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Problem definition: Last-mile delivery is a critical component of logistics networks, accounting for approx-

imately 30-35% of costs. As delivery volumes have increased, truck route times have become unsustainably

long. To address this issue, many logistics companies, including FedEx and UPS, have resorted to using a

“Driver-Aide” to assist with deliveries. The aide can assist the driver in two ways. As a “Jumper”, the aide

works with the driver in preparing and delivering packages, thus reducing the service time at a given stop.

As a “Helper”, the aide can independently work at a location delivering packages, while the driver leaves to

deliver packages at other locations and then returns. Given a set of delivery locations, travel times, service

times, the jumper’s savings and the helper’s service times, the goal is to determine both the delivery route

and the most effective way to use the aide (e.g., sometimes as a jumper and sometimes as a helper) to min-

imize the total delivery time. Methodology/results: We model this problem as an integer program with

an exponential number of variables and an exponential number of constraints, and propose a branch-cut-

and-price approach for solving it. Our computational experiments are based on simulated instances built on

real-world data provided by an industrial partner and a dataset released by Amazon. More importantly, our

results characterize the conditions under which this novel operation mode can lead to significant savings in

terms of both the routing time and cost. Managerial implications: Our computational results show that

the driver-aide with both jumper and helper modes is most effective when there are denser service regions

and when the truck’s speed is higher (≥ 10 MPH). Coupled with an economic analysis, we come up with

rules of thumb (that have close to 100% accuracy) to predict whether to use the aide, and in which mode.

Empirically, we find that the service delivery routes with greater than 50% of the time devoted to delivery

(as opposed to driving) are the ones that provide the greatest benefit. These routes are characterized by a

high density of delivery locations.
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1. Introduction

Over the last decade, consumer purchasing behavior has increasingly shifted online. According

to U.S. Census Bureau data (U.S. Census Bureau 2022), e-commerce sales jumped by nearly 32

percent in 2020, compared to the prior year. The COVID-19 health crisis has accelerated this shift

(United Nation 2021), triggering significant pressures on global supply chains. The result has been

an unprecedented growth in last-mile package delivery (Younan 2020, Roberson 2020). Last-mile

delivery is a critical component of logistics networks, accounting for approximately 30-35% of costs
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(Rosenberger 2022). Thus, efficient management of last-mile delivery plays a key role in lowering

overall supply chain costs.

As delivery volumes have increased, truck route times have become unsustainably long. In the

short term, these can be addressed to some extent with the use of overtime. From a long-term

perspective, however, this is undesirable due to several factors, including costs, pushing against

labor/government rules on the workday length, and employee burnout, etc. One way to address

the problem is to increase the number of trucks (and drivers) to ensure that the route times fall

within acceptable norms. With the shortage of both delivery trucks (PYMNT 2020) and skilled

labor (Ngo and Swanson 2021, Elite Extra 2022), as well as the fact that all logistics companies

are attempting to hire qualified drivers, this is not a viable or cost-effective strategy. Alternatively,

to address this issue, many logistics companies, including FedEx and UPS, have resorted to using

a “Driver-Aide” to assist with deliveries. When a truck is equipped with both a “driver” and an

“aide”, the aide can assist the driver to help shorten the delivery time and reduce the overall

route time. As the cost of a driver-aide is significantly lower than that of a driver, this enables the

logistics company to shorten the overall duration of the route to bring it within acceptable norms

without the need for additional trucks and drivers (we note that as the average package size has

become smaller, truck capacity is no longer seen as a limiting constraint; thus, the limiting factor

is the route duration).

In the industry, the driver-aide can be used to assist the driver in two ways. As a “Jumper”, the

aide works with the driver in preparing and delivering packages, thereby reducing the service time at

a given stop. This is what is typically seen in practice. We note that a reduction in service time can

vary from stop to stop. Depending on the location (e.g., a building with special entry requirements),

the reduction may be limited or nonexistent. As a “Helper”, the aide can independently work at a

stop delivering packages, while the driver leaves to deliver packages at other stops and then returns.

This is not as prevalent in practice, as it requires coordination between the driver and the aide.

Moreover, it is not clear to logistics companies how best to leverage this capability. We should note

that each delivery stop corresponds to multiple customer locations (e.g., all at the same building

or in close geographic proximity). The aide can move between these customer locations within

a stop on foot or by using a light vehicle (e.g., e-scooter or e-bike). Among many alternatives

under consideration, a plausible one is an e-bike. E-bikes have been adopted for deliveries in many

European countries (e.g., the U.K., Germany, and Estonia) and are actively being tested in the

U.S. by the USPS (Toll 2022), Amazon (Sutton 2022), FedEx (FedEx 2020), and UPS (CBSNews

2022) as delivery options. Conveniently, an e-bike can be attached to the delivery truck when the

aide is used in the jumper mode, while it can be detached from the delivery truck when the aide

is in the helper mode.
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In this paper, we consider the logistics company’s problem of how best to utilize the driver-aide.

Specifically, given a set of delivery locations, travel times, service times, the jumper’s savings, and

the helper’s service time, the goal is to determine both the delivery route and the most effective

way to use the aide (e.g., sometimes as a jumper and sometimes as a helper) to minimize the

total delivery time. This problem is referred to as the “Driver-Aide (DA) Problem”. We model it

as an integer program (IP) with an exponential number of variables and an exponential number

of constraints and propose a sophisticated branch-cut-and-price approach to solve it. We conduct

computational experiments on simulated instances based on real-world data provided by an indus-

trial partner and a dataset released by Amazon. These experiments demonstrate that the proposed

branch-cut-and-price approach can find near-optimal solutions efficiently. More importantly, they

allow us to conduct an economic analysis of the tradeoffs in using a driver-aide, and characterize

the conditions under which this novel operation mode can lead to significant savings.

Our economic analysis shows that, across our instances, the driver-aide problem not only can

reduce the total delivery time by 29% on average, but can also reduce the operating cost by 14% on

average. Our economic analysis aims to come up with rules of thumb to use in practice. Roughly,

delivery routes that have greater than 50% of the time devoted to delivery (as opposed to driving)

are the routes that provide the greatest benefit. These routes are characterized by a high density

of delivery locations. Our case study on the dataset released by Amazon (Merchán et al. 2022)

shows that the driver-aide problem can potentially generate significant benefits (on average, a 35%

reduction in the routing time and 22% in cost savings).

The driver-aide problem generalizes the celebrated Vehicle Routing Problem (Toth and Vigo

2002, Golden et al. 2008, Toth and Vigo 2014, Mor and Speranza 2022). However, the driver-aide

problem requires the same truck to visit a node multiple times. While multiple visits of a customer

have been previously considered in the literature (see Xu et al. 2017), these multiple visits are

implemented by different trucks, and not by the same truck. The closest problem studied in the

literature is the hybrid driver helper (HDH) model in Lu et al. (2022). The HDH model uses a

completely different objective function that combines labor and fuel costs together; it also ignores

the possibility of the HDH moving among the locations within a node. For the HDH model, Lu

et al. (2022) present a mixed integer programming (MIP) formulation based on the big-M technique

and report computational results without optimality gaps. This MIP formulation does not scale

well, as demonstrated in our experiments. In the service industry, Fikar and Hirsch (2015) and

Coindreau et al. (2019) consider a routing problem involving service workers on foot. Although

this problem shares some similarities with the driver-aide problem (i.e., routing of independent

service workers on foot), it is quite different in that there are no tradeoffs to consider. Specifically,

in the driver-aide problem, there is a benefit to keeping the aide and driver together with regard
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to service time, which is lost when the driver and aide work separately at nodes. Further, given

the nature of the service industry, each route has many fewer nodes to visit, compared to package

delivery, and service time dominates the cost of the route. Despite focusing on metaheuristics as

solution approaches to solve the problem, these methods have limited success, with running times

often over 10 hours.

The driver-aide problem shares some similarities with drone delivery problems, which have

gained recent attention in the literature. Comprehensive reviews by Otto et al. (2018) and Chung

et al. (2020) nicely summarize the most relevant work on this topic. There are several significant

differences between the driver-aide and the drone delivery problems. First, the drone and the deliv-

ery truck move over different networks (typically the drone moves in Euclidean space, while the

delivery truck moves over the street network), which is not the case in the driver-aide problem.

Second, drones usually have two major capacity restrictions: i) the number of packages carried by

a drone (which is often set as a small number or is even simply set as one due to the allowable

weight that a drone can carry), and ii) the travel distance or speed allowed for a drone (due to

battery capacity and energy consumption). The driver-aide problem also has some similarities to

the capacitated autonomous vehicle assisted delivery problem studied by Reed et al. (2022a,b).

In this problem, an autonomous vehicle with a single delivery person is used to make package

deliveries. The autonomous vehicle does not make deliveries without the delivery person, whereas

in the driver-aide problem, both the driver and driver-aide can independently and simultaneously

make deliveries (this creates greater opportunities for a reduction in the overall service time in the

driver-aide problem, which does not occur in their setting).

Most importantly, the driver-aide represents a cost-effective way to address the delivery of

increased package volumes at scale today. Drone technology (or autonomous vehicle technology) is

yet to be widely deployed and faces severe regulations from the Federal Aviation Administration

(https://www.faa.gov/uas/) (or the National Highway Traffic Safety Administration) in the U.S.

It is unclear when drones (or autonomous vehicles) will be approved for mass-market deliveries (at

least in the current regulatory environment, this does not seem to be happening anytime soon), and

whether (at least in the short term) it is a viable cost-effective technology for large-scale package

delivery. Amazon Prime Air (Amazon 2022) is one of many examples that illustrate this situation.

Amazon’s CEO Jeff Bezos announced Amazon Prime Air in 2013, which was supposed to begin

by 2018. However, the service has yet to launch and is still being tested in several locations across

the world as of 2022.

Solution approaches based on column generation (branch-and-price, branch-cut-and-price, price-

and-branch, and so on) are proven techniques for large and hard integer programming problems

(Barnhart et al. 1998, Desaulniers et al. 2006). This is especially the case for Vehicle Routing

https://www.faa.gov/uas/
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Figure 1 Illustration of the Nodes and Travel Time Matrixes (T , T̂ , and Ť ) in the Driver-Aide Problem.

problems, where the current state of the art exact methods are all found in this category (Costa

et al. 2019, Florio et al. 2020, Rostami et al. 2021). However, the typical set covering formulation

in the literature cannot be applied to the driver-aide problem because it requires modeling the

truck traveling with and without the aide. We propose a novel formulation to model the driver-aide

problem. We also present valid inequalities to strengthen the formulation. Moreover, we use several

algorithmic enhancements to improve the efficiency of the branch-cut-and-price approach. These

enhancements improve the running time over 300 times, or by over two orders of magnitude, on

average. All of these lead to a solution approach that can efficiently find near-optimal solutions for

real-world-sized instances.

The rest of the paper is organized as follows. Section 2 provides a mathematical description of

the problem, an illustrative example, and a compact MIP formulation for the problem. However,

this MIP is not computationally viable. Consequently, Section 3 describes our branch-cut-and-price

approach in solving the driver-aide problem. It provides a novel IP formulation with an exponential

number of variables and constraints. Further, we describe several algorithmic enhancements that

are key to speeding up and improving the computational tractability of the branch-cut-and-price

approach. Section 4 describes our computational experience on simulated instances based on real-

world data. Based on our solutions, we also present an economic analysis of the tradeoffs involved

in using a driver-aide. This provides managers in the field with rules of thumb to determine which

routes may benefit from a driver-aide, and how best to utilize them. Section 5 conducts a case

study based on a dataset released by Amazon (Merchán et al. 2022) to further evaluate the impact

of the driver-aide problem. Section 6 provides concluding remarks.

2. The Driver-Aide Problem: Definition and Formulation

We formally describe the driver-aide problem. In addition to the driver, a truck is equipped with

an aide who can assist the driver in two ways. As a “Jumper”, the aide works with the driver in

preparing and delivering packages, thereby reducing the service time at a given stop. As a “Helper”,

the aide can independently work at a stop delivering packages, while the driver leaves to deliver

packages at other stops and then returns. The key difference between the two modes is whether the
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aide works with or without the driver at a stop. Given a set of delivery stops, travel times, service

times, the jumper’s savings, and the helper’s service time, the goal is to determine both the delivery

route and the most effective way to use the aide (e.g., sometimes as a jumper and sometimes as

a helper) to minimize the total delivery time. As the application envisioned for driver-aide routes

generally does not have time windows (time windows are typically associated with more expensive

overnight deliveries—where a premium is paid—and are not common in package delivery), we do

not consider them.

The formal definition of the problem is as follows. We have a graph G = (V,A) with a set of

nodes V = {0,1,2, . . . , n} and a set of arcs A. V contains n+ 1 nodes. Node 0 is the depot, and

the other n nodes, C = V \ 0, represent stops to visit. Arc set A contains an arc from nodes i to

j if the truck can travel from nodes i to j. As we mentioned earlier, each node corresponds to

multiple customers. These customers could be at the same location (i.e., same building) or in close

geographical proximity. The order of visiting customer locations within a node is predetermined

(the order is often provided by the service provider or can be obtained by solving a traveling

salesman problem (TSP) of all customer locations in advance). Thus, each node has one start point

and one end point within it (when the customers are all at the same location, this point is the

same, whereas the start and end points are different when the customers are in close proximity).

When the helper mode is used at a node, we drop off the aide at the start point and pick up the

aide at the end point. Consequently, in the helper mode, the aide can move between customers

within a node. A travel time matrix T has entry ti,j, showing the travel time from node i’s end

point to node j’s start point. A travel time matrix T̂ has entry t̂i,j, showing the travel time from

node i’s start point to node j’s start point (the truck drops off the aide at the start point of node

i and moves to the start point of node j). A travel time matrix Ť has entry ťi,j, showing the travel

time from node i’s end point to node j’s end point (the truck moves from the end point of node i to

picks up the aide at the end point of node j). Without loss of generality, we assume that the travel

time matrices satisfy the triangle inequality. Figure 1 illustrates the setting related to the nodes

and the travel time matrixes (T , T̂ and Ť ) in detail. When customers are at the same location

within a node, T = T̂ = Ť . Even when customers are not at the same geographical location within

a node, the three travel times, ti,j, t̂i,j, and ťi,j, are quite close to each other and frequently (more

than 50% of the time) identical. Section 4 provides specific details with regard to our case study

on an Amazon dataset.

For each node i in C, there are three attributes: i) the service time, si, shows the time needed at

node i, including the time to serve the customer locations within node i and the time to travel from

the start point to the end point of node i; ii) the jumper-saving factor, fi, provides the percentage

savings of the service time at node i if an aide is on the truck and is used as a jumper; and iii) the
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Figure 2 Illustration of Optimal Routes for the Driver-Aide Problem.

helper-serving factor, gi, provides the percentage change of the service time at node i if an aide

is used as a helper. Thus, with the helper, the delivery time needed is changed to (1 + gi)si. A

positive gi means that the aide moves slower than the truck within the customer locations at node

i, and a negative gi means that the aide moves faster. Notice that while fi is always nonnegative

for savings, this is not necessarily the case for gi because utilizing an e-bike (or moving on foot or

an e-scooter) may result in shorter travel times between some customer locations at a node, and

thus, lead to savings. Consequently, we need to decide the most effective way to use the aide (e.g.,

sometimes as a jumper and sometimes as a helper). If the aide is dropped off at the start point of

a node as a helper, the truck can move forward and make deliveries to other locations, while the

truck must return to the end point of the node and pick up the aide at a later time point. The goal

is to determine a route for the truck and how to use the aide while minimizing the total delivery

time.

