAs (from 13.66 to 2.00) and deaths (from 3,745 to 3,568) can be achieved with a modest

increase in the average travel distance (from 199 NM to 258 NM).

5 Conclusions

We use the Rawlsian maximin principle to minimize the variability in deceased donor liver access

across geographies. In contrast to the current fixed radius policy, we propose heterogeneous radii

circles. The benefit of heterogeneous radii circles is that they account for where the organ supply

and demand occur, and adjust the radii of the circles so that each transplant center’s s/d ratio can

be close to the national average. Moreover, equalizing the s/d ratios at the transplant centers is

achieved without a significant increase in anticipated travel distance. In fact, the median radius is

approximately 305 NM. In other words, the optimization model only increases the radii of donor

circles when necessary.

By using a DSA as the geographical unit, we demonstrate that low geographical variation in the

s/d ratio can be achieved while maintaining DSA boundaries by judiciously creating neighborhoods
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for each DSA. An LSAM evaluation of our DSA neighborhoods predicts a significant reduction in

the number of deaths, overall variation in MMaT, and average travel distance across DSAs.

As noted earlier, there are limitations of our analysis, as LSAM’s organ acceptance function

may not accurately reflect the change in the candidate/transplant center behaviors when organ

accessibility and availability changes. For instance, candidates at organ-rich locations might behave

more selectively in accepting organs than at locations with low s/d ratios. In a related paper,

Akshat et al. (2022) develop a patient’s dynamic choice model to analyze his/her strategic response

to a policy change. They show that the policy framework developed in this paper (i.e., equalizing

s/d ratios across the geography) indeed promotes the greatest geographic equity and transplant

efficiency in comparison to the current Acuity Circle policy and the prior Share 35 policy.

In terms of logistical implementation of the heterogeneous circle policy, we have a few suggestions.

First, we believe the circles should be defined around the donor location rather than the transplant

location (note that in a fixed radius policy, there is no difference between the circles defined around

donor and transplant locations, but with heterogeneous circles, there is a difference), or else the

issues raised in the lawsuits (i.e., organs being offered to a less sicker candidate who is farther away)

would not be addressed. Second, we expect small variations in the supply and demand over time.

Hence, we suggest that the optimization model be run occasionally to account for demographic

changes.

Our approach can be viewed as a combination of the fixed distance from a donor hospital

and a mathematical optimized boundaries framework identified by the Geography Committee.

There is considerable debate in the transplant community about using continuous scoring (the

third distribution framework identified by the Geography Committee). Pavlakis (2021) and Snyder

et al. (2018) provide an overview of the continuous scoring concept. Rather than a one-size-fits-all

framework for continuous scoring, which we do not believe will adequately address geographical

inequities, we would recommend a mathematically optimized continuous scoring function that

accounts for regional differences in the supply and demand. In ongoing work, our group is developing

an optimization model (to equalize supply-to-demand ratios across transplant centers) that uses a

continuous function to assign points to patients based on their distance to the donor hospital.

Clearly, the optimization concepts applied to mitigate geographical disparities in the liver trans-

plantation setting could also be applied to other organs. We hope this research will spur similar

work in other organ transplantation settings, and thus reduce/mitigate the geographical disparities

that are inherent to all of these systems!
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Appendix

A Comparing Organ Quality

We use the metric, donor risk index (DRI), proposed by Feng et al. (2006) to evaluate the quality

of the organs in our dataset. This index measures the quality of an organ using demographic factors

(age, race, height), cause and type of donor death, sharing type (local/regional/national), and cold

ischemia time. A higher DRI is associated with a greater risk of graft failure. Given that we want

to assess the quality of the organs at the time of recovery, we exclude cold ischemia time, which

depends on the transplant locations and assumes local sharing for an adequate comparison. In

Figure 9, we compare the box plots of DRI across the regions. We see that there are no significant

differences in the distributions of organ quality across the regions.

B Linearization of the s/d Ratio and Contiguity Constraints

To linearize the right-hand side of constraint (2) in [S-1], i.e.,
∑Nsup

i=1
1∑Ndem

k=1
dk xik

si xij, we introduce

auxiliary variables: yij ≥ 0 and ti ≥ 0, which are defined as follows.

ti =
1∑Ndem

k=1 dk xik

∀i∈ I (19)
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yij = ti xij ∀i∈ I, j ∈J (20)

Together, they imply:

λ≤
Nsup∑
i=1

si yij ∀j ∈J (21)

Ndem∑
k=1

dk yik = 1 ∀i∈ I (22)

A set of linear constraints (22) model equation (19). We note that ti ≤ 1 and, yij =

{
0 if xij = 0

ti if xij = 1
.