We use one small example to illustrate the driver-aide problem. In this example,

there are 11 nodes: one depot and ten stops. The depot, node 0, is located at

Euclidean coordinate (3,9), and the ten stops are at the following Euclidean coordinates:

(5,9), (7,10), (8,8), (7,6), (8,3), (9,1), (9,0), (8,2), (7,4), and (3,7). For ease of exposition, the travel

time is set as the Euclidean distance between two points, with T = T̂ = Ť . The service times are 39,

91, 18, 30, 11, 29, 76, 29, 59, and 95 for nodes 1 to 10, respectively. The jumper-saving factors, fi,

are 0.5 for nodes 1, 2, 4, and 7, and are 0 for other nodes. For simplicity, the helper-serving factors,

gi, are 0 for all nodes. Figure 2 illustrates this instance. When the driver-aide is not available, the

optimal route is shown in Figure 2(a). When there is no aide, the driver-aide problem is a TSP

(Because the service time remains the same regardless of the route, minimizing the route duration

is achieved by finding the shortest TSP tour). The optimal route time is 503.58 (travel and service

time). When the aide can only be used as a jumper, the optimal route remains the same as the

optimal TSP route. This can easily be proved by contradiction.
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Proposition 1. When the aide can only be used as a jumper, the optimal route for the driver-

aide problem is identical to the optimal TSP route.

While the route is the same as the TSP route, the total route time with an aide is different. For

the example, in Figure 2, if the aide can only be used as a jumper, the optimal routing time is

385.58 due to the savings on service time, which reflects a reduction of 118.00 units, compared to

the situation without an aide. This is due to the reduction in service time because of the jumper

mode. When the helper mode is available, Figure 2(b) shows the optimal route. The letters “J”,

“H”, and “N” beside a node indicate the jumper mode, the helper mode, and no aide, respectively.

Only the driver travels on the blue dashed loops (8-6-8 and 10-3-9-10). Thus, the truck drops off

the aide as a helper at the start point of node 8 and visits node 6 before picking up the aide at

the end point of node 8. Later, the truck drops off the aide as a helper at the start point of node

10 and visits nodes 3 and 9 before picking up the aide at the end point of node 10. The optimal

route time is 276.67. The savings are 108.91 units, compared to the jumper-only mode. The total

savings on time are 226.91 units, a 45% reduction, compared to the optimal TSP route with no

aide.

We present an MIP formulation for the driver-aide problem below. A similar formulation is

discussed in Lu et al. (2022). The key idea behind this formulation is to create a dummy node di for

each location i in C such that if the aide is used as a helper at node i, the truck must visit dummy

node di at a later time. Thus, the dummy nodes are used to capture the pick-up requirement in

the helper mode. Figure 2(c) illustrates this idea by including the two dummy nodes, d8 and d10.

The letters “P” beside them indicates that the aide is picked up. Each dummy node has a service

time, a jumper-saving factor, and a helper-serving factor as 0. Let D= {d1, d2, . . . , dn} denote the

dummy nodes. Use n(i)− and n(i)+ to denote the sets of node i’s incoming and outgoing neighbors,

respectively. Then, for each dummy node di in D, we add arcs such that n(di)
− = n(i)− and

n(di)
+ = n(i)+. For each newly added arc, tj,di = t̂j,di = ťj,di = ťj,i if j in n(di)

− and tdi,j = t̂di,j =

ťdi,j = ti,j if j in n(di)
+. Let Ā denote the set of arcs after adding arcs for the dummy nodes. Thus,

the transformed graph is denoted as Ḡ= (V ∪D,Ā).

Define a nonnegative variable ai for each node i in V ∪D. For a node i in C, ai represents the

earliest time that the truck can arrive at node i. For a node di in D, adi represents the earliest time

that the truck can leave node di for the next node after node i’s service is completed (assuming

that node i has been serviced in the helper mode). For the depot, a0 represents the earliest route

completion time (i.e., the time that the truck returns to the depot). Define a binary variable hi

for each i in C. If hi is 1, the aide is used as a helper at node i; otherwise, hi is 0. Define a binary

variable zi for each node i in C ∪D. If zi is 1, the aide is on the truck and is used as a jumper at
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node i. Finally, for each arc {i, j} in Ā, a binary variable xi,j represents whether the truck travels

from nodes i to j or not.

(MIP1) Min a0 (1)

Subject to
󰁛

j∈n(i)−

xj,i = 1, ∀i∈ V, (2)

󰁛

j∈n(i)−

xj,i ≤ 1, ∀i∈D, (3)

󰁛

j∈n(i)−

xj,i =
󰁛

j∈n(i)+

xi,j, ∀i∈ V ∪D, (4)

hi + zi ≤ 1, ∀i∈C, (5)

hi + zi ≥ x0,i, ∀i∈C, (6)

hj + zj ≤ zi +(1−xi,j), ∀i∈C ∪D,j ∈ n(i)+ ∩C, (7)

hj + zj ≥ zi − (1−xi,j), ∀i∈C ∪D,j ∈ n(i)+ ∩C, (8)
󰁛

j∈n(di)
−

xj,di = hi, ∀i∈C, (9)

zdi = hi, ∀i∈C, (10)

ai ≥ t0,ix0,i, ∀i∈ n(0)+, (11)

ai +M(1−xj,i)≥ aj + tj,ixj,i + sj − fjsjzj +(t̂j,i − tj,i − sj)hj, ∀j ∈C ∪D, i∈ n(j)+,
(12)

adi +M(1−hi)≥ ai +(1+ gi)si, ∀i∈C, (13)

a≥ 0,x,z,h∈ {0,1}. (14)

Objective function (1) minimizes the total route time. Constraint (2) requires the truck to visit

all nodes in V exactly once. Constraint (3) requires the truck to visit a dummy node at most once.

Constraint set (4) is the flow balance constraints. Constraint (5) ensures that each node in C is

served in one of three ways: by the jumper mode if zi = 1, by the helper mode if hi = 1, or by

the driver alone if hi = zi = 0. Constraint (6) requires that the first node in C visited by the truck

can only be served either by the jumper mode or the helper mode, given that the aide must be on

the truck as it just leaves the depot. Constraints (7) and (8) ensure that if the truck moves from

nodes i to j and the jumper mode is used (zi = 1) at node i, then node j is either served by the

jumper (zj = 1) or helper (hj = 1) mode. Constraint (9) requires the truck to visit dummy node di

if the aide is dropped off at node i in the helper mode. Constraint (10) ensures that the jumper

mode is enabled after the truck returns to pick up the aide at dummy node di. Constraints (11)–

(13) track the arrival and departure times of each node in C and D, respectively, by applying the

big-M approach, where M is a very large number. In particular, constraint (11) applies the first

node visited in the route. For each node j in C and D, constraint (12) calculates the travel and

actual service times (depending on the mode used), if the truck travels from nodes j to i, for the
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arrival time of node i. Note that each dummy node has a service time as 0 and t̂j,i = tj,i. Thus, the

coefficient of the associated h variable is 0. Constraint (13) ensures that the truck can only pick

up the aide at node di after the aide finishes his or her service at node i (where the aide is used as

a helper). Lastly, with a slight abuse of notations, constraint (14) enforces the nonnegativity and

binary requirements on the respective variables.

While MIP1 is valid for the driver-aide problem, it is not a computationally viable one (one

reason is that the big-M approach is used in constraints (12)–(13)). Lu et al. (2022) uses a similar

formulation. However, the optimality gaps are not reported. Thus, we have no idea regarding the

quality of the solutions obtained by Lu et al. (2022). In our experiments, for an 11-node instance,

we found that the optimality gap is over 98.6% after running MIP1 with a 12-hour time limit.

One reason the driver-aide problem is extremely challenging is that when the aide is left at a

node as a helper, we cannot pick up the aide before the service is completed. Therefore, we need to

track the service completion time at each node where the aide is used as a helper. While tracking

the time is not new in the vehicle routing literature, the driver-aide problem uniquely requires the

same truck to visit a node multiple times. Specifically, when the aide is used as a helper at a node,

the driver leaves to deliver packages at other stops and then returns to the end point of the stop

to pick up the aide. All of this motivates us to develop a more sophisticated and computationally

viable approach for solving the driver-aide problem.

3. A Branch-Cut-and-Price Approach

To develop a branch-cut-and-price approach, we describe a formulation where we do not explicitly

impose time tracking or the requirement of multiple visits. Observe that these two requirements

are needed when the aide is dropped off at a node as a helper. On the one hand, the aide needs

to finish the service at this node. On the other hand, the truck travels to other stops and returns

to pick up the aide. We refer to this visiting sequence as a loop, as it starts and ends at the same

stop, while the start and end points can be different. Comparing the aide’s service completion time

and the truck’s return time, the larger value is the truck’s departure time after picking up the

aide. Therefore, in the following formulation, we include all such loops and determine which ones

to include in the route.

Let L be a set of all possible loops, p be one such loop, and Qp be the set of nodes on loop p that

only the driver visits (i.e., Qp does not contain the starting and ending nodes). For each arc {i, j}

in A, a binary variable xi,j represents the route that the truck travels with the aide on it. It is 1 if

the truck travels from nodes i to j with the aide on it; otherwise, it is 0. Let Li denote the loops

starting and ending at node i (i.e., the truck drops off and picks up the aide at node i). For each

loop p in L, a binary variable yp represents whether the loop is included in the route or not. If yp
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is 1, loop p is included, and the driver visits the nodes in Qp by himself/herself. Otherwise, it is 0.

Also, let cp denote loop p’s time duration, which is calculated as the larger of (i) the aide’s service

completion time at the starting node and (ii) the truck’s return time. For each node i in C, the

binary variables hi and zi have the same meaning as in MIP1. If hi is 1, the aide is used as a helper

at node i; otherwise, hi is 0. If zi is 1, the aide is on the truck and is used as a jumper at node i. Let

S be a set of nodes in C. We can write the following IP formulation for the driver-aide problem:

(IP2) Min
󰁛

{i,j}∈A

ti,jxi,j +
󰁛

i∈C

(1− fi)sizi +
󰁛

p∈L

cpyp (15)

Subject to
󰁛

j∈n(0)−

xj,0 = 1,
󰁛

j∈n(0)+

x0,j = 1, (16)

󰁛

j∈n(i)−

xj,i +
󰁛

p∈L:i∈Qp

yp = 1, ∀i∈C, (17)

󰁛

j∈n(i)−

xj,i =
󰁛

j∈n(i)+

xi,j, ∀i∈C, (18)

hi + zi =
󰁛

j∈n(i)−

xj,i, ∀i∈C, (19)

󰁛

p∈Li

yp = hi, ∀i∈C, (20)

󰁛

i,j∈S:{i,j}∈A

xi,j ≤ |S|− 1, ∀S ⊆C, |S|≥ 2, (21)

h,x,y,z∈ {0,1} . (22)

Objective function (15) minimizes the route’s total routing time. Constraint (16) requires the

truck to enter and leave the depot exactly once. Constraint (17) requires the truck to visit all nodes

in C exactly once, either with the aide (x variables) or without the aide (y variables). Constraint

set (18) is the flow balance constraints for all nodes in C. Constraint (19) ensures that if the aide

is on the truck when the truck visits node i in C, the aide should be used in one of two modes:

either as a jumper when zi = 1 or as a helper when hi = 1. Constraint (20) requires a loop p in Li

to be be selected if the helper mode is used at node i in C. Constraint (21) is a subtour elimination

constraint for the subset of the nodes in C visited by the truck with the aide (x variables). With

a slight abuse of notation, constraint (22) enforces binary requirements on the variables.

3.1. Basic Components

We present the basic components for our branch-cut-and-price approach in this section. Before

presenting the row- and column-generation procedure, let IP2R denote a restricted version of IP2

such that IP2R is identical to IP2, except that it only contains a subset of constraint (21) and a

subset of the y variables. Specifically, let L
′
be a subset of L and S

′
be the set of subsets of the

nodes in C considered so far. We have
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(a) The Original Graph G= (V,A). (b) The Transformed Graph Gi = (V i,Ai) with i= 1.
Figure 3 Illustration of the Transformed Graph for the Basic Column-Generation Problem: Pricingi.

(IP2R) Min
󰁛

{i,j}∈A

ti,jxi,j +
󰁛

i∈C

(1− fi)sizi +
󰁛

p∈L
′

cpyp (23)

Subject to (16), (18), (19), (22),
󰁛

j∈n(i)−

xj,i +
󰁛

p∈L
′
:i∈Qp

yp = 1, ∀i∈C, (24)

󰁛

p∈L
′
i

yp = hi, ∀i∈C, (25)

󰁛

i,j∈S:
{i,j}∈A

xi,j ≤ |S|− 1, ∀S ∈ S
′
. (26)

Then, let LP2R be the LP relaxation of IP2R.

Basic Row Generation: There are exponentially many constraints in IP2 because of con-

straint (21). We need a row-generation procedure for it. We want to eliminate subtours on the

subset of the nodes in C. That means
󰁓

i,j∈S:{i,j}∈A xi,j ≤ |S|− 1 for all S ⊆ C and |S| ≥ 2. The

following row-generation procedure is invoked when we have an optimal solution of LP2R, denoted

by (h∗,x∗,y∗,z∗). We can use a shortest path algorithm to find the directed cycles included by x∗

(Grötschel et al. 1985). Specifically, eliminating the subtours means no directed cycles. Thus, for a

given directed cycle C, we have
󰁓

{i,j}∈C xi,j ≤ |C|−1. Let w= 1−x∗. We have
󰁓

{i,j}∈C(1−wi,j)≤

|C|−1 as
󰁓

{i,j}∈C xi,j ≤ |C|−1. That leads to the inequalities
󰁓

{i,j}∈C wi,j ≥ 1. Then, for each node

i in C, create a dummy node di and add the incoming arcs of node i to it such that n(di)
− = n(i)−.

If a shortest path based on w from nodes i to di has a distance smaller than 1, a violated subtour

elimination constraint (a directed cycle starting and ending at node i) has been found. After that,

we add the new constraint
󰁓

i,j∈S:{i,j}∈A xi,j ≤ |S|− 1 to IP2R, where S contains the nodes in the

shortest path, excluding dummy node di.

Basic Column Generation: IP2 has exponentially many y variables because all loops are included

in IP2. A pricing procedure is needed to dynamically add them to IP2R. The column-generation

procedure for variable y is as follows. Let α and β be the dual variables associated with con-

straints (24) and (25). We have a solution (α∗,β∗). For each node i, we can find a new loop by

applying the following procedure. First, remove node 0 from graph G. Create a dummy node di

and connect all nodes in n(i)− to node di by the incoming arcs, i.e., n(di)
− = n(i)−. For each

newly added arc, its travel times are tj,di = t̂j,di = ťj,di = ťj,i for j in n(di)
−. Denote the resulting
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graph as Gi = (V i,Ai). Thus, an elementary shortest path with side constraints (constraints (28),

(29), and (30) below) from nodes i to di is equivalent to the loop we need. Figure 3 illustrates the

transformation with a small example. Figure 3(a) is the original graph, and Figure 3(b) shows the

transformed graph with i= 1. An elementary shortest path from node 1 to node d1 is the loop we

need.

For each arc {j, l} in Ai, a binary variable uj,l represents the arc on which the truck travels.

It is 1 if the truck travels from nodes j to l, and 0 otherwise. For each node l in V i \ {i, di}, a
binary variable vl is 1 if node l is in the loop (which starts at node i and ends at node di), and is 0

otherwise. Let a continuous variable cp denote the total time of this loop. We use A(S)+ to denote

the outgoing arcs of a set of nodes S. We have the following pricing problem.

(Pricingi) Min cp −
󰁛

l∈V i\{i,di}

α∗
l vl −β∗

i (27)

Subject to
󰁛

{j,l}∈Ai

uj,l = vl, ∀l ∈ V i \ {i, di}, (28)

cp ≥ (1+ gi)si, (29)

cp ≥
󰁛

{i,k}∈Ai

t̂i,kui,k +
󰁛

{k,di}∈Ai

ťk,diuk,di +
󰁛

{l,j}∈Ai:
l ∕=i,j ∕=di

tl,jul,j +
󰁛

l∈V i\{i,di}

slvl, (30)

󰁛

{i,k}∈Ai

ui,k = 1, (31)

󰁛

{k,di}∈Ai

uk,di = 1, (32)

󰁛

{j,l}∈Ai

uj,l =
󰁛

{l,j}∈Ai

ul,j, ∀l ∈ V i \ {i, di}, (33)

󰁛

{j,l}∈Ai

uj,l ≤ 1, ∀l ∈ V i \ {i, di}, (34)

󰁛

{m,j}∈A(S)+

um,j ≥
󰁛

j∈n(l)+

ul,j, ∀S ⊆ V i \ {i, di}, l ∈ S, |S|≥ 2, (35)

cp ≥ 0,u∈ {0,1},v ∈ {0,1}. (36)

Objective function (27) minimizes the reduced cost of the loop. Constraint (28) links variables

u and v. Thus, if node l is visited, ul is 1. Constraints (29) and (30) calculate the total time of

loop p, which is the maximum of the service time at node i by the helper and the total time for

the truck to get back to node i. Constraint (31) ensures that a one-unit flow goes out from node

i, while constraint (32) ensures that a one-unit flow goes into node di; they are the source and

sink nodes. Constraint set (33) represents the flow balance constraints for all nodes in V i \ {i, di}.
Constraint (34) ensures that each node is visited at most once. Constraint (35) is a generalized

cutset inequality (GCS), which ensures that there are no cycles in the solution. Constraint (36)

enforces the nonnegative and binary requirements on the variables. If the optimal objective is

negative, we add a y variable to reflect the optimal solution of Pricingi to IP2R. The pricing
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problem is NP-hard because it is the elementary shortest problem with negative cost cycles and

side constraints (Garey and Johnson 1979).

Basic Initial y Variables: We initialize IP2R with some basic y variables by creating loops in the

following way: for each i in C, we create a loop {i, i+1, i}, where i+1= 1 if i= n. In other words,

we create a loop starting and ending at node i. The loop also includes node i+1; however, when

i= n, the loop includes node 1. Thus, in total, we include n basic y variables.

Branching Rule: In the branching procedure, rather than branching on the variables, we branch

on constraint set (19) to create two branches; one with hi + zi = 0 and one with hi + zi = 1. In

this way, we decide whether a node is on the driver-only loop (hi + zi = 0) or not (hi + zi = 1).

Furthermore, we pick the most fractional constraint (19) on which to branch. Specifically, let ĥ and

ẑ be the solution values of the h and z variables at the current branch node. We choose î, where

î = argmin{i ∈ C : |ĥi + ẑi − 0.5|}. We note that this branching rule does not affect the pricing

problem because it effectively branches on
󰁓

p∈L
′
i
yp and fixes it as 0 or 1.

3.2. Enhancements

In this section, we present several enhancements for the branch-cut-and-price approach. These

enhancements significantly improve the computational tractability in our experiments.

Enhanced Row Generation: We present a strengthened version of the subtour elimination con-

straints. While there exist similar results for vehicle routing problems in the literature, the existing

results do not apply to the driver-aide problem. Our results are uniquely derived for the driver-aide

problem. The set of strengthened valid inequalities are formally stated as follows:

Proposition 2.
󰁓

i,j∈S:{i,j}∈A xi,j −
󰁓

i∈S\{k}(hi + zi)≤ 0,∀S ⊆C, |S|≥ 2, k ∈ S is valid for the

driver-aide problem and dominates constraint set (21),
󰁓

i,j∈S:{i,j}∈A xi,j ≤ |S|− 1,∀S ⊆C, |S|≥ 2.

We refer to this set of valid inequalities as the DA-strengthened subtour elimination constraints.

To illustrate the effectiveness of the DA-strengthened subtour elimination constraints, consider

S = {1,2,3} and x∗
1,2 = x∗

2,3 = x∗
3,1 = 2/3. Thus, the corresponding constraint (21) is satisfied because

x∗
1,2+x∗

2,3+x∗
3,1 = 2. However, based on constraint (19), we have h∗

1 + z∗1 = h∗
2 + z∗2 = h∗

3 + z∗3 = 2/3.

Without loss of generality, let k = 1. Then, the corresponding DA-strengthened subtour elimina-

tion constraint is violated because x∗
1,2 + x∗

2,3 + x∗
3,1 − (h∗

2 + z∗2)− (h∗
3 + z∗3) = 2/3 > 0. Thus, the

corresponding DA-strengthened subtour elimination constraint cuts off this fractional solution.

Replacing constraint (21) with the DA-strengthened subtour elimination constraints, we obtain

the following IP formulation, which is referred to as IP3.

(IP3) Min
󰁛

{i,j}∈A

ti,jxi,j +
󰁛

i∈C

(1− fi)sizi +
󰁛

p∈L

cpyp

Subject to (16), (17), (18), (19), (20), (22),
󰁛

i,j∈S:{i,j}∈A

xi,j −
󰁛

i∈S\{k}

(hi + zi)≤ 0, ∀S ⊆C, |S|≥ 2, k ∈ S (37)
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(a) The Original Graph G= (V,A). (b) The Transformed Graph G′ = (C ∪D,A
′
).

Figure 4 Illustration of the Transformed Graph for the Strong Pricing Problem.

Similar to IP2R and LP2R, we define IP3R and LP3R for IP3. Because the DA-strengthened

subtour elimination constraints include constraint (21) (when all nodes in the subtour are either

served in the helper or jumper mode), we can use the basic row generation as described earlier

to separate this subset of violated inequalities (it also works to separate constraint (37) for the

integral solutions of LP3R). To separate all of constraints (37), for a solution (h∗,x∗,y∗,z∗) to

(LP3R), we need to formulate the following problem. For each node i in V , a binary variable vi is 1

if node i is included in S; otherwise, it is 0 (this identifies the nodes in set S). For each node k in V ,

a binary variable wk is 1 if node k is the node from S selected for exclusion from the summation of

the second term of the left-hand side of constraint (37); otherwise, it is 0. For each arc {i, j} in A,

a binary variable ui,j is 1 if the arc {i, j} is included in the the term
󰁓

i,j∈S:{i,j}∈A xi,j. Otherwise,

it is 0. We have the following separation problem.

(SepEx) Max
󰁛

i ∕=j∈C:{i,j}∈A

x∗
i,jui,j −

󰁛

i∈C

(h∗
i + z∗i )vi +

󰁛

k∈C

(h∗
k + z∗k)wk (38)

Subject to ui,j ≤ vi, ui,j ≤ vj, ∀i ∕= j ∈C : {i, j}∈A, (39)
󰁛

i∈C

vi ≥ 2, (40)

󰁛

k∈C

wk = 1, (41)

wk ≤ vk, ∀k ∈C, (42)

u,v,w ∈ {0,1}. (43)

Objective function (38) maximizes the left-hand side value of (37). If the objective value is

strictly larger than zero, we have found a violated constraint. Constraint (39) ensures that an arc

{i, j} can be included only when both nodes i and j are selected in S. Constraint (40) states that

we must select at least two nodes in S. Constraint (41) ensures that we exclude exactly one node.

Constraint (42) states that only one of the selected nodes can be excluded. Constraint (43) enforces

the binary requirements on the variables.

Enhanced Column Generation: The basic column generation looks for a loop starting and ending

at node i for each node i in C. The elementary shortest path problem with negative cycles and side

constraints is NP-Hard (Garey and Johnson 1979). Thus, it could be time consuming to exactly

solve each Pricingi. In our implementation, in the root node, we assign a time limit for each Pricingi.

After considering Pricingi at all nodes, an exact pricing procedure (described below) is invoked if no
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promising loops are found. We refer to this exact pricing procedure as the strong pricing problem,

which finds a promising loop (if it exists) across all starting nodes. In our initial computational

experiments, we found that separately pricing at the root node (i.e., running Pricingi at each

node with a time limit before strong pricing is invoked if necessary) yields multiple promising y

variables, which speeds up the running time initially. However, after adding a reasonable number of

promising y variables, separately running Pricingi increases the running time significantly. Further,

it appears that after the root node, the model has a large enough pool of promising variables to

provide near-optimal solutions. Thus, once Pricingi has been invoked five times for a given i (which

we found adequate in our initial experiments) or we leave the root node, only the strong pricing

problem is invoked.

The strong pricing problem for y variables can be modeled as follows. Let α and β be the dual

variables associated with constraints (24) and (25). Given a dual solution (α∗,β∗), we can find

a promising loop by solving the MIP below. First, we start with the transformed graph Ḡ used

for MIP1. Then, we remove node 0 and its associated arcs. Denote the resulting graph as G′ =

(C ∪D,A
′
). Thus, a shortest elementary path with side constraints between the best node i and

di is equivalent to the loop we need. Figure 4 illustrates the transformation with a small example.

Figure 4(a) is the original graph, and Figure 4(b) gives the transformed graph G′ = (C ∪D,A
′
).

For each arc {i, j} in A
′
, ui,j represents the arc on which the truck travels. It is 1 if the truck

travels from nodes i to j; otherwise, it is 0. Let cp denote the total time in this loop. For each

node i in C, there are two binary variables associated with it. The binary variable vi is 1 if node

i is visited; otherwise, it is 0. The binary variable wi is 1 if the loop starts and ends at node i;

otherwise, it is 0.

(StrongPricing)Min cp −
󰁛

i∈C

α∗
i vi −

󰁛

i∈C

β∗
i wi (44)

Subject to
󰁛

{j,i}∈A

uj,i = vi, ∀i∈C, (45)

󰁛

i∈C

wi = 1, (46)

cp ≥
󰁛

i∈C

(1+ gi)siwi, (47)

cp ≥
󰁛

{i,j}∈A

ti,jui,j +
󰁛

i∈C

sivi +
󰁛

i∈C

󰁛

{i,j}∈A

(t̂i,j − ti,j)ui,jwi

+
󰁛

i∈C

󰁛

{j,di}∈A

(ťj,di − tj,di)uj,diwi, (48)

󰁛

{j,i}∈A

uj,i ≤ 1−wi, ∀i∈C, (49)

󰁛

{j,di}∈A
′

uj,di =wi, ∀i∈C, (50)
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wi +
󰁛

{j,i}∈A

uj,i =
󰁛

{i,j}∈A

ui,j, ∀i∈C, (51)

󰁛

{k,j}∈A(S)+

uk,j ≥
󰁛

j∈n(i)+

ui,j, ∀S ∈C, i∈ S, |S|≥ 2, (52)

cp ≥ 0,u∈ {0,1},v ∈ {0,1},w ∈ {0,1}. (53)

Objective function (44) minimizes the reduced cost of the loop. Constraint (45) links the variables

u and v. Thus, if node i is visited, vi is 1. Constraint (46) ensures that path p starts at exactly one

node in C. Constraints (47) and (48) calculate the total time of path p, which is the maximum of

the service time at node i by the helper and the total time for the truck to get back to node i after

visiting and serving other locations. Constraint (49) ensures that if a node i in C is the source node,

there are no arcs going into it. Constraint (50) ensures that if a node i in C is the source node,

then node di is the sink node and has exactly one incoming arc. It also ensures that all other nodes

in D have no incoming arcs. Constraint (51) is a modified flow balance constraint for all nodes in

C. Along with constraint (49), it ensures that if node i is the source node, there is exactly one

outgoing arc from it. Constraint set (52) are generalized cutset inequalities (GCS), which ensures

that there are no cycles in the solutions. Constraint (53) enforces the nonnegativity on cp and

the binary requirements on the remaining variables. While constraint (48) is nonlinear, it models

the product of two binary variables, which can be easily linearized by a standard approach (see

Williams 2013, Section 9.2). However, most off-the-shelf solvers handle them. Specifically, in our

implementation, we let Gurobi handle (StrongPricing) directly rather than explicitly linearizing

constraint (48).

Enhanced Initial y Variables: Another important enhancement involves including promising loops

(y variables) initially. When the aide is used as a helper at a node, we hope the driver can return

in about the same time as the aide finishes the service. In other words, for a loop p starting at

node i, the time spent in Qp, t̂i,k:{i,k}∈p+
󰁓

{l,j}∈p:l,j ∕=i tl,j + ťk,i:{k,i}∈p+
󰁓

j∈Qp
sj, is not too far away

from the service time of node i, si. For each location, we find two loops initially. One loop tries to

have the truck visit as many nodes as possible, while its time does not exceed the service time of

the starting location. The other loop tries to do the opposite. It has the truck visit as few nodes

as possible, while its time exceeds the service time of the starting location. For each node i in C,

the two loops can be found by solving the following two problems. The variables are defined in the

same way as Pricingi. Max Initiali finds a loop not exceeding the service time by the helper of the

starting location, node i.

(Max Initiali)Max
󰁛

{i,k}∈Ai

t̂i,kui,k +
󰁛

{k,di}∈Ai

ťk,diuk,di +
󰁛

{l,j}∈Ai:l ∕=i,j ∕=di

tl,jul,j +
󰁛

l∈V i\{i,di}

slvl

Subject to (28), (31), (32), (33), (34), (35),
󰁛

{i,j}∈Ai

t̂i,jui,j +
󰁛

{j,di}∈Ai

ťj,diuj,di +
󰁛

{l,j}∈Ai:l ∕=i,j ∕=di

tl,jul,j +
󰁛

l∈V i\{i,di}

slvl ≤ (1+ gi)si.
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Similarly, Min Initiali finds a loop exceeding the service time by the helper of the starting

location, node i.

(Min Initiali)Min
󰁛

{i,k}∈Ai

t̂i,kui,k +
󰁛

{k,di}∈Ai

ťk,diuk,di +
󰁛

{l,j}∈Ai:l ∕=i,j ∕=di

tl,jul,j +
󰁛

l∈V i\{i,di}

slvl

Subject to (28), (31), (32), (33), (34), (35),
󰁛

{i,j}∈Ai

t̂i,jui,j +
󰁛

{j,di}∈Ai

ťj,diuj,di +
󰁛

{l,j}∈Ai:l ∕=i,j ∕=di

tl,jul,j +
󰁛

l∈V i\{i,di}

slvl ≥ (1+ gi)si.

Before concluding this section, we note that the pseudocode for the branch-cut-and-price proce-

dure is described in Algorithms 1, 2, and 3 of EC.3.

4. Computational Experiments

In this section, we discuss our computational experience with the branch-cut-and-price approach

on a set of simulated instances based on real-world data. Our computational experiments have two

goals: i) to examine the computational efficacy of the branch-cut-and-price approach, and ii) to

evaluate the benefit and provide managerial insights for the driver-aide problem (i.e., the impact

of the jumper and helper modes). We make these evaluations on 120 simulated instances based on

real-world data provided by our industrial partner. Our computational experiments were conducted

on a machine with the following specifications: M1 Ultra processor, 128 GB RAM, and the macOS

operating system. Further, we use Gurobi 9.5.2 with the Python API. In our implementation, we

impose a time limit of 12 hours unless stated otherwise. Our best setting of the branch-and-cut

approach takes on average 190.8 seconds over 120 test instances. The larger time limit facilitates

comparison with alternative formulations and settings. In Section 5, we apply the proposed branch-

cut-and-price approach to a case study based on Amazon data (Merchán et al. 2022).