Because yij is a product of two variables and therefore non-linear, the following linear constraints

model yij = ti xij:

yij ≤ ti ∀i∈ I, j ∈J (23)

yij ≤ xij ∀i∈ I, j ∈J (24)

(1−xij) + yij ≥ ti ∀i∈ I, j ∈J (25)

yij, ti ≥ 0 ∀i∈ I, j ∈J (26)

Therefore, constraint (2) in [S-1] can be replaced by constraints (21)-(26). Constraint (8) in [S-2]

can be linearized identically.

Shirabe (2009) describes flow-based contiguity constraints for districting problems. We adapt

these constraints to model receiving contiguity and sharing contiguity in our neighborhood frame-

work through equations (27)-(29) and (30)-(32), respectively. With receiving (sharing) contiguity,

Figure 9 Comparison of organ quality across the regions using the donor risk index (DRI).
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the suppliers (recipients) assigned to a recipient (supplier) form a continuous geography on the

map. Let m1 (m2) be the maximum number of supply (demand) locations that can be assigned

to a demand (supply) location. Parameter aik = 1, if supply locations i and k are geographically

adjacent, and 0 otherwise. We use flow variables f j
ik to model receiving contiguity and flow vari-

ables gijk to model sharing contiguity. Flow variable f j
ik denotes the flow from i to k (only defined

when aik = 1) destined for demand location j, while flow variable gijk denotes the flow from j to k

(only defined when ajk = 1) destined for supply location i. The first three constraints involving the

flow variables f j
ik ensure that if xij = 1 for a supply location i and a demand location j that are

non-adjacent, then every supply location on the path from i to j also supplies demand location j.

The next set of three constraints involving the flow variables gijk ensure that if xij = 1 for a supply

location i and a demand location j that are non-adjacent, then every demand location on the path

from i to j is also supplied by i.

Nsup∑
k=1

f j
ik aik−

Nsup∑
k=1

f j
ki aki =xij ∀i 6= j, i∈ I, j ∈J (27)

Nsup∑
k=1

f j
ki aki≤ (m1− 1)xij ∀i∈ I, j ∈J (28)

Nsup∑
k=1

f j
jk ajk = 0 ∀j ∈J (29)

τmax Size Cutting Run time Nodes Simplex Best Best MIP
(in NM) Rows Columns Planes (in secs) explored iterations obj. bound gap

350 [SP-1] 1525 19061 2 7200 3444938 7290609 0.519 0.519 0.01%
[SP-2] 1668 19062 22 6 1 2047 0.884 0.884 0.00%

400 [SP-1] 1527 24776 0 7200 2785686 9013065 0.537 0.537 0.01%
[SP-2] 1670 24777 0 7200 262484 20797966 0.611 0.610 0.12%

450 [SP-1] 1528 30362 6 45 1 10922 0.543 0.543 0.01%
[SP-2] 1671 30363 16 7200 72601 18971000 0.606 0.606 0.10%

500 [SP-1] 1528 35990 2420 7200 499437 6067640 0.551 0.551 0.02%
[SP-2] 1671 35991 0 7200 85424 30217420 0.605 0.604 0.03%

550 [SP-1] 1528 42175 3005 7200 220154 6747918 0.554 0.554 0.01%
[SP-2] 1671 42176 495 7200 44898 11247871 0.604 0.604 0.03%

600 [SP-1] 1528 48381 1936 7200 201431 1759417 0.555 0.555 0.01%
[SP-2] 1671 48382 93 7200 26765 10007894 0.602 0.602 0.08%

650 [SP-1] 1528 54323 1908 7200 209106 2543837 0.554 0.554 0.01%
[SP-2] 1671 54324 39 7200 28708 6409075 0.602 0.602 0.06%

700 [SP-1] 1528 59952 15 7200 837756 4521290 0.556 0.556 0.01%
[SP-2] 1671 59953 20 7200 22964 5031591 0.602 0.601 0.05%

Table 8 Computational details of the set-partitioning model run on four-digit zip-clusters.



33

Ndem∑
k=1

gijk ajk−
Ndem∑
k=1

gikj akj =xij ∀i 6= j, i∈ I, j ∈J (30)

Ndem∑
k=1

gikj akj ≤ (m2− 1)xij ∀i∈ I, j ∈J (31)

Ndem∑
k=1

giik aik = 0 ∀i∈ I (32)

f j
ik≥ 0 ∀i, k ∈ I, j ∈J (33)

gijk≥ 0 ∀i∈ I, k, j ∈J (34)

Together constraints (27)-(34) refer to constraint (6) in [S-1].