4.1. Data and Instance Description

RouteSmart Technologies (https://www.routesmart.com) is a leading provider of route optimiza-

tion solutions for postal/parcel delivery companies around the world. We created simulated test

instances based on a sample of 32 real-world routes from seven of the largest metropolitan areas in

the U.S. that they provided to us. While we cannot directly use this dataset due to a non-disclosure

agreement (NDA), we describe the procedure for generating the instances below.

We found that over 90% of the real-world routes provided to us had 40 or fewer stops, which

is also consistent with the findings in Allen et al. (2018). Note that, however, each stop is asso-

ciated with multiple customers (e.g., multiple deliveries to a large office building). The service

time distribution also varies by customer (due to package and/or location characteristics as well

as service requirements). Consequently, in our experiments, we create test instances with 40 stops.

We distribute the locations of the 40 stops in three regions with 1-mile × 1-mile, 3-miles × 3-miles,

https://www.routesmart.com
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and 5-miles × 5-miles areas, respectively, using a uniform distribution on the Euclidean plane.

These sizes capture a range from relatively small dense urban areas to larger suburban areas. We

use Euclidean distance to set the travel time T , and because the sample of 32 real-world routes

only contained customers that were physically co-located (e.g., same building or office complex),

T = T̂ = Ť for these instances. We reiterate that even when customers within a node are not at the

same location, in practice, the three travel times, ti,j, t̂i,j, and ťi,j, are quite close. Based on the

case study on Amazon’s last-mile routing in Section 5, on average, the differences from ti,j to t̂i,j

(ti,j − t̂i,j) and from ti,j to ťi,j (ti,j − ťi,j) are 1.4 and -1.9 seconds, respectively. Further, ti,j and t̂i,j

are the same for 50.7% of the arcs, and ti,j and ťi,j are the same for 50.8% of the arcs.

For each stop, the number of customers follows the distribution of the number of customers at a

stop in our real-world data. After that, the service time for each customer follows the distribution

of our real-world data. Adding the service times up for the customers at a stop provides the

service time of the stop. For travel speed, we consider 5, 10, 15, and 20 MPH (Miles Per Hour).

These speeds also reflect the settings from relatively small dense urban areas to larger suburban

areas. The jumper savings factor is difficult to quantify accurately. Some locations have strict

entry requirements, and the use of a jumper provides minimal (or no) benefit. It can also be a

function of the package sizes and layout of a building or location. After a discussion with our

industry partner and considering the existing literature (see Lu et al. 2020, 2022), we settled on

experimenting with instances where each of the 40 stops uniformly selects its jumper-saving factor

from {0,0.1,0.2,0.3,0.4,0.5} and its helper-serving factor from {0,0.05,0.1,0.15,0.2}. For each

combination of region and travel speed, 10 instances are generated. Overall, we have 120 instances

in our experiments. While we focus on this set of instances and derive insights from it, a practitioner

(e.g., our industrial partner) can conduct this analysis with various area-dependent instances.

4.2. Computational Performance of the Branch-Cut-and-Price Approach

Before embarking on the 120 instances, we first generate a set of 30 instances with a 10 MPH

travel speed to fine-tune the branch-cut-and-price approach. These 30 instances can be viewed as

a training set that we only use in this section to evaluate the impact of the enhancements in the

branch-cut-and-price approach. We set the stopping tolerance as 3% such that we stop the search

process when we prove that our best solution is within 3% of optimality. There are five settings in

total. Each one is built on the previous one. We start with the one called “Base”, which has the

basic components described in Section 3.1 without the enhancements in Section 3.2. The second one

solves IP3 by using the DA-strengthened subtour elimination constraint (37) instead of constraint

set (21). We call it “SSE” (strengthened subtour elimination). The next setting is “SSE+Promising

y”, which includes the promising y variables initially, as described in the advanced initial y variables
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Figure 5 The Impact of the Enhancements on Running Time (Seconds) with a 3% Stopping Tolerance Over the

30 Instances with a 10 MPH Travel Speed.

in Section 3.2. Further, in “SSE+Promising y+SP”, the column-generation procedure uses Pricingi

followed by the strong pricing procedure at the root node, but only the strong pricing procedure

after the root node. Finally, a time limit (5 seconds) is enforced on each Pricingi, and each Pricingi

is invoked at most five times at the root node in the last setting, “SSE+Promising y+SP+TL”.

Figure 5 plots the average and maximum running times of these five settings over the 30 instances.

The trendline, based on the average running time, is displayed as well. The Base setting violates the

time limit (12 hours) for all 30 instances. Thus, we plot the 12-hours time limit for the Base setting.

This is an underestimation regarding the time needed for the Base setting. Clearly, only using

the basic components cannot provide a viable solution. However, the DA-strengthened subtour

elimination constraints are able to completely change the landscape. The SSE setting can find

solutions with a 3% stopping tolerance in 703.11 seconds on average for the 30 instances. Including

promising y reduces the average running time to 229.73 seconds. Then, solely using the strong

pricing procedure after the root node improves the average running time to 216.01 seconds. The final

setting significantly speeds up the search process, with an average running time of 139.17 seconds.

Adding the DA-strengthened subtour elimination constraints to the base setting makes a tremen-

dous improvement. While Proposition 2 demonstrates the superiority of the DA-strengthened sub-

tour elimination constraints, we solve the LP relaxations of the Base and SSE settings to fully

understand the impact of the DA-strengthened subtour elimination constraints. In this way, we

can see the improvement achieved by the DA-strengthened subtour elimination constraints. This

relative gap is calculated as Zlp/Zbfs, where Zlp is the objective value of the LP relaxation, and

Zbfs is the objective value of the best feasible solution. The results are plotted in Figure 6. The

red and blue bars are the relative gaps of the Base and SSE settings, respectively. We observe that

the DA-strengthened subtour elimination constraints tighten the LP relaxation significantly. On
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Figure 7 Illustration of the Behavior of the Branch-Cut-and-Price Approach with Various Stopping Tolerances.

average, the relative gap is improved by over 8% because the relative gaps of the Base and SSE

settings are 89.6% and 97.8%, respectively. The maximum improvement is about 14%, while the

minimum improvement is about 5%. This shows that IP3 is a much stronger formulation than IP2.

It also provides an explanation for the night-and-day contrast between the SSE and Base settings.

Compared to the Base setting, the enhanced branch-cut-and-price approach is over 300 times, or

over two orders of magnitude, faster on average. Overall, the enhancements are crucial in improving

the computational tractability of the solution procedure of the driver-aide problem. Hereafter, we

only report the results for the driver-aide problem obtained by the branch-cut-and-price approach

with all of the enhancements (i.e., “SSE+Promising y+SP+TL”).

Before presenting the performance of the branch-cut-and-price approach on all 120 instances, we

discuss the rationale for selecting the stopping tolerance. We tested a small subset of instances with

various stopping tolerances. Figure 7 plots the behavior of a representative instance. Specifically,

stopping tolerances are set as 3%, 2%, 1%, 0.5%, and 0.1%. The primal bound (best objective

value) with 3% is used as the baseline to evaluate the primal and dual bounds obtained with various
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stopping tolerances. The red solid line is for the primal bounds, and the black dashed line is for the

dual bounds. The bars represent the running times. Generally, we observe that when the stopping

tolerance decreases from 3% to 2%, it leads to a minimal or no increase in the running time. As a

smaller stopping tolerance is used, the running time increases dramatically (the running time for

0.1% tolerance is almost 17 times that of 2% tolerance). On the other hand, a tighter stopping

tolerance mainly helps produce a better dual bound and does not seem to significantly affect the

primal bound. When the stopping tolerance is set to 0.1%, the dual bound is equal to the primal

bound for this instance and proves optimality. Because the primal bound is the main factor for our

later analysis on managerial insights, hereafter, we choose a 2% stopping tolerance, which hits the

sweet spot between solution quality and computational time.

Table EC.1 contains the detailed computational performance of the branch-cut-and-price

approach on the 120 instances with a 2% stopping tolerance. To better visualize the results, we plot

the average running time in Figure 8. Generally, we observe that the driver-aide problem is more

challenging when the region is smaller and the travel speed is higher. The intuition behind this is

that when the region is smaller and the travel speed is higher, the branch-cut-and-price approach

needs to consider more loops where the driver travels alone, leading to a higher computational

burden in the search process. Overall, with a 2% stopping tolerance, the branch-cut-and-price

approach finds solutions that are within a 1.2% optimality gap on average over the 120 instances.

The average running time is 190.8 seconds.

4.3. Managerial Insights of the Jumper and Helper Modes

In this section, we study the benefit of the driver-aide problem by examining the impact of the

jumper and helper modes. To achieve this, we solve two additional variants for each instance other

than the driver-aide problem. Specifically, in one variant, we only have the driver in the truck.

Thus, this becomes the celebrated traveling salesman problem (TSP). We call this the TSP variant.

In the second variant, we include the driver-aide, but we only allow the driver-aide to be used
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Figure 9 Average Percentage Reduction in the Routing Times for the Jumper Variant and the Driver-Aide

Problem under Different Standardized Speeds.

in the jumper mode, which is referred to as the jumper variant. For these two variants, we use

the classical subtour elimination formulation for the TSP (see Lawler et al. 1985, Pataki 2003).

Similar to Pferschy and Staněk (2017), we separate the violated subtour elimination constraints

only for integral solutions (i.e., we relax the subtour elimination constraints in the branch-and-cut

procedure for the TSP and only separate them when integer solutions are found at a branch-and-

bound node). Notice that the jumper variant has the same optimal route as the one obtained by

the corresponding TSP variant. While they are both NP-hard problems, practically, we are able

to find the optimal solutions within a reasonable amount of time. Detailed results are presented in

Tables EC.2 and EC.3.

We normalize the reduction in the routing time of each variant by the routing time of the TSP.

Table EC.4 presents the detailed results. The relative reduction in the routing time of the jumper

variant is calculated as 1− zJumper/zTSP , where zTSP is the routing time of the TSP variant, and

zJumper denotes the routing time of the jumper variant. Similarly, the relative reduction in the

routing time of the driver-aide problem is calculated as 1− zDA/zTSP , where zDA is the routing

time of the best feasible solution (DA UB) of the driver-aide problem. A higher value indicates a

greater gain in the routing time, compared to the TSP variant.

To better visualize the pattern, we convert the travel speed to its equivalent one on a 1-mile ×
1-mile service region. We refer to this as standardized speed. For example, 15 MPH on a 3-miles ×
3-miles service region is equivalent to a 5 MPH standardized speed (i.e., 5MPH on a 1-mile × 1-mile

service region). Overall, the 12 speed and region combinations correspond to the 11 standardized

speeds: 1, 5/3, 2, 3, 10/3, 4, 5, 20/3, 10, 15, 20 MPHs.

Figure 9 plots the average percentage reduction in the routing time for both the jumper variant

and the driver-aide problem under different standardized speeds. This shows us the impact of each

of the jumper and helper modes. The differences between the TSP variant and the jumper variant
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5 MPH 10 MPH 15 MPH 20 MPH

Region Jumper Helper Option Jumper Helper Option Jumper Helper Option Jumper Helper Option

1 X 1 100.9% 83.3% DA(󰂏) 97.6% 75.3% DA 96.3% 71.9% DA 95.6% 70.0% DA
3 X 3 105.6% 99.7% DA(󰂏) 100.1% 89.3% DA(󰂏) 97.3% 83.5% DA 95.6% 80.0% DA
5 X 5 110.9% 107.8% TSP 106.0% 98.3% DA(󰂏) 103.0% 91.5% DA(󰂏) 101.1% 86.7% DA(󰂏)

Table 1 Average Relative Costs of the Jumper Variant and the Driver-Aide Problem Compared to the TSP Variant.
Preferred Options between TSP and DA Based on the Average Relative Costs (DA: Driver-Aide with Both the Jumper and

Helper Modes, TSP: Driver Only, (󰂏): Indicating that the Helper Mode Leads to DA).

show the gain in the jumper mode, which are represented by the blue bars plotted in Figure 9. Also,

the percentage reduction of the driver-aide problem (the red bars in Figure 9) shows the additional

gain from the helper mode, which increases with standardized speed. Overall, the average routing

time reduction of the jumper variant is 16.8%, and that of the driver-aide problem is 28.5%.

Clearly, the driver-aide problem (both the jumper and helper modes are allowed) has a much

lower routing time, compared to the TSP and jumper variants. Figure 9 shows that the reduction

obtained by optimally using the driver-aide is larger as the standardized speed increases. The

reduction is 11.3% when the standardized speed is 1. It increases to 42.4% when the standardized

speed is 20. This implies that the driver-aide with both the jumper and helper modes is most

effective when we have denser service regions and higher travel speeds.

While the driver-aide problem achieves a significant reduction in the route completion time, an

alternate analysis considers the impact from an overall cost perspective. According to the American

Transportation Research Institute (Leslie and Murray 2022), the marginal cost per hour of the

truck- and driver-based costs is $74.65 in 2021 (which includes both the $32.55 driver and $42.10

truck costs). Based on data from the U.S. Bureau of Labor Statistics (2021) and data retrieved

from Salary.com, Indeed.com, and Glassdoor.com on Oct-13-2022, we find that the average hourly

salary for a driver-aide is $16. Consequently, for the TSP variant, we use the hourly cost of $74.65.

For the jumper variant and the driver-aide problem, we use the hourly cost of $90.65.

Notice that the normalized routing time can be interpreted as the time needed to complete the

route finished by the TSP variant in one hour. We calculate the relative costs of the jumper variant

and the driver-aide problem as $90.65 ∗ zJumper/($74.65 ∗ zTSP ) and $90.65 ∗ zDA/($74.65 ∗ zTSP ),

respectively. Table EC.5 shows the relative costs of the jumper variant and the driver-aide problem

for each instance. A number higher (lower) than 100% indicates a higher (lower) cost than the

TSP variant. Overall, the driver-aide problem has lower costs in 102 out of the 120 test instances.

Compared to the TSP variant, the driver-aide problem has about a 13.6% lower cost on average.

In the best-case scenario, the driver-aide problem can incur as much as 31.6% savings in cost.

To better understand this result, we use the average relative cost in Table 1 for comparison and

provide the lowest cost option. In each cell, “TSP” means that the TSP variant has a lower cost,

and “DA” means that the driver-aide problem has a lower one. It should be clear that the driver-

aide problem is an option worthy of consideration in practice. It has lower costs and is chosen in
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11 out of 12 situations. Furthermore, six out of the 11 “DA” cells have “󰂏”s, which indicate that

while the jumper variant does not have a lower cost than the TSP variant in the combination of

the service region and travel speed, the helper mode is needed to make the driver-aide problem

superior to the TSP variant. Over these 11 situations, on average, the driver-aide problem can

incur 15.5% cost savings.

Figure 10 visualizes the comparison using the standardized speeds. We also add a reference

line, which represents the cost of the TSP variant. Again, it reveals that the driver-aide problem

leads to higher cost savings when the standardized speed increases. To summarize, the driver-aide

problem provides cost savings in most situations, especially in situations where the service region

is denser, and the travel speed is high. While the jumper-variant seems to require both situations

to provide cost savings, the additional helper mode enables cost savings even with only one of

the two situations. We note that we do not include the cost of the helper mode transport (e.g.,

e-scooter, e-bike). The main reason is that, comparatively, we expect the cost of this transport to

be a negligible fraction of that of the truck, and thus would not affect our findings.
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We want to further understand the situations leading to the preferred options for the 120

instances. We first calculate the travel and service times of the TSP variant for each instance. Then,

we obtain the fraction of the service time of the TSP optimal route. Figure 11 plots our findings.