DSA Radius Neighbors
(in NM)

ALOB 336 KYDA, ALOB, NCCM, TNDS, MSOP, AROR, SCOP, TNMS, FLUF, GALL, LAOP
AROR 305 MSOP, AROR, TXSB, TNMS, MOMA, MWOB, TXGC, LAOP, OKOP
AZOB 499 AZOB, CORS, UTOP, CASD, CAOP
CADN 366 HIOP, CADN, CASD, CAOP
CAGS 318 HIOP, CADN, CAOP
CAOP 499 HIOP, AZOB, UTOP, CADN, CASD, CAOP
CASD 366 HIOP, AZOB, CADN, CASD, CAOP
CORS 316 CORS, UTOP
CTOP 203 MAOB, NYFL, CTOP, PADV, NJTO, NYRT
DCTC 339 OHOV, NCNC, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, PADV, VATB, MDPC, OHLP, NJTO, OHLB, NYRT
FLFH 492 NCNC, ALOB, PRLL, NCCM, TNDS, FLMP, MSOP, SCOP, FLFH, FLUF, FLWC, GALL
FLMP 472 PRLL, FLMP, SCOP, FLFH, FLUF, FLWC, GALL
FLUF 422 NCNC, ALOB, PRLL, NCCM, TNDS, FLMP, MSOP, SCOP, FLFH, FLUF, FLWC, GALL, LAOP
FLWC 488 NCNC, ALOB, PRLL, NCCM, FLMP, MSOP, SCOP, FLFH, FLUF, FLWC, GALL
GALL 484 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, FLMP, MSOP, AROR, SCOP, TNMS, VATB, MOMA,

OHLP, FLFH, OHLB, FLUF, INOP, FLWC, GALL, LAOP
HIOP NA HIOP, CADN, CASD, CAOP
IAOP 210 MNOP, WIUW, IAOP, NEOR
ILIP 447 OHOV, MNOP, KYDA, PATF, TNDS, WIUW, ILIP, AROR, IAOP, TNMS, MOMA, MWOB, OHLP, WIDN, NEOR,

OHLB, INOP, MIOP
INOP 224 OHOV, KYDA, ILIP, OHLP, WIDN, OHLB, INOP, MIOP
KYDA 497 OHOV, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, DCTC, TNDS, PADV, WIUW, ILIP, MSOP, AROR, IAOP, SCOP,

TNMS, VATB, MDPC, MOMA, MWOB, OHLP, WIDN, OHLB, FLUF, INOP, GALL, MIOP
LAOP 396 TXSA, ALOB, MSOP, AROR, TXSB, TNMS, TXGC, LAOP, OKOP
MAOB 170 MAOB, CTOP, NJTO, NYRT
MDPC 308 NCNC, MAOB, NYFL, PATF, CTOP, DCTC, PADV, VATB, MDPC, OHLP, NJTO, OHLB, NYRT
MIOP 482 OHOV, MNOP, KYDA, NYFL, PATF, NCCM, DCTC, TNDS, PADV, WIUW, ILIP, IAOP, VATB, MDPC, MOMA,

OHLP, NJTO, WIDN, OHLB, INOP, NYRT, MIOP
MNOP 270 MNOP, WIUW, IAOP, NEOR
MOMA 233 ILIP, AROR, TNMS, MOMA, MWOB
MSOP 406 ALOB, TNDS, MSOP, AROR, TXSB, TNMS, MOMA, TXGC, FLUF, GALL, LAOP
MWOB 477 MNOP, KYDA, WIUW, ILIP, AROR, IAOP, TXSB, TNMS, MOMA, MWOB, WIDN, CORS, NEOR, TXGC, INOP,

OKOP
NCCM 403 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, PADV, SCOP, VATB, MDPC, OHLP, FLFH, OHLB,

FLUF, INOP, GALL
NCNC 489 OHOV, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, SCOP, VATB, MDPC, OHLP,

NJTO, FLFH, OHLB, FLUF, INOP, FLWC, NYRT, GALL, MIOP
NEOR 390 MNOP, WIUW, IAOP, MOMA, MWOB, CORS, NEOR, OKOP
NJTO 188 MAOB, NYFL, CTOP, DCTC, PADV, MDPC, NJTO, NYRT
NMOP 282 AZOB
NVLV 308 AZOB, CADN, CASD, CAOP
NYAP 182 MAOB, NYFL, CTOP, PADV, NJTO, NYRT
NYFL 458 OHOV, MAOB, NYFL, PATF, CTOP, DCTC, PADV, VATB, MDPC, OHLP, NJTO, OHLB, INOP, NYRT, MIOP
NYRT 193 MAOB, NYFL, CTOP, PADV, MDPC, NJTO, NYRT
NYWN 234 NYFL, PATF, PADV, OHLB, MIOP
OHLB 459 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, SCOP, VATB, MDPC,