The x-axis is the service time fraction of the TSP optimal tour in the TSP variant. We group

all instances into two groups by their preferred options. Recall that “TSP” means that the TSP

variant has a lower cost, and “DA” means that the driver-aide problem has a lower one. Within

the “DA” group, we separate by “DA(󰂏)” those instances where the helper mode was necessary

to beat the TSP variant (i.e., the jumper variant has greater cost than the TSP variant). When

the service time fraction is larger than 50%, the driver-aide problem with both the jumper and

helper modes is generally preferred over the TSP variant. However, when the service time fraction

is smaller than 50%, the driver-aide problem is not as attractive as before. The 50% threshold

predicts 100 instances to be preferred by the driver-aide problem, and 98 of them are correct. Thus,

this simple threshold’s precision is 98%, and its recall is 96% (98/102). The overall accuracy is

95% (114/120). Interestingly, without the helper mode there is no clear-cut threshold separating

the TSP and jumper variants. While the 50% threshold is based on our simulated test instances, a

delivery company can conduct this analysis to obtain area-dependent thresholds in practice (which

are likely to be close to this 50% threshold). We note that in a recent study, Allen et al. (2018)

observed that the service time in London accounted for 62% of the total route time. Thus, it is

likely that the 50% threshold will be fairly easy to satisfy in practice. Overall, this provides some

simple rules of thumb for selecting the best option to minimize the cost.

We can take this analysis further if we use average solution information to identify the thresholds

that make the TSP variant, jumper variant, or driver-aide problem more cost-effective. Section EC.4

provides a detailed derivation. A delivery company usually knows its own average travel time,

denoted by t̄, between successive locations and the average service time, denoted by s̄, at locations

of the traditional TSP variant. We can approximate the cost of the TSP variant as CTSP = (nt̄+

ns̄)(βT + βD), where βT and βD are the costs for the truck and the driver, respectively. Similarly,

the cost of the jumper variant is CJumper = (nt̄+ ns̄(1− f̄))(βT + βD + βA), where βA is the cost

for the aide. Thus, for the jumper variant to have a lower cost than the TSP variant, we need

f̄ ≥ βA(t̄+s̄)

s̄(βT+βD+βA)
= θJ . This provides a threshold θJ that the jumper savings factor must be greater

than for the jumper variant to be cheaper than the TSP variant. While this is a simple rule,

applying it to the 120 instances (see Tables EC.6 and EC.7) correctly identifies all 52 instances

that prefer the jumper variant over the TSP variant (i.e., its accuracy is 100% on the instances in

this paper), indicating that it is fairly robust and reliable.

If f̄ < βA(t̄+s̄)

s̄(βT+βD+βA)
, we may compare the cost of the driver-aide problem to that of the TSP

variant directly. We can also approximate the cost of the driver-aide problem as CDA = ((J +
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H)t̄DA+Js̄DA(1− f̄DA)+∆H)(βT +βD+βA), where J , H, and D are the number of nodes serviced

in the jumper mode, helper mode and by the driver alone, respectively, ∆ is the average time spent

at a node with the helper mode, t̄DA is the average travel time between successive nodes when the

aide is on the truck in the driver-aide problem, and s̄DA is the average service time among nodes

when the aide is on the truck in the driver-aide problem. For the driver-aide problem to be more

cost-effective than the TSP variant, we need ∆≤ (nt̄+ns̄)(βT+βD)

(βT+βD+βA)H
− (J+H)t̄DA+Js̄DA(1−f̄DA)

H
= ρH . The

threshold ρH provides the time limit under which the driver needs to travel to another node (or

nodes), complete service, and return to the location where the driver-aide awaits. Smaller values of

this threshold indicate fewer opportunities for cost savings (and instances where the TSP solution

is of the least cost). This threshold has over 97% (117/120) accuracy based on the 120 instances

(see Tables EC.6 and EC.7). Regarding the DA-preferred mode, it predicts 101 instances for the

driver-aide problem, and 100 of them are correct. Thus, its precision and recall are over 99%

(100/101) and 98% (100/102), respectively. After the driver-aide problem is implemented widely, a

delivery company would have empirical estimates of these parameters based on the collected data.

Thus, although this threshold depends on the average solution metrics of the driver-aide problem,

they provide useful guidelines for a delivery company to follow when designing routes.

The cost analysis so far underestimates the benefit of the driver-aide problem with both the

jumper and helper modes. First, we have not considered the restriction on the route time (i.e., the

maximum work hours). In practice, a regular work shift is often between five to eight hours. The

driver and the aide should receive an overtime pay rate if their work shift is longer than the regular

work shift. In the U.S., the overtime pay rate is at least 1.5 times of the regular pay rate. Assume

that the routing time of the driver-aide problem is normalized to be the maximum duration of a

regular shift. Then, the overtime marginal cost per hour of the truck- and driver-based costs is

$90.93 in 2021 because the truck-based cost is $42.10, and the driver-based cost is $32.55 × 1.5 =

$48.83 for overtime hours. Table EC.8 shows the relative costs of the driver-aide problem, compared

to the TSP variant, considering the overtime pay rate. They are calculated as $90.65/($74.65 +

$90.93*(zTSP/zDA − 1)). For example, for the cell with 5-Mile X 5-Mile and 5 MPH, the value is

calculated as $90.65/($74.65 + $90.93*0.13) = 105.2%. In this case, the driver-aide problem with

both the jumper and helper modes has a greater advantage and leads to an 18.4% cost savings,

about 35% more savings than that of the regular pay rate.

A crucial point we would like to emphasize is that relying on overtime shifts is not sustainable for

any business. There are many government regulations on the maximum number of overtime hours.

Therefore, the only option for a company facing the TSP variant (i.e., which does not employ

driver-aides) of the problem is to purchase more trucks and hire more drivers. We do not conduct

this type of analysis, as its results would only skew the results further in favor of the driver-aide
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problem. From a macro level, we can consider the normalized routing time in Table EC.4 as the

relative fleet size between the TSP variant and the driver-aide problem with both the jumper and

helper modes. The driver-aide problem provides an opportunity to reduce the fleet size, which can

significantly lower a company’s infrastructure and operating costs.

5. Case Study: Amazon’s Last-Mile Routing

To further evaluate the benefit of optimizing the driver-aide routes, we conduct a case study

utilizing real-world routes released by Amazon. In the 2021 “Last Mile Routing Research Challenge”

organized by Amazon and MIT, Amazon released over 6,000 routes to the public. The details on

this dataset are described in Merchán et al. (2022). We used 17 routes the winning team, Just

Passing Through, selected and visualized on their website (Cook et al. 2021, 2022).

For each of the 17 routes, we cluster the customer locations into the stops (nodes) used in the

driver-aide problem. We assume that an e-bike (Toll 2022, Sutton 2022, FedEx 2020, CBSNews

2022) is used by the aide in the helper mode. The dataset from Amazon contains truck travel

time between all customer locations and the time needed in each location. We use Google Maps

API to obtain the biking time between all customer locations. Then, following the visiting order

of the customers given by the Amazon route (which is included in the dataset), if the biking time

is more than 45 seconds, we stop including the next customer in the current stop and use that

customer as the first one in the next stop. Figure 12 illustrates the clustering procedure. Figure 12(a)

shows a set of customer locations. The numbers above and below the edges are the biking and

trucking times, respectively. The numbers above the customer locations are the times needed to

serve them. Figure 12(b) shows that we have formed two stops already, which are displayed as two

blue rectangles. We use the visiting order of the Amazon route as the order for visiting customer

locations within a stop, either by truck or by bike. Thus, we have the first and last customer

locations as the start and end points at this stop, respectively. The service time of a stop is the

sum of the total truck travel time and the time needed for the customer locations within that stop.

Similarly, the time of the helper mode is the sum of the total bike travel time and the time needed

for the customer locations. Specifically, for the stop consisting of customers 1, 2, and 3, its start

point and end point are nodes 1 and 3, respectively. Further, its service time is 198 seconds, which

increases to 204 seconds in the helper mode. The only thing left is the jumper saving factor, which

is uniformly selected from {0,0.1,0.2,0.3,0.4,0.5} for each stop as before. For each of the 17 routes,
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Average over Five Instances

Route ID Customers Stops Gap
Run Reduction in Savings
Time Routing Time in Cost

#0002 128 66 0.6% 633.5 32.9% 18.5%
#0003 142 41 0.6% 546.1 37.3% 23.9%
#0012 173 52 1.0% 84.2 30.1% 15.2%
#0019 157 46 0.9% 78.3 35.1% 21.2%
#0020 174 77 0.6% 927.4 33.7% 19.4%
#0023 139 66 0.3% 108.8 29.2% 14.0%
#0038 121 34 1.3% 78.0 42.2% 29.8%
#0062 167 66 1.2% 145.6 31.4% 16.7%
#0138 159 47 0.7% 242.8 42.2% 29.8%
#0145 144 68 0.8% 415.5 35.8% 22.0%
#0149 111 69 1.6% 254.7 33.1% 18.8%
#0180 151 71 0.7% 353.6 39.6% 26.7%
#0303 84 34 0.5% 62.9 42.6% 30.3%
#0307 151 69 0.4% 301.6 34.3% 20.2%
#0346 179 69 0.5% 442.4 38.4% 25.2%
#0431 125 46 1.6% 174.5 31.4% 16.7%
#0684 111 58 0.6% 116.9 39.2% 26.2%

Table 2 Summarized Results on the Amazon Instances.

we generate five instances (by uniformly selecting the jumper savings factor). Thus, there are 85

instances in total, referred to as Amazon instances.

We present summarized results on the Amazon instances in Table 2. It contains the routes’ ID

in the column “Route ID”, the number of customer locations in “Customers”, and the number of

stops in the driver-aide problem after clustering in “Stops”. The largest instance has 77 stops, which

is much larger than the instances tested in Section 4. Then, it presents the average optimality gap

and running time over the five instances generated for each route in the columns “Gap” and “Run

Time”, respectively. The proposed branch-cut-and-price approach can find near-optimal solutions

efficiently. Overall, on average, the optimality gap is 0.8%, and the running time is 292.2 seconds.

It also shows the average reduction in the routing time and cost savings (based on the regular pay

rate), compared to the original Amazon routes. The driver-aide problem can reduce the routing

time significantly, between 29.2% and 42.6% on average. Consequently, the average cost savings

are between 14% and 29.8%. Overall, the Amazon instances show even larger benefits (a 35%

reduction in the routing time and 22% in cost savings), compared to the simulated instances (a

29% reduction in the routing time and 14% in cost savings) in Section 4. Detailed results are in

Tables EC.9 and EC.10. Finally, we comment that the comparative metrics also work well on the

Amazon instances (see Tables EC.11 and EC.12). All of these reinforce the findings in Section 4.

6. Conclusions

Package volumes have grown exponentially over the past several years. Last-mile delivery comprises

a significant portion of the cost in a logistic network. Moreover, logistics companies are under

significant pressure to contain these costs while maintaining service and delivery commitments. To

address the increased workload without additional investments of delivery trucks and drivers, last-

mile delivery companies are hiring driver-aides to help speed up or shorten the service component
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of delivery routes. In this paper, we introduced the “Driver-Aide Problem”. We provide a novel IP

formulation and a sophisticated branch-cut-and-price procedure that finds near-optimal solutions

to instances of real-world size.

Our economic analysis considers the tradeoffs involved in using a driver-aide and provides a

high-level understanding of when it is most beneficial to use one. Roughly, delivery routes that

have greater than 50% of the time devoted to delivery (as opposed to driving) are the ones that

provide the greatest benefit. Further, these routes are characterized by a high density of delivery

locations. With regard to using the aide as a jumper or a helper, there seems to be greater use

of the helper mode when the average vehicle speed is somewhat higher, as it allows the driver to

simultaneously perform one or more deliveries and return to the driver-aide in about the same time

it takes the aide to do his/her delivery. We also conduct a case study on the dataset released by

Amazon to further demonstrate the impact of optimally using the driver-aide.

Looking ahead, we hope to study certain multiple delivery truck variants of the problem. It is

envisioned that in the future, a driver-aide may be able to assist multiple trucks/drivers, with the

idea that an aide dropped off by one truck may then be picked up by another truck (and then

assist the driver in the new truck). This creates significant modeling and computational challenges

that we see as an avenue for further research.

References

Allen, J., Piecyk, M., Piotrowska, M., McLeod, F., Cherrett, T., Ghali, K., Nguyen, T., Bektas, T., Bates, O.,

Friday, A., et al. (2018). Understanding the impact of e-commerce on last-mile light goods vehicle activ-

ity in urban areas: The case of London. Transportation Research Part D: Transport and Environment,

61:325–338.

Amazon (2022). Amazon Prime Air. https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=

8037720011.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., and Vance, P. H. (1998). Branch-and-

price: Column generation for solving huge integer programs. Operations Research, 46(3):316–329.

CBSNews (2022). UPS tests electric cargo bicycles in congested cities. https://www.cbsnews.com/news/

ups-tests-tiny-battery-powered-bicycles-in-congested-cities/.

Chung, S. H., Sah, B., and Lee, J. (2020). Optimization for drone and drone-truck combined operations: A

review of the state of the art and future directions. Computers & Operations Research, 123:105004.

Coindreau, M.-A., Gallay, O., and Zufferey, N. (2019). Vehicle routing with transportable resources: Using

carpooling and walking for on-site services. European Journal of Operational Research, 279(3):996–1010.

Cook, W., Held, S., and Helsgaun, K. (2021). Just passing through. https://www.math.uwaterloo.ca/tsp/

amz/maps.html.

https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://www.cbsnews.com/news/ups-tests-tiny-battery-powered-bicycles-in-congested-cities/
https://www.math.uwaterloo.ca/tsp/amz/maps.html


31

Cook, W., Held, S., and Helsgaun, K. (2022). Constrained local search for last-mile routing. Transportation

Science. https://doi.org/10.1287/trsc.2022.1185.

Costa, L., Contardo, C., and Desaulniers, G. (2019). Exact branch-price-and-cut algorithms for vehicle

routing. Transportation Science, 53(4):946–985.

Desaulniers, G., Desrosiers, J., and Solomon, M. M. (2006). Column Generation. Springer, New York, USA.

Elite Extra (2022). The impact of last mile delivery driver shortage. https://eliteextra.com/the-impact-

of-last-mile-delivery-driver-shortage.

FedEx (2020). FedEx steps and pedals into Europe’s green delivery future. https://www.fedex.com/en-us/

sustainability/fedex-pilots-program-in-europe-to-improve-sustainable-deliveries.html.

Fikar, C. and Hirsch, P. (2015). A matheuristic for routing real-world home service transport systems

facilitating walking. Journal of Cleaner Production, 105:300–310.

Florio, A. M., Hartl, R. F., and Minner, S. (2020). New exact algorithm for the vehicle routing problem with

stochastic demands. Transportation Science, 54(4):1073–1090.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman, San Francisco, USA.