MOMA, OHLP, NJTO, WIDN, OHLB, INOP, NYRT, MIOP
OHLC 329 OHOV, KYDA, PATF, DCTC, TNDS, WIUW, ILIP, OHLP, WIDN, OHLB, INOP, MIOP
OHLP 307 OHOV, KYDA, PATF, NCCM, DCTC, TNDS, ILIP, VATB, MDPC, OHLP, WIDN, OHLB, INOP, MIOP
OHOV 284 OHOV, KYDA, PATF, NCCM, TNDS, ILIP, OHLP, WIDN, OHLB, INOP, MIOP
OKOP 475 TXSA, MSOP, AROR, IAOP, TXSB, TNMS, MOMA, MWOB, CORS, NEOR, TXGC, LAOP, OKOP
ORUO 234 WALC, HIOP, ORUO
PADV 235 MAOB, NYFL, PATF, CTOP, DCTC, PADV, VATB, MDPC, NJTO, NYRT
PATF 278 OHOV, NCNC, NYFL, PATF, DCTC, PADV, VATB, MDPC, OHLP, NJTO, OHLB, NYRT, MIOP
PRLL NA PRLL, FLMP, FLWC
SCOP 326 NCNC, KYDA, ALOB, NCCM, TNDS, SCOP, VATB, FLFH, FLUF, GALL
TNDS 493 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, ILIP, MSOP, AROR, SCOP, TNMS, VATB, MDPC,

MOMA, MWOB, OHLP, WIDN, FLFH, OHLB, FLUF, INOP, GALL, MIOP, LAOP
TNMS 492 OHOV, KYDA, ALOB, NCCM, TNDS, ILIP, MSOP, AROR, IAOP, SCOP, TXSB, TNMS, MOMA, MWOB, OHLP,

WIDN, TXGC, FLUF, INOP, GALL, LAOP, OKOP
TXGC 276 TXSA, TXSB, TXGC, LAOP, OKOP
TXSA 363 TXSA, TXSB, TXGC, LAOP
TXSB 218 TXSA, TXSB, TXGC, OKOP
UTOP 480 AZOB, CORS, UTOP, CADN
VATB 196 NCNC, DCTC, PADV, VATB, MDPC
WALC 234 WALC, ORUO
WIDN 284 OHOV, WIUW, ILIP, IAOP, WIDN, INOP, MIOP
WIUW 426 OHOV, MNOP, WIUW, ILIP, IAOP, MOMA, MWOB, OHLP, WIDN, NEOR, OHLB, INOP, MIOP

Table 9 Geographical allocation policy for DSAs when the maximum permitted distance to a neighboring DSA is

500 NM
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C Set Partitioning Model Computational Details

Table 8 contains the computational details of the set-partitioning model run on four-digit zip-

clusters. We report the problem size, total number of cutting planes used by the solver, run time

until termination, nodes explored, simplex iterations, best objective, best bound, and MIP gap.

We observe that by two hours of running time, the MIP gap of [SP-1] and [SP-2] typically reaches

below 0.02% and 0.12%, respectively, which corresponds to the difference in the s/d ratio at the

fourth or higher decimal places between the best objective and best bound.

D DSA Neighborhoods

Tables 9, 10, and 11, present the neighborhoods obtained by our model based on the DSA ver-

sion when the maximum distance to any DSA in the neighborhood is constrained to 500 NM, 600

NM, and 700 NM, respectively. The column “Radius” provides the radius (in terms of the trans-

plant volume-weighted distance, as discussed in Section 4.2) of each neighborhood. The column

“Neighbors” contains the DSAs with which the DSA in the first column will share its organs.