Golden, B. L., Raghavan, S., and Wasil, E. A. (2008). The Vehicle Routing Problem: Latest Advances and

New Challenges. Springer, New York, USA.
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Electronic Companion

EC.1. Proof of Proposition 1

Proof: If the optimal TSP route (called route 1) is not optimal, there exists a strictly better

route (called route 2) for the driver-aide problem with only the jumper mode. Route 2 must have a

shorter travel time than route 1, as the total service times of both routes are the same. Therefore,

route 2 is a strictly better route than route 1 for the TSP, which is a contradiction. □

EC.2. Proof of Proposition 2

Proof: First, given S ⊆ C and k ∈ S, we add |S| − 1 to both sides of
󰁓

i,j∈S:{i,j}∈A xi,j −
󰁓

i∈S\{k}(hi + zi) ≤ 0 to obtain
󰁓

i,j∈S:{i,j}∈A xi,j +
󰁓

i∈S\{k}(1− hi − zi) ≤ |S|− 1. For a feasible

solution of the driver-aide problem, if a node i is served by the jumper or helper mode, we have

hi + zi = 1 and
󰁓

j∈n(i)− xj,i =
󰁓

j∈n(i)+ xi,j = 1 because of constraints (18) and (19). Thus, we

include node i’s adjacent arcs on the left-hand side. If a node i is served by the driver alone, we

have this node included in a loop by the corresponding y variable. Thus, we have hi + zi = 0,

and
󰁓

j∈n(i)− xj,i =
󰁓

j∈n(i)+ xi,j = 0 because of constraints (18) and (19). Then, we can reduce the

right-hand side by 1 as
󰁓

j∈n(i)− xj,i =
󰁓

j∈n(i)+ xi,j = 0. Given that node k is removed from S, the

largest value of
󰁓

i∈S\{k}(1− hi − zi) is |S|− 1, which does not exceed the right-hand side value.

Therefore, it ensures that for a subset of nodes in C, the graph induced by the x variables does

not have any cycles. Any feasible solution of the driver-aide problem satisfies
󰁓

i,j∈S:{i,j}∈A xi,j −
󰁓

i∈S\{k}(hi + zi)≤ 0,∀S ⊆C, |S|≥ 2, k ∈ S.

Next, notice that combining constraints (17) and (19) gives hi + zi = 1 −
󰁓

p∈L:i∈Qp
yp ≤ 1,

as node i is included in at most one loop,
󰁓

p∈L:i∈Qp
yp ≤ 1. Thus, we have

󰁓
i,j∈S:{i,j}∈A xi,j ≤

󰁓
i,j∈S:{i,j}∈A xi,j+

󰁓
i∈S\{k}(1−hi−zi)≤ |S|−1, as 1−hi−zi ≥ 0. It shows that

󰁓
i,j∈S:{i,j}∈A xi,j−

󰁓
i∈S\{k}(hi + zi) ≤ 0,∀S ⊆ C, |S| ≥ 2, k ∈ S dominates constraint (21),

󰁓
i,j∈S:{i,j}∈A xi,j ≤ |S| −

1,∀S ⊆C, |S|≥ 2. □
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EC.3. The Pseudocode for the Branch-Cut-and-Price Approach

Algorithm 1 The Branch-Cut-and-Price Approach for the Driver-Aide Problem

Initialize UB (upper bound) as ∞ and LB (lower bound) as −∞
Run (Min Initiali) and (Max Initiali) for all i in C for enhanced initial loops (y variables)
Initialize IP3R and its relaxation LP3R with both of the basic and enhanced initial loops (y variables)
Execute RootNodeFunction() described in Algorithm 2
Let RunningTime track the running time, and TimeLimit and ST (stopping tolerance) be user specified
input parameters
while (UB - LB)/UB > ST and RunningTime ≤ TimeLimit do

Execute BranchingPhaseFunction() described in Algorithm 3
end while

Algorithm 2 The Procedure at the Root Node (RootNodeFunction)

function RootNodeFunction( )
Set stopFlag as 0 and countFlag as 0
while stopFlag is 0 do

Solve LP3R to obtain a solution (h∗,x∗,y∗,z∗) with objective value zlb
Run Enhanced Row Generation for violated constraint (37). Specifically, for each i in C,
run a shortest path algorithm. If no violated constraints are found, run (SepEX).
if the solution is integral and no violated constraints are found then

A feasible solution has been found. Let its objective value be z
If z < UB, set UB ← z. Then, if (UB - LB)/UB ≤ ST, set stopFlag as 1.

else if Violated constraints are found then
Include the newly found constraint (37) to LP3R

end if
Run Enhanced Column Generation for promising y variables. Specifically,
procedure Enhanced Column Generation

if countFlag < 5 then
for each i in C, run (Pricingi) with a time limit of 5 seconds.

end if
if no promising y variables are found then

run (StrongPricing).
end if
if Some promising y variables are found then

Include the newly found y variables to LP3R
end if

end procedure
if no violated constraints or promising y variables are found then

set stopFlag as 1.
end if
if stopFlag is 1 then

Apply Branching Rule to create two nodes and include the two nodes in the list currentLevel
else

countFlag += 1
end if

end while
Set LB ← zlb. Then, if (UB - LB)/UB ≤ ST, set stopFlag as 1.

end function
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Algorithm 3 The Procedure for the Branching Phase (BranchingPhaseFunction)

function BranchingPhaseFunction( )
Initialize an empty list nextLevel and set stopFlag as 0
while stopFlag is 0 do

for each node in currentLevel do
Solve LP3R at the node to obtain a solution (h∗,x∗,y∗,z∗)
Run Enhanced Row Generation for violated constraint (37). Specifically, for each i in C,
run a shortest path algorithm. If no violated constraints are found, run (SepEX).
if the solution is integral and no violated constraints are found then

A feasible solution has been found. Let its objective value be z
If z < UB, set UB ← z. Then, if (UB - LB)/UB ≤ ST, set stopFlag as 1 and execute Break

else if Violated constraints are found then
Include the newly found constraint (37) to LP3R

end if
Run (StrongPricing) for a promising y variable
if a promising y variable is found then

Include the newly found y variables to LP3R
end if
If no violated constraints or any promising y variable is found,
apply Branching Rule to create two nodes and include the two nodes in the list nextLevel.

end for
Let zlb be the smallest objective value for nodes in currentLevel. If zlb > LB, set LB ← zlb.
Then, if (UB - LB)/UB ≤ ST, set stopFlag as 1.
Set currentLevel← nextLevel

end while
end function
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EC.4. Comparative Statics Calculation

We first introduce some notation. Let t̄ be the average travel time between nodes in the

TSP/Jumper variant, and s̄ be the average service time among nodes in the TSP/Jumper variant.

Similarly, let t̄DA be the average travel time between nodes when the aide is on the truck in the

driver-aide problem, and s̄DA be the average service time among nodes when the aide is on the

truck in the driver-aide problem. Further, let βT , βD, and βA denote the cost (per unit time) for

the truck, driver, and aide, respectively. Let ∆ be the average time between the truck dropping

off and picking up the aide at a node served by the helper mode. Let J , H, and D be the number

of nodes served by the jumper mode, helper mode, and driver alone, respectively, and γ be the

average number of nodes served by the driver alone after the aide is dropped off as a helper. Thus,

we can approximate the costs for the TSP, jumper variants, and the driver-aide problem as follows:

CTSP = (nt̄+ns̄)(βT +βD) (EC.1)

CJumper = (nt̄+ns̄(1− f̄))(βT +βD +βA) (EC.2)

CDA = ((J +H)t̄DA + Js̄DA(1− f̄DA)+∆H)(βT +βD +βA) (EC.3)

For the jumper variant to be more cost-effective than the TSP variant, we need to satisfy

CTSP ≥CJumper (EC.4)

=⇒ (nt̄+ns̄)(βT +βD)≥ (nt̄+ns̄(1− f̄))(βT +βD +βA) (EC.5)

=⇒ t̄βT + s̄βT + t̄βD + s̄βD ≥ t̄βT + t̄βD + t̄βA + s̄βT + s̄βD + s̄βA − s̄f̄βT − s̄f̄βD − s̄f̄βA (EC.6)

=⇒ s̄f̄(βT +βD +βA)≥ t̄βA + s̄βA (EC.7)

=⇒ f̄ ≥ βA(t̄+ s̄)

s̄(βT +βD +βA)
(EC.8)

We refer to the right-hand side of (EC.8) as θJ .

Moreover, we can derive the following condition that shows when the driver-aide route is more

cost-effective than the TSP variant:

CTSP ≥CDA (EC.9)

=⇒ (nt̄+ns̄)(βT +βD)≥ ((J +H)t̄DA + Js̄DA(1− f̄DA)+∆H)(βT +βD +βA) (EC.10)

=⇒∆H ≤ (nt̄+ns̄)(βT +βD)

(βT +βD +βA)
− (J +H)t̄DA − Js̄DA(1− f̄DA) (EC.11)

=⇒∆≤ (nt̄+ns̄)(βT +βD)

(βT +βD +βA)H
− (J +H)t̄DA + Js̄DA(1− f̄DA)

H
(EC.12)

The left-hand side of (EC.11) shows the time spent in helper mode. On the right-hand side of

(EC.11), the first term shows the maximum time possible for a driver-aide instance, considering

the cost difference, the second term is the travel time when the aide is on the truck, and the third

term is the service time when the aide is in jumper mode. Let ρH denote the right-hand side of

(EC.12).
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EC.5. Detailed Computational Results

1-Mile X 1-Mile
5 MPH 10 MPH 15 MPH 20 MPH

Gap Time Gap Time Gap Time Gap Time
1 1.1% 150.2 1.4% 237.6 1.2% 299.3 0.8% 348.9
2 0.8% 159.2 1.6% 531.7 1.0% 1088.3 0.6% 626.5
3 1.9% 110.8 1.6% 132.9 1.2% 196.0 1.2% 241.8
4 1.7% 71.5 0.8% 225.3 1.1% 1320.5 0.7% 243.8
5 1.0% 75.8 0.2% 222.6 0.0% 314.0 0.6% 334.8
6 1.4% 69.9 0.9% 364.2 0.5% 256.3 0.6% 1350.9
7 1.9% 42.9 0.9% 96.5 0.9% 114.2 0.5% 118.4
8 0.0% 41.9 0.1% 68.2 0.9% 117.2 0.0% 135.5
9 1.1% 65.8 0.8% 109.3 0.6% 158.3 1.1% 160.9
10 2.0% 49.2 1.0% 100.4 0.7% 97.1 0.9% 98.6
Avg 1.3% 83.7 0.9% 208.9 0.8% 396.1 0.7% 366.0

3-Miles X 3-Miles
5 MPH 10 MPH 15 MPH 20 MPH

Gap Time Gap Time Gap Time Gap Time
1 1.8% 37.2 0.7% 60.9 1.7% 92.8 2.0% 112.3
2 1.2% 267.9 0.6% 255.8 1.5% 606.1 1.4% 765.0
3 1.7% 20.8 1.8% 34.2 1.9% 54.4 1.9% 37.3
4 1.8% 188.3 1.3% 761.6 1.1% 712.8 1.1% 1128.9
5 0.4% 76.9 1.1% 177.1 0.8% 264.3 1.6% 344.9
6 1.3% 43.1 0.9% 65.6 1.2% 82.6 1.6% 110.2
7 1.1% 196.7 1.3% 61.1 0.8% 65.5 1.8% 94.5
8 1.9% 206.4 1.5% 233.8 1.9% 179.7 2.0% 102.2
9 2.0% 42.7 1.9% 65.5 1.8% 35.3 1.8% 45.0
10 0.7% 32.4 1.6% 57.8 1.2% 72.3 0.7% 112.9
Avg 1.4% 111.2 1.3% 177.3 1.4% 216.6 1.6% 285.3

5-Miles X 5-Miles
5 MPH 10 MPH 15 MPH 20 MPH

Gap Time Gap Time Gap Time Gap Time
1 1.7% 446.4 1.9% 134.4 1.9% 49.0 1.0% 81.6
2 1.0% 75.8 1.2% 48.4 1.9% 61.7 0.7% 127.5
3 1.5% 159.8 1.6% 44.0 1.8% 37.9 1.7% 45.4
4 1.3% 52.0 2.0% 47.9 1.7% 62.3 2.0% 99.8
5 0.3% 100.1 0.3% 129.6 1.2% 76.4 1.6% 119.3
6 0.7% 44.8 1.4% 63.1 1.6% 125.8 1.2% 220.1
7 1.9% 266.1 1.8% 126.8 1.9% 89.8 1.2% 52.6
8 1.2% 219.6 1.5% 103.8 1.9% 41.0 1.7% 62.3
9 0.1% 136.2 0.1% 225.1 0.1% 54.5 0.4% 89.5
10 2.0% 337.8 1.9% 89.7 2.0% 41.6 1.6% 52.3
Avg 1.2% 183.9 1.4% 101.3 1.6% 64.0 1.3% 95.0

Table EC.1 Computational Performance (Optimality Gap and Time in Seconds) of the Branch-Cut-and-Price

Approach with a 2% Stopping Tolerance.

In Table EC.1, the first column shows the instance ID. For each region and travel speed, we

report the optimality gap in “Gap” and the running time in “Time”. In addition, we report the

average values in the row “Avg”.
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5 MPH 10 MPH
1-Mile X 1-Mile 1-Mile X 1-Mile

TSP Jumper DA UB DA LB TSP Jumper DA UB DA LB
1 15955 13666 11022 10901 13876 11589 8620 8496
2 16027 12511 10727 10638 13922 10410 8644 8509
3 14089 11029 9648 9460 12199 9140 7575 7455
4 14707 11546 9940 9770 12677 9520 7823 7759
5 16081 14027 10593 10487 14066 12012 8337 8319
6 13771 12060 9637 9504 11853 10143 7431 7363
7 14085 12293 9632 9450 12140 10348 7513 7445
8 13467 11217 9437 9437 11521 9272 7433 7423
9 15660 12805 10581 10466 13631 10777 8213 8147
10 13424 11156 9670 9480 11286 9020 7190 7121

3-Miles X 3-Miles 3-Miles X 3-Miles
TSP Jumper DA UB DA LB TSP Jumper DA UB DA LB

1 24533 21168 19236 18886 18799 15433 12893 12798
2 23894 20948 19551 19313 17747 14803 12721 12639
3 20428 17780 17203 16911 14856 12208 11414 11214
4 22436 18996 18161 17835 16563 13123 11920 11768
5 26083 21991 20131 20052 20232 16140 14031 13879
6 23753 20525 19194 18939 17735 14509 12705 12595
7 20807 18772 17319 17122 15197 13164 11434 11286
8 23907 21047 19656 19291 18033 15174 13391 13184
9 20127 17604 17482 17137 14380 11859 11280 11071
10 21201 18534 18110 17988 15177 12510 11776 11590

5-Miles X 5-Miles 5-Miles X 5-Miles
TSP Jumper DA UB DA LB TSP Jumper DA UB DA LB

1 33305 30530 29772 29254 22952 20179 18655 18294
2 33187 29524 28454 28166 23324 19659 17657 17454
3 28987 26854 25930 25530 19382 17251 15963 15713
4 30796 28780 27120 26759 21262 19242 16495 16172
5 30858 28337 27954 27881 20719 18199 17473 17413
6 34248 30835 29567 29371 23921 20503 18823 18556
7 27137 24787 24573 24107 17877 15526 14851 14590
8 28532 26749 26099 25790 18625 16844 15976 15734
9 29763 26210 25609 25580 20339 16789 16072 16050
10 29621 27179 26584 26054 19474 17029 15902 15597

Table EC.2 Routing Times in Seconds of the TSP, Jumper Variants, and the Driver-Aide Problem with 5 MPH

and 10 MPH Speeds.