The radii for each zip-code cluster in the zip-code version (which is too large to include as a

table) can be obtained by contacting the authors.
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DSA Radius Neighbors
(in NM)

ALOB 517 OHOV, NCNC, KYDA, ALOB, NCCM, TNDS, MSOP, AROR, SCOP, TNMS, VATB, MOMA, OHLP, FLFH, TXGC,
FLUF, INOP, FLWC, GALL, LAOP

AROR 569 OHOV, TXSA, KYDA, ALOB, TNDS, ILIP, MSOP, AROR, IAOP, TXSB, TNMS, MOMA, MWOB, WIDN, NEOR,
TXGC, FLUF, INOP, GALL, LAOP, OKOP

AZOB 546 AZOB, CORS, UTOP, CADN, CASD, CAOP
CADN 366 HIOP, CADN, CASD, CAOP
CAGS 446 HIOP, ORUO, UTOP, CADN, CASD, CAOP
CAOP 499 HIOP, AZOB, UTOP, CADN, CASD, CAOP
CASD 265 HIOP, AZOB, CASD, CAOP
CORS 316 CORS, UTOP
CTOP 244 MAOB, NYFL, CTOP, PADV, MDPC, NJTO, NYRT
DCTC 346 OHOV, NCNC, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, PADV, SCOP, VATB, MDPC, OHLP, NJTO, OHLB,

NYRT
FLFH 578 NCNC, ALOB, PRLL, NCCM, TNDS, FLMP, MSOP, SCOP, TNMS, VATB, FLFH, FLUF, FLWC, GALL, LAOP
FLMP 573 NCNC, ALOB, PRLL, NCCM, FLMP, SCOP, FLFH, FLUF, FLWC, GALL
FLUF 592 OHOV, NCNC, KYDA, ALOB, PRLL, NCCM, TNDS, FLMP, MSOP, AROR, SCOP, TNMS, VATB, OHLP, FLFH, FLUF,

FLWC, GALL, LAOP
FLWC 330 PRLL, FLMP, FLFH, FLUF, FLWC, GALL
GALL 565 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, PADV, FLMP, ILIP, MSOP, AROR, SCOP, TNMS, VATB,

MDPC, MOMA, OHLP, FLFH, OHLB, FLUF, INOP, FLWC, GALL, MIOP, LAOP
HIOP NA HIOP, CADN, CASD, CAOP
IAOP 335 MNOP, WIUW, ILIP, IAOP, MOMA, MWOB, WIDN, NEOR, INOP
ILIP 365 OHOV, MNOP, KYDA, TNDS, WIUW, ILIP, IAOP, MOMA, MWOB, OHLP, WIDN, OHLB, INOP, MIOP
INOP 571 OHOV, MNOP, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, DCTC, TNDS, PADV, WIUW, ILIP, MSOP, AROR, IAOP,

SCOP, TNMS, VATB, MDPC, MOMA, MWOB, OHLP, NJTO, WIDN, NEOR, OHLB, INOP, NYRT, GALL, MIOP,
OKOP

KYDA 497 OHOV, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, DCTC, TNDS, PADV, WIUW, ILIP, MSOP, AROR, IAOP, SCOP,
TNMS, VATB, MDPC, MOMA, MWOB, OHLP, WIDN, OHLB, FLUF, INOP, GALL, MIOP

LAOP 396 TXSA, ALOB, MSOP, AROR, TXSB, TNMS, TXGC, LAOP, OKOP
MAOB 170 MAOB, CTOP, NJTO, NYRT
MDPC 407 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, PADV, SCOP, VATB, MDPC, OHLP, NJTO,

OHLB, NYRT, MIOP
MIOP 594 OHOV, MNOP, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, IAOP, SCOP,

TNMS, VATB, MDPC, MOMA, MWOB, OHLP, NJTO, WIDN, NEOR, OHLB, INOP, NYRT, GALL, MIOP
MNOP 270 MNOP, WIUW, IAOP, NEOR
MOMA 600 OHOV, MNOP, NCNC, KYDA, ALOB, PATF, NCCM, TNDS, WIUW, ILIP, MSOP, AROR, IAOP, SCOP, TXSB, TNMS,

MOMA, MWOB, OHLP, WIDN, NEOR, OHLB, TXGC, FLUF, INOP, GALL, MIOP, LAOP, OKOP
MSOP 482 TXSA, KYDA, ALOB, NCCM, TNDS, MSOP, AROR, SCOP, TXSB, TNMS, MOMA, MWOB, FLFH, TXGC, FLUF,

FLWC, GALL, LAOP, OKOP
MWOB 590 OHOV, TXSA, MNOP, KYDA, ALOB, TNDS, WIUW, ILIP, MSOP, AROR, IAOP, TXSB, TNMS, MOMA, MWOB,

WIDN, CORS, NEOR, TXGC, INOP, MIOP, LAOP, OKOP
NCCM 498 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, PADV, ILIP, MSOP, SCOP, TNMS, VATB, MDPC, MOMA,