.
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15 MPH 20 MPH
1-Mile X 1-Mile 1-Mile X 1-Mile

TSP Jumper DA UB DA LB TSP Jumper DA UB DA LB
1 13185 10896 7784 7695 12839 10550 7386 7331
2 13226 9710 7779 7697 12876 9359 7332 7285
3 11570 8510 6866 6781 11255 8195 6464 6385
4 12005 8845 7198 7120 11667 8507 6798 6750
5 13394 11341 7602 7602 13058 11005 7321 7281
6 11215 9504 6601 6571 10895 9185 6279 6242
7 11492 9699 6839 6779 11168 9375 6392 6362
8 10874 8624 6690 6632 10549 8300 6248 6247
9 12958 10102 7403 7362 12621 9764 7112 7033
10 10577 8309 6485 6439 10221 7953 6071 6016

3-Miles X 3-Miles 3-Miles X 3-Miles
TSP Jumper DA UB DA LB TSP Jumper DA UB DA LB

1 16886 13521 10947 10758 15931 12565 9968 9769
2 15700 12755 10743 10584 14676 11731 9565 9430
3 12997 10350 9290 9117 12068 9421 8189 8035
4 14605 11165 9953 9843 13627 10186 8846 8749
5 18282 14190 11927 11830 17307 13215 10987 10814
6 15732 12504 10565 10443 14729 11501 9518 9361
7 13329 11294 9240 9162 12394 10360 8365 8217
8 16076 13216 11269 11050 15097 12238 10063 9862
9 12467 9944 8933 8769 11510 8987 7860 7718
10 13170 10502 9338 9222 12166 9498 8218 8161

5-Miles X 5-Miles 5-Miles X 5-Miles
TSP Jumper DA UB DA LB TSP Jumper DA UB DA LB

1 19503 16728 14509 14232 17778 15003 12490 12365
2 20034 16370 14148 13884 18390 14726 12301 12214
3 16183 14050 12433 12212 14582 12450 10724 10543
4 18080 16063 13157 12939 16491 14474 11468 11243
5 17341 14820 13675 13506 15652 13131 11761 11579
6 20471 17058 14807 14577 18749 15336 12699 12544
7 14789 12439 11527 11305 13245 10896 9694 9577
8 15326 13543 12449 12213 13675 11892 10649 10463
9 17202 13649 12487 12478 15632 12079 10659 10622
10 16088 13645 12227 11983 14396 11954 10278 10114

Table EC.3 Routing Times in Seconds of the TSP, Jumper Variants, and the Driver-Aide Problem with 15

MPH and 20 MPH Speeds.

In Tables EC.2 and EC.3, we present the optimal routing time of the TSP variant in “TSP” and

that of the jumper variant in “Jumper”. Columns “DA UB” and “DA LB” contain the best upper

and lower bounds of the driver-aide problem, respectively.

.
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1-Mile X 1-Mile
5 MPH 10 MPH 15 MPH 20 MPH

Jumper DA Jumper DA Jumper DA Jumper DA
1 14.3% 30.9% 16.5% 37.9% 17.4% 41.0% 17.8% 42.5%
2 21.9% 33.1% 25.2% 37.9% 26.6% 41.2% 27.3% 43.1%
3 21.7% 31.5% 25.1% 37.9% 26.4% 40.7% 27.2% 42.6%
4 21.5% 32.4% 24.9% 38.3% 26.3% 40.0% 27.1% 41.7%
5 12.8% 34.1% 14.6% 40.7% 15.3% 43.2% 15.7% 43.9%
6 12.4% 30.0% 14.4% 37.3% 15.3% 41.1% 15.7% 42.4%
7 12.7% 31.6% 14.8% 38.1% 15.6% 40.5% 16.0% 42.8%
8 16.7% 29.9% 19.5% 35.5% 20.7% 38.5% 21.3% 40.8%
9 18.2% 32.4% 20.9% 39.8% 22.0% 42.9% 22.6% 43.7%
10 16.9% 28.0% 20.1% 36.3% 21.4% 38.7% 22.2% 40.6%
Avg 16.9% 31.4% 19.6% 38.0% 20.7% 40.8% 21.3% 42.4%

3-Miles X 3-Miles
5 MPH 10 MPH 15 MPH 20 MPH

Jumper DA Jumper DA Jumper DA Jumper DA
1 13.7% 21.6% 17.9% 31.4% 19.9% 35.2% 21.1% 37.4%
2 12.3% 18.2% 16.6% 28.3% 18.8% 31.6% 20.1% 34.8%
3 13.0% 15.8% 17.8% 23.2% 20.4% 28.5% 21.9% 32.1%
4 15.3% 19.1% 20.8% 28.0% 23.6% 31.9% 25.2% 35.1%
5 15.7% 22.8% 20.2% 30.6% 22.4% 34.8% 23.6% 36.5%
6 13.6% 19.2% 18.2% 28.4% 20.5% 32.8% 21.9% 35.4%
7 9.8% 16.8% 13.4% 24.8% 15.3% 30.7% 16.4% 32.5%
8 12.0% 17.8% 15.9% 25.7% 17.8% 29.9% 18.9% 33.3%
9 12.5% 13.1% 17.5% 21.6% 20.2% 28.3% 21.9% 31.7%
10 12.6% 14.6% 17.6% 22.4% 20.3% 29.1% 21.9% 32.5%
Avg 13.0% 17.9% 17.6% 26.4% 19.9% 31.3% 21.3% 34.1%

5-Miles X 5-Miles
5 MPH 10 MPH 15 MPH 20 MPH

Jumper DA Jumper DA Jumper DA Jumper DA
1 8.3% 10.6% 12.1% 18.7% 14.2% 25.6% 15.6% 29.7%
2 11.0% 14.3% 15.7% 24.3% 18.3% 29.4% 19.9% 33.1%
3 7.4% 10.5% 11.0% 17.6% 13.2% 23.2% 14.6% 26.5%
4 6.5% 11.9% 9.5% 22.4% 11.2% 27.2% 12.2% 30.5%
5 8.2% 9.4% 12.2% 15.7% 14.5% 21.1% 16.1% 24.9%
6 10.0% 13.7% 14.3% 21.3% 16.7% 27.7% 18.2% 32.3%
7 8.7% 9.4% 13.2% 16.9% 15.9% 22.1% 17.7% 26.8%
8 6.3% 8.5% 9.6% 14.2% 11.6% 18.8% 13.0% 22.1%
9 11.9% 14.0% 17.5% 21.0% 20.7% 27.4% 22.7% 31.8%
10 8.2% 10.3% 12.6% 18.3% 15.2% 24.0% 17.0% 28.6%
Avg 8.7% 11.3% 12.7% 19.1% 15.1% 24.6% 16.7% 28.6%

Table EC.4 Relative Reductions in the Routing Times of the Driver-Aide Problem with the Jumper Mode Only

and the Driver-Aide Problem.

Table EC.4 presents the detailed results with a similar format as Table EC.1. The relative reduc-

tion in the routing time of the jumper variant is shown in the column “Jumper”. It is calculated

as 1− zJumper/zTSP , where zTSP is the routing time of the TSP variant, and zJumper denotes the

routing time of the jumper variant. Similarly, the relative reduction in the routing time of the

driver-aide problem is shown in the column “DA”.
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1-Mile X 1-Mile
5 MPH 10 MPH 15 MPH 20 MPH

Jumper DA Jumper DA Jumper DA Jumper DA
1 104.0% 83.9% 101.4% 75.4% 100.4% 71.7% 99.8% 69.9%
2 94.8% 81.3% 90.8% 75.4% 89.1% 71.4% 88.3% 69.1%
3 95.1% 83.2% 91.0% 75.4% 89.3% 72.1% 88.4% 69.7%
4 95.3% 82.1% 91.2% 74.9% 89.5% 72.8% 88.5% 70.8%
5 105.9% 80.0% 103.7% 72.0% 102.8% 68.9% 102.3% 68.1%
6 106.3% 85.0% 103.9% 76.1% 102.9% 71.5% 102.4% 70.0%
7 106.0% 83.0% 103.5% 75.1% 102.5% 72.3% 101.9% 69.5%
8 101.1% 85.1% 97.7% 78.3% 96.3% 74.7% 95.5% 71.9%
9 99.3% 82.0% 96.0% 73.2% 94.7% 69.4% 93.9% 68.4%
10 100.9% 87.5% 97.1% 77.4% 95.4% 74.5% 94.5% 72.1%

3-Miles X 3-Miles
5 MPH 10 MPH 15 MPH 20 MPH

Jumper DA Jumper DA Jumper DA Jumper DA
1 104.8% 95.2% 99.7% 83.3% 97.2% 78.7% 95.8% 76.0%
2 106.5% 99.4% 101.3% 87.0% 98.7% 83.1% 97.1% 79.1%
3 105.7% 102.3% 99.8% 93.3% 96.7% 86.8% 94.8% 82.4%
4 102.8% 98.3% 96.2% 87.4% 92.8% 82.8% 90.8% 78.8%
5 102.4% 93.7% 96.9% 84.2% 94.3% 79.2% 92.7% 77.1%
6 104.9% 98.1% 99.3% 87.0% 96.5% 81.6% 94.8% 78.5%
7 109.6% 101.1% 105.2% 91.4% 102.9% 84.2% 101.5% 82.0%
8 106.9% 99.8% 102.2% 90.2% 99.8% 85.1% 98.4% 80.9%
9 106.2% 105.5% 100.1% 95.3% 96.9% 87.0% 94.8% 82.9%
10 106.2% 103.7% 100.1% 94.2% 96.8% 86.1% 94.8% 82.0%

5-Miles X 5-Miles
5 MPH 10 MPH 15 MPH 20 MPH

Jumper DA Jumper DA Jumper DA Jumper DA
1 111.3% 108.6% 106.8% 98.7% 104.2% 90.3% 102.5% 85.3%
2 108.0% 104.1% 102.4% 91.9% 99.2% 85.8% 97.2% 81.2%
3 112.5% 108.6% 108.1% 100.0% 105.4% 93.3% 103.7% 89.3%
4 113.5% 106.9% 109.9% 94.2% 107.9% 88.4% 106.6% 84.4%
5 111.5% 110.0% 106.7% 102.4% 103.8% 95.8% 101.9% 91.2%
6 109.3% 104.8% 104.1% 95.6% 101.2% 87.8% 99.3% 82.2%
7 110.9% 110.0% 105.5% 100.9% 102.1% 94.6% 99.9% 88.9%
8 113.8% 111.1% 109.8% 104.2% 107.3% 98.6% 105.6% 94.6%
9 106.9% 104.5% 100.2% 96.0% 96.3% 88.1% 93.8% 82.8%
10 111.4% 109.0% 106.2% 99.2% 103.0% 92.3% 100.8% 86.7%

Table EC.5 Relative Costs of the Jumper Variant and the Driver-Aide Problem Compared to the TSP Variant.

We calculate the relative costs of the jumper variant and the driver-aide problem as $90.65 ∗

zJumper/($74.65∗zTSP ) and $90.65∗zDA/($74.65∗zTSP ), respectively. Table EC.5 shows the relative

costs of the jumper variant and the driver-aide problem for each instance. A number higher (lower)

than 100% indicates a higher (lower) cost than the TSP variant.
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ID t̄ s̄ f̄ θJ H D J t̄DA s̄DA f̄DA γ ∆ ρH Mode

5
M
P
H

1
-M

il
e
X

1
-M

il
e

1 101.33 287.80 0.19 0.24 10 22 9 154.4 129.0 0.32 2.2 734.0 941.8 DA
2 102.47 288.44 0.30 0.24 9 14 18 108.4 169.1 0.37 1.6 668.1 929.1 DA
3 92.18 251.46 0.30 0.24 10 16 15 120.9 195.1 0.36 1.6 490.2 670.8 DA
4 98.85 259.85 0.30 0.24 11 13 17 111.0 269.4 0.33 1.2 379.4 539.3 DA
5 98.29 293.93 0.17 0.24 11 20 10 107.3 125.0 0.27 1.8 675.3 916.1 DA
6 93.51 242.37 0.17 0.24 10 18 13 134.0 149.5 0.38 1.8 542.9 706.2 DA
7 94.88 248.66 0.18 0.24 13 18 10 126.1 186.8 0.24 1.4 415.3 559.9 DA
8 94.87 233.59 0.23 0.25 9 13 19 103.0 172.5 0.27 1.4 477.4 645.3 DA
9 98.86 283.10 0.25 0.24 11 19 11 120.5 266.1 0.35 1.7 571.4 757.3 DA
10 104.16 223.24 0.25 0.26 10 13 18 129.3 178.9 0.34 1.3 401.6 532.2 DA

3
-M

il
es

X
3
-M

il
es

1 279.8 318.6 0.26 0.33 8 8 25 302.6 278.5 0.33 1.0 633.5 692.1 DA
2 299.8 283.0 0.25 0.36 8 11 22 352.8 219.9 0.28 1.4 722.8 702.2 DA
3 271.8 226.4 0.29 0.39 6 6 29 292.0 190.7 0.30 1.0 539.8 455.1 TSP
4 286.5 260.7 0.32 0.37 8 9 24 314.5 181.1 0.37 1.1 678.2 707.5 DA
5 285.4 350.8 0.28 0.32 7 18 16 348.2 169.1 0.28 2.6 1468.2 1646.6 DA
6 293.5 285.9 0.28 0.36 6 10 25 338.0 193.5 0.30 1.7 901.0 946.3 DA
7 273.6 233.9 0.21 0.38 10 11 20 326.0 183.2 0.24 1.1 480.7 455.2 TSP
8 286.5 296.6 0.24 0.35 7 10 24 330.6 246.1 0.26 1.4 713.9 722.3 DA
9 280.2 210.7 0.29 0.41 4 4 33 301.8 211.4 0.28 1.0 364.9 104.7 TSP
10 293.8 223.3 0.29 0.41 5 6 30 325.3 194.2 0.24 1.2 531.6 328.9 TSP

5
-M

il
es

X
5
-M

il
es

1 505.0 307.4 0.22 0.47 4 5 32 571.9 256.1 0.27 1.3 768.1 218.0 TSP
2 481.2 328.2 0.27 0.44 5 6 30 505.2 259.0 0.28 1.2 1115.1 815.7 TSP
3 468.4 238.6 0.22 0.52 4 4 33 503.9 175.3 0.28 1.0 781.2 272.7 TSP
4 465.2 285.9 0.17 0.46 4 4 33 495.1 250.5 0.26 1.0 614.8 232.0 TSP
5 494.5 258.1 0.24 0.51 4 4 33 539.7 223.4 0.27 1.0 676.3 20.3 TSP
6 504.0 331.3 0.25 0.45 4 4 33 526.5 288.6 0.28 1.0 838.8 456.2 TSP
7 451.8 210.1 0.27 0.56 2 2 37 462.2 197.6 0.26 1.0 550.2 -547.7 TSP
8 483.2 212.8 0.20 0.58 3 3 35 506.7 191.1 0.25 1.0 591.6 -267.4 TSP
9 459.5 266.4 0.33 0.48 6 6 29 458.8 250.9 0.29 1.0 827.5 543.3 TSP
10 495.1 227.3 0.26 0.56 4 4 33 532.6 216.1 0.30 1.0 529.6 -71.2 TSP

1
0
M
P
H

1
-M

il
e
X

1
-M

il
e

1 50.6 287.8 0.19 0.21 9 22 10 77.0 232.2 0.33 2.4 634.7 934.4 DA
2 51.1 288.4 0.30 0.21 7 21 13 65.9 241.2 0.42 3.0 810.5 1188.3 DA
3 46.1 251.5 0.30 0.21 8 20 13 65.2 230.8 0.38 2.5 564.5 853.7 DA
4 49.3 259.9 0.30 0.21 10 23 8 72.9 212.9 0.41 2.3 557.9 813.0 DA
5 49.1 293.9 0.17 0.21 10 25 6 69.1 118.0 0.42 2.5 683.4 1006.5 DA
6 46.7 242.4 0.17 0.21 9 23 9 77.8 173.0 0.42 2.6 576.4 829.1 DA
7 47.4 248.7 0.18 0.21 12 23 6 73.6 156.8 0.38 1.9 470.0 674.4 DA
8 47.4 233.6 0.23 0.21 12 21 8 67.2 180.6 0.33 1.8 431.9 597.4 DA
9 49.4 283.1 0.25 0.21 11 20 10 61.9 358.4 0.46 1.8 464.3 726.5 DA
10 52.0 223.2 0.25 0.22 13 19 9 67.9 200.2 0.42 1.5 363.2 520.1 DA