OHLP, NJTO, FLFH, OHLB, FLUF, INOP, FLWC, NYRT, GALL, MIOP
NCNC 570 OHOV, NCNC, KYDA, ALOB, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, ILIP, MSOP, SCOP, TNMS,

VATB, MDPC, OHLP, NJTO, FLFH, OHLB, FLUF, INOP, FLWC, NYRT, GALL, MIOP
NEOR 377 MNOP, IAOP, MOMA, MWOB, CORS, NEOR, OKOP
NJTO 254 MAOB, NYFL, PATF, CTOP, DCTC, PADV, VATB, MDPC, NJTO, NYRT
NMOP 282 AZOB
NVLV 308 AZOB, CADN, CASD, CAOP
NYAP 182 MAOB, NYFL, CTOP, PADV, NJTO, NYRT
NYFL 582 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, PADV, WIUW, ILIP, SCOP, VATB, MDPC, OHLP,

NJTO, WIDN, OHLB, INOP, NYRT, MIOP
NYRT 195 MAOB, NYFL, CTOP, DCTC, PADV, MDPC, NJTO, NYRT
NYWN 326 MAOB, NYFL, PATF, CTOP, DCTC, PADV, MDPC, OHLP, NJTO, OHLB, NYRT, MIOP
OHLB 457 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, SCOP, VATB, MDPC,

OHLP, NJTO, WIDN, OHLB, INOP, NYRT, MIOP
OHLC 346 OHOV, KYDA, PATF, NCCM, DCTC, TNDS, WIUW, ILIP, MDPC, MOMA, OHLP, WIDN, OHLB, INOP, MIOP
OHLP 366 OHOV, NCNC, KYDA, NYFL, PATF, NCCM, DCTC, TNDS, PADV, ILIP, SCOP, VATB, MDPC, OHLP, WIDN, OHLB,

INOP, MIOP
OHOV 599 OHOV, MNOP, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, MSOP,

AROR, IAOP, SCOP, TNMS, VATB, MDPC, MOMA, MWOB, OHLP, NJTO, WIDN, NEOR, OHLB, FLUF, INOP,
NYRT, GALL, MIOP

OKOP 397 TXSA, AROR, TXSB, TNMS, MOMA, MWOB, NEOR, TXGC, LAOP, OKOP
ORUO 234 WALC, HIOP, ORUO
PADV 275 MAOB, NYFL, PATF, CTOP, DCTC, PADV, VATB, MDPC, NJTO, OHLB, NYRT
PATF 406 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, ILIP, SCOP, VATB, MDPC, OHLP,

NJTO, WIDN, OHLB, INOP, NYRT, MIOP
PRLL NA PRLL, FLMP
SCOP 450 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, PADV, SCOP, TNMS, VATB, MDPC, OHLP, FLFH,

OHLB, FLUF, INOP, FLWC, GALL
TNDS 525 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, PADV, ILIP, MSOP, AROR, IAOP, SCOP, TNMS, VATB,

MDPC, MOMA, MWOB, OHLP, WIDN, FLFH, OHLB, FLUF, INOP, FLWC, GALL, MIOP, LAOP
TNMS 594 OHOV, TXSA, NCNC, KYDA, ALOB, PATF, NCCM, TNDS, WIUW, ILIP, MSOP, AROR, IAOP, SCOP, TXSB, TNMS,

VATB, MOMA, MWOB, OHLP, WIDN, NEOR, FLFH, OHLB, TXGC, FLUF, INOP, FLWC, GALL, MIOP, LAOP, OKOP
TXGC 276 TXSA, TXSB, TXGC, LAOP, OKOP
TXSA 179 TXSA, TXSB, TXGC
TXSB 598 TXSA, ALOB, MSOP, AROR, TXSB, TNMS, MOMA, MWOB, CORS, NEOR, TXGC, LAOP, OKOP
UTOP 480 AZOB, CORS, UTOP, CADN
VATB 437 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, SCOP, VATB, MDPC, OHLP,

NJTO, OHLB, INOP, NYRT, GALL, MIOP
WALC 234 WALC, ORUO
WIDN 200 WIUW, ILIP, WIDN, INOP, MIOP
WIUW 248 MNOP, WIUW, ILIP, IAOP, WIDN, MIOP

Table 10 Geographical allocation policy for DSAs when the maximum permitted distance to a neighboring DSA

is 600 NM.
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DSA Radius Neighbors
(in NM)

ALOB 684 OHOV, TXSA, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, PADV, FLMP, ILIP, MSOP, AROR, IAOP, SCOP,
TXSB, TNMS, VATB, MDPC, MOMA, MWOB, OHLP, WIDN, FLFH, OHLB, TXGC, FLUF, INOP, FLWC, GALL,
MIOP, LAOP, OKOP

AROR 297 MSOP, AROR, TXSB, TNMS, MOMA, MWOB, LAOP, OKOP
AZOB 546 AZOB, CORS, UTOP, CADN, CASD, CAOP
CADN 655 WALC, HIOP, AZOB, ORUO, UTOP, CADN, CASD, CAOP
CAGS 318 HIOP, CADN, CAOP
CAOP 316 HIOP, AZOB, CADN, CASD, CAOP
CASD 537 HIOP, AZOB, UTOP, CADN, CASD, CAOP
CORS 316 CORS, UTOP
CTOP 343 MAOB, NYFL, PATF, CTOP, DCTC, PADV, MDPC, NJTO, NYRT
DCTC 421 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, PADV, SCOP, VATB, MDPC, OHLP, NJTO,

OHLB, INOP, NYRT, MIOP
FLFH 687 OHOV, NCNC, KYDA, ALOB, PRLL, NCCM, DCTC, TNDS, FLMP, MSOP, SCOP, TNMS, VATB, MDPC, OHLP,

FLFH, FLUF, FLWC, GALL, LAOP
FLMP 287 PRLL, FLMP, FLFH, FLUF, FLWC
FLUF 674 OHOV, NCNC, KYDA, ALOB, PATF, PRLL, NCCM, DCTC, TNDS, FLMP, MSOP, AROR, SCOP, TNMS, VATB,

MDPC, MOMA, OHLP, FLFH, OHLB, FLUF, INOP, FLWC, GALL, LAOP
FLWC 488 NCNC, ALOB, PRLL, NCCM, FLMP, MSOP, SCOP, FLFH, FLUF, FLWC, GALL
GALL 671 OHOV, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, DCTC, TNDS, PADV, FLMP, ILIP, MSOP, AROR, SCOP, TNMS,

VATB, MDPC, MOMA, MWOB, OHLP, NJTO, WIDN, FLFH, OHLB, TXGC, FLUF, INOP, FLWC, NYRT, GALL,
MIOP, LAOP, OKOP

HIOP NA HIOP, CASD
IAOP 235 MNOP, WIUW, ILIP, IAOP, MWOB, WIDN, NEOR
ILIP 447 OHOV, MNOP, KYDA, PATF, TNDS, WIUW, ILIP, AROR, IAOP, TNMS, MOMA, MWOB, OHLP, WIDN, NEOR,

OHLB, INOP, MIOP
INOP 510 OHOV, MNOP, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, DCTC, TNDS, PADV, WIUW, ILIP, MSOP, AROR, IAOP,

SCOP, TNMS, VATB, MDPC, MOMA, MWOB, OHLP, WIDN, NEOR, OHLB, INOP, GALL, MIOP
KYDA 696 OHOV, MNOP, NCNC, KYDA, ALOB, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP,

MSOP, AROR, IAOP, SCOP, TNMS, VATB, MDPC, MOMA, MWOB, OHLP, NJTO, WIDN, NEOR, FLFH, OHLB,
TXGC, FLUF, INOP, FLWC, NYRT, GALL, MIOP, LAOP, OKOP

LAOP 396 TXSA, ALOB, MSOP, AROR, TXSB, TNMS, TXGC, LAOP, OKOP
MAOB 170 MAOB, CTOP, NJTO, NYRT
MDPC 645 OHOV, NCNC, KYDA, ALOB, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, SCOP, VATB,

MDPC, OHLP, NJTO, WIDN, OHLB, FLUF, INOP, NYRT, GALL, MIOP
MIOP 216 OHOV, ILIP, OHLP, WIDN, OHLB, INOP, MIOP
MNOP 270 MNOP, WIUW, IAOP, NEOR
MOMA 694 OHOV, TXSA, MNOP, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, WIUW, ILIP, MSOP, AROR, IAOP, SCOP,

TXSB, TNMS, VATB, MDPC, MOMA, MWOB, OHLP, WIDN, CORS, NEOR, OHLB, TXGC, FLUF, INOP, GALL,
MIOP, LAOP, OKOP

MSOP 418 KYDA, ALOB, TNDS, MSOP, AROR, TXSB, TNMS, MOMA, TXGC, FLUF, GALL, LAOP, OKOP
MWOB 590 OHOV, TXSA, MNOP, KYDA, ALOB, TNDS, WIUW, ILIP, MSOP, AROR, IAOP, TXSB, TNMS, MOMA, MWOB,

WIDN, CORS, NEOR, TXGC, INOP, MIOP, LAOP, OKOP
NCCM 238 NCNC, KYDA, NCCM, TNDS, SCOP, VATB, GALL
NCNC 320 NCNC, KYDA, PATF, NCCM, DCTC, TNDS, PADV, SCOP, VATB, MDPC, OHLP, GALL
NEOR 377 MNOP, IAOP, MOMA, MWOB, CORS, NEOR, OKOP
NJTO 254 MAOB, NYFL, PATF, CTOP, DCTC, PADV, MDPC, NJTO, NYRT
NMOP 282 AZOB
NVLV 311 AZOB, UTOP, CADN, CASD, CAOP
NYAP 182 MAOB, NYFL, CTOP, PADV, NJTO, NYRT
NYFL 186 NYFL, PADV
NYRT 195 MAOB, NYFL, CTOP, DCTC, PADV, MDPC, NJTO, NYRT
NYWN 153 NYFL, OHLB
OHLB 484 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, SCOP, VATB, MDPC,

MOMA, OHLP, NJTO, WIDN, OHLB, INOP, NYRT, GALL, MIOP
OHLC 678 OHOV, MNOP, NCNC, KYDA, ALOB, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP,

MSOP, AROR, IAOP, SCOP, TNMS, VATB, MDPC, MOMA, MWOB, OHLP, NJTO, WIDN, NEOR, OHLB, FLUF,
INOP, NYRT, GALL, MIOP, OKOP

OHLP 624 OHOV, MNOP, NCNC, KYDA, ALOB, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP,
MSOP, AROR, IAOP, SCOP, TNMS, VATB, MDPC, MOMA, MWOB, OHLP, NJTO, WIDN, OHLB, FLUF, INOP,
NYRT, GALL, MIOP

OHOV 410 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, PADV, WIUW, ILIP, SCOP, TNMS, VATB, MDPC,
MOMA, OHLP, WIDN, OHLB, INOP, GALL, MIOP

OKOP 418 TXSA, MSOP, AROR, TXSB, TNMS, MOMA, MWOB, NEOR, TXGC, LAOP, OKOP
ORUO 662 WALC, HIOP, ORUO, UTOP, CADN, CAOP
PADV 235 MAOB, NYFL, PATF, CTOP, DCTC, PADV, VATB, MDPC, NJTO, NYRT
PATF 544 OHOV, NCNC, KYDA, ALOB, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, SCOP, VATB,

MDPC, MOMA, OHLP, NJTO, WIDN, OHLB, INOP, NYRT, GALL, MIOP
PRLL NA PRLL, FLMP, FLFH, FLWC
SCOP 263 NCNC, NCCM, TNDS, SCOP, VATB, FLUF, GALL
TNDS 694 OHOV, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, FLMP, ILIP, MSOP, AROR,

IAOP, SCOP, TXSB, TNMS, VATB, MDPC, MOMA, MWOB, OHLP, NJTO, WIDN, NEOR, FLFH, OHLB, TXGC,
FLUF, INOP, FLWC, NYRT, GALL, MIOP, LAOP, OKOP

TNMS 561 OHOV, TXSA, NCNC, KYDA, ALOB, NCCM, TNDS, WIUW, ILIP, MSOP, AROR, IAOP, SCOP, TXSB, TNMS, MOMA,
MWOB, OHLP, WIDN, NEOR, OHLB, TXGC, FLUF, INOP, GALL, MIOP, LAOP, OKOP

TXGC 276 TXSA, TXSB, TXGC, LAOP, OKOP
TXSA 179 TXSA, TXSB, TXGC
TXSB 598 TXSA, ALOB, MSOP, AROR, TXSB, TNMS, MOMA, MWOB, CORS, NEOR, TXGC, LAOP, OKOP
UTOP 537 AZOB, ORUO, CORS, UTOP, CADN, CASD, CAOP
VATB 517 OHOV, NCNC, KYDA, ALOB, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, SCOP, VATB, MDPC,

OHLP, NJTO, OHLB, FLUF, INOP, NYRT, GALL, MIOP
WALC 234 WALC, ORUO
WIDN 423 OHOV, MNOP, KYDA, PATF, WIUW, ILIP, IAOP, MOMA, MWOB, OHLP, WIDN, OHLB, INOP, MIOP
WIUW 248 MNOP, WIUW, ILIP, IAOP, WIDN, MIOP

Table 11 Geographical allocation policy for DSAs when the maximum permitted distance to a neighboring DSA

is 700 NM.