3
-M

il
es

X
3
-M

il
es

1 139.9 318.6 0.26 0.25 10 15 16 169.0 338.4 0.41 1.5 550.4 787.0 DA
2 149.9 283.0 0.25 0.27 10 16 15 185.8 227.1 0.31 1.6 597.5 763.1 DA
3 136.0 226.4 0.29 0.28 7 9 25 159.2 180.5 0.30 1.3 466.3 568.5 DA
4 143.2 260.7 0.32 0.27 8 14 19 182.1 186.1 0.36 1.8 609.9 809.1 DA
5 142.7 350.8 0.28 0.25 5 20 16 180.9 169.9 0.31 4.0 1685.6 2195.3 DA
6 146.7 285.9 0.28 0.27 10 15 16 166.3 170.1 0.37 1.5 673.2 856.4 DA
7 136.8 233.9 0.21 0.28 10 17 14 177.0 204.6 0.25 1.7 524.5 612.0 DA
8 143.2 296.6 0.24 0.26 11 16 14 195.6 180.6 0.29 1.5 610.5 743.0 DA
9 140.1 210.7 0.29 0.29 8 9 24 153.7 154.8 0.32 1.1 483.6 550.5 DA
10 146.9 223.3 0.29 0.29 7 8 26 157.8 192.4 0.24 1.1 462.9 500.3 DA

5
-M

il
es

X
5
-M

il
es

1 252.4 307.4 0.22 0.32 8 12 21 324.4 243.8 0.35 1.5 743.1 769.4 DA
2 240.7 328.2 0.27 0.31 9 15 17 291.6 213.1 0.32 1.7 862.1 1019.3 DA
3 234.2 238.6 0.22 0.35 6 6 29 258.1 181.2 0.29 1.0 527.1 532.7 TSP
4 232.7 285.9 0.17 0.32 13 14 14 312.1 179.6 0.33 1.1 489.8 568.7 DA
5 247.2 258.1 0.24 0.35 4 4 33 260.8 211.3 0.28 1.0 735.0 606.9 TSP
6 252.1 331.3 0.25 0.31 6 15 20 299.8 163.8 0.31 2.5 1441.2 1606.6 DA
7 225.9 210.1 0.27 0.37 9 9 23 270.2 169.3 0.30 1.0 376.6 370.3 TSP
8 241.5 212.8 0.20 0.38 5 6 30 267.2 192.4 0.25 1.2 435.7 327.7 TSP
9 229.7 266.4 0.33 0.33 7 11 23 224.0 259.1 0.31 1.6 801.6 848.1 DA
10 247.6 227.3 0.26 0.37 7 8 26 282.7 212.8 0.30 1.1 426.3 404.6 DA

Table EC.6 Detailed Calculations of the Comparative Metrics.
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ID t̄ s̄ f̄ θJ H D J t̄DA s̄DA f̄DA γ ∆ ρH Mode
1 33.8 287.8 0.19 0.20 9 28 4 70.2 96.8 0.33 3.1 737.7 1076.0 DA
2 34.2 288.4 0.30 0.20 10 22 9 45.3 216.4 0.42 2.2 591.8 890.5 DA
3 30.7 251.5 0.30 0.20 10 24 7 47.1 275.9 0.40 2.4 507.5 756.9 DA
4 32.9 259.9 0.30 0.20 11 24 6 49.2 176.3 0.38 2.2 526.4 763.4 DA
5 32.8 293.9 0.17 0.20 8 31 2 58.1 89.5 0.35 3.9 864.2 1291.6 DA
6 31.2 242.4 0.17 0.20 11 26 4 59.9 192.5 0.43 2.4 483.4 717.6 DA
7 31.6 248.7 0.18 0.20 12 24 5 47.0 162.4 0.46 2.0 468.5 685.5 DA
8 31.6 233.6 0.23 0.20 12 23 6 48.5 176.3 0.33 1.9 430.8 614.7 DA
9 33.0 283.1 0.25 0.20 11 20 10 41.9 359.7 0.46 1.8 428.3 713.5 DA

1
-M

il
e
X

1
-M

il
e

10 34.7 223.2 0.25 0.20 11 18 12 41.4 193.2 0.38 1.6 380.2 573.4 DA
1 93.3 318.6 0.26 0.23 9 15 17 116.8 318.5 0.41 1.7 549.1 850.2 DA
2 99.9 283.0 0.25 0.24 10 19 12 129.8 276.2 0.36 1.9 600.5 794.6 DA
3 90.6 226.4 0.29 0.25 11 15 15 119.1 170.9 0.36 1.4 419.6 542.2 DA
4 95.5 260.7 0.32 0.24 9 16 16 107.9 230.5 0.43 1.8 582.4 803.7 DA
5 95.1 350.8 0.28 0.22 5 25 11 148.7 186.2 0.31 5.0 1642.3 2252.3 DA
6 97.8 285.9 0.28 0.24 11 17 13 106.9 223.2 0.35 1.5 569.6 772.0 DA
7 91.2 233.9 0.21 0.25 10 19 12 126.8 205.3 0.29 1.9 489.5 644.1 DA
8 95.5 296.6 0.24 0.23 12 18 11 144.3 146.6 0.35 1.5 578.6 740.0 DA
9 93.4 210.7 0.29 0.25 13 17 11 118.3 144.2 0.39 1.3 396.6 497.1 DA

3
-M

il
es

X
3
-M

il
es

10 97.9 223.3 0.29 0.25 11 14 16 113.4 226.6 0.32 1.3 375.3 483.1 DA
1 168.3 307.4 0.22 0.27 11 13 17 206.1 238.9 0.39 1.2 573.5 711.7 DA
2 160.4 328.2 0.27 0.26 8 13 20 183.4 261.7 0.35 1.6 715.1 992.0 DA
3 156.1 238.6 0.22 0.29 11 12 18 194.4 144.4 0.33 1.1 463.9 541.5 DA
4 155.1 285.9 0.17 0.27 12 14 15 198.3 168.4 0.33 1.2 512.0 654.1 DA
5 164.8 258.1 0.24 0.29 8 13 20 198.9 180.5 0.29 1.6 707.8 766.2 DA
6 168.0 331.3 0.25 0.27 8 23 10 229.6 119.9 0.28 2.9 1223.5 1482.7 DA
7 150.6 210.1 0.27 0.30 11 13 17 190.7 149.5 0.29 1.2 394.4 457.4 DA
8 161.1 212.8 0.20 0.31 8 10 23 198.4 205.6 0.28 1.3 356.7 385.0 DA
9 153.2 266.4 0.33 0.28 8 14 19 164.3 279.1 0.32 1.8 596.4 762.8 DA

1
5
M
P
H

5
-M

il
es

X
5
-M

il
es

10 165.0 227.3 0.26 0.30 10 13 18 206.3 224.3 0.35 1.3 404.3 484.8 DA
1 25.3 287.8 0.19 0.19 7 29 5 50.6 103.2 0.32 4.1 922.8 1373.5 DA
2 25.6 288.4 0.30 0.19 10 23 8 31.5 275.8 0.43 2.3 565.0 876.9 DA
3 23.0 251.5 0.30 0.19 10 24 7 34.8 231.9 0.39 2.4 502.3 768.0 DA
4 24.7 259.9 0.30 0.19 13 21 7 32.9 446.0 0.43 1.6 350.2 551.3 DA
5 24.6 293.9 0.17 0.19 9 29 3 40.4 107.0 0.40 3.2 739.9 1119.6 DA
6 23.4 242.4 0.17 0.19 10 27 4 48.9 141.5 0.37 2.7 528.6 793.4 DA
7 23.7 248.7 0.18 0.19 12 24 5 32.3 162.4 0.46 2.0 452.0 684.1 DA
8 23.7 233.6 0.23 0.19 11 26 4 41.5 164.5 0.35 2.4 476.7 694.3 DA
9 24.7 283.1 0.25 0.19 12 20 9 31.6 368.1 0.47 1.7 399.2 663.5 DA

1
-M

il
e
X

1
-M

il
e

10 26.0 223.2 0.25 0.20 12 22 7 37.2 213.4 0.43 1.8 381.7 571.4 DA
1 69.9 318.6 0.26 0.22 9 17 15 87.8 267.3 0.41 1.9 635.3 962.2 DA
2 74.9 283.0 0.25 0.22 11 20 10 95.8 319.8 0.39 1.8 526.6 738.4 DA
3 68.0 226.4 0.29 0.23 13 15 13 90.1 212.2 0.36 1.2 320.5 448.8 DA
4 71.6 260.7 0.32 0.22 10 18 13 88.1 220.3 0.43 1.8 527.1 756.5 DA
5 71.3 350.8 0.28 0.21 6 26 9 115.3 306.2 0.38 4.3 1261.2 1801.3 DA
6 73.4 285.9 0.28 0.22 11 18 12 84.8 262.2 0.39 1.6 522.2 751.4 DA
7 68.4 233.9 0.21 0.23 11 20 10 100.6 220.6 0.31 1.8 445.8 597.5 DA
8 71.6 296.6 0.24 0.22 11 21 9 112.2 192.1 0.33 1.9 608.3 821.4 DA
9 70.1 210.7 0.29 0.24 13 17 11 91.3 132.5 0.38 1.3 366.6 491.2 DA

3
-M

il
es

X
3
-M

il
es

10 73.5 223.3 0.29 0.23 11 16 14 89.7 232.2 0.34 1.5 371.4 510.5 DA
1 126.2 307.4 0.22 0.25 13 18 10 162.0 264.3 0.34 1.4 545.9 705.4 DA
2 120.3 328.2 0.27 0.24 10 19 12 152.7 197.4 0.36 1.9 748.2 1026.4 DA
3 117.1 238.6 0.22 0.26 12 14 15 155.4 134.8 0.31 1.2 431.3 535.3 DA
4 116.3 285.9 0.17 0.25 12 14 15 148.3 146.2 0.33 1.2 504.7 674.9 DA
5 123.6 258.1 0.24 0.26 9 11 21 138.3 179.2 0.34 1.2 582.8 694.3 DA
6 126.0 331.3 0.25 0.24 7 26 8 194.3 112.9 0.32 3.7 1309.4 1702.3 DA
7 112.9 210.1 0.27 0.27 11 14 16 146.8 150.8 0.31 1.3 364.6 479.3 DA
8 120.8 212.8 0.20 0.28 10 15 16 168.6 161.8 0.29 1.5 433.3 503.3 DA
9 114.9 266.4 0.33 0.25 9 18 14 135.5 293.0 0.34 2.0 576.4 784.5 DA

2
0
M
P
H

5
-M

il
es

X
5
-M

il
es

10 123.8 227.3 0.26 0.27 11 14 16 152.0 230.5 0.33 1.3 356.7 478.4 DA

Table EC.7 Detailed Calculations of the Comparative Metrics.



ec12 e-companion to Raghavan and Zhang: The Driver-Aide Problem

.

1-Mile X 1-Mile
5 MPH 10 MPH 15 MPH 20 MPH

1 78.6% 69.7% 65.8% 63.9%
2 75.8% 69.6% 65.5% 63.2%
3 77.8% 69.6% 66.2% 63.8%
4 76.7% 69.2% 67.0% 64.9%
5 74.5% 66.1% 63.0% 62.1%
6 79.8% 70.4% 65.6% 64.1%
7 77.7% 69.4% 66.4% 63.6%
8 79.9% 72.7% 68.9% 66.0%
9 76.6% 67.3% 63.4% 62.5%
10 82.4% 71.7% 68.7% 66.3%
Avg 78.0% 69.6% 66.1% 64.0%

3-Miles X 3-Miles
5 MPH 10 MPH 15 MPH 20 MPH

1 90.9% 77.9% 73.1% 70.2%
2 95.6% 82.0% 77.7% 73.6%
3 98.9% 88.8% 81.7% 77.0%
4 94.4% 82.4% 77.4% 73.2%
5 89.3% 78.9% 73.6% 71.4%
6 94.2% 81.9% 76.1% 72.9%
7 97.5% 86.7% 78.9% 76.5%
8 96.1% 85.4% 79.9% 75.5%
9 102.5% 91.0% 82.0% 77.6%
10 100.5% 89.8% 81.0% 76.6%
Avg 96.0% 84.5% 78.1% 74.4%

5-Miles X 5-Miles
5 MPH 10 MPH 15 MPH 20 MPH

1 106.1% 94.8% 85.6% 80.1%
2 101.0% 87.3% 80.6% 75.8%
3 106.2% 96.3% 88.8% 84.4%
4 104.2% 89.8% 83.4% 79.2%
5 107.8% 99.0% 91.5% 86.6%
6 101.8% 91.3% 82.8% 76.8%
7 107.7% 97.3% 90.3% 84.0%
8 109.0% 101.0% 94.8% 90.2%
9 101.4% 91.8% 83.2% 77.4%
10 106.6% 95.3% 87.7% 81.6%
Avg 105.2% 94.4% 86.9% 81.6%

Table EC.8 Relative Costs of the Driver-Aide Problem Compared to the TSP Variant Considering the

Overtime Pay Rate.

Table EC.8 shows the relative costs of the driver-aide problem, compared to the TSP variant,

considering the overtime pay rate. They are calculated as $90.65/($74.65 + $90.93*(zTSP/zDA−1)).



e-companion to Raghavan and Zhang: The Driver-Aide Problem ec13

#0002 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 31382 31008 26052 21015 20937 0.4% 644.0 33.0%
2 31382 31008 26026 21068 20913 0.7% 586.2 32.9%
3 31382 31008 24880 20974 20894 0.4% 680.7 33.2%
4 31382 31008 26964 21116 20893 1.1% 538.1 32.7%
5 31382 31008 27352 21119 21012 0.5% 718.6 32.7%
#0003 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 27076 26639 21794 17064 16913 0.9% 471.9 37.0%
2 27076 26639 23127 16992 16841 0.9% 564.0 37.2%
3 27076 26639 22729 16899 16809 0.5% 731.7 37.6%
4 27076 26639 21017 16994 16876 0.7% 573.8 37.2%
5 27076 26639 21561 16879 16856 0.1% 389.3 37.7%
#0012 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 24987 24341 19391 17447 17278 1.0% 75.5 30.2%
2 24987 24341 20810 17448 17226 1.3% 88.1 30.2%
3 24987 24341 21985 17434 17306 0.7% 88.6 30.2%
4 24987 24341 20665 17488 17254 1.3% 80.9 30.0%
5 24987 24341 20623 17455 17341 0.6% 87.8 30.1%
#0019 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 20973 20690 16724 13428 13330 0.7% 83.5 36.0%
2 20973 20690 16012 13631 13509 0.9% 77.8 35.0%
3 20973 20690 16692 13555 13445 0.8% 81.8 35.4%
4 20973 20690 17881 13680 13562 0.9% 74.9 34.8%
5 20973 20690 16272 13754 13564 1.4% 73.6 34.4%
#0020 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 22866 21897 18052 15126 15033 0.6% 1034.8 33.8%
2 22866 21897 18706 15125 15041 0.6% 964.9 33.9%
3 22866 21897 18060 15329 15216 0.7% 960.6 33.0%
4 22866 21897 17715 15107 14981 0.8% 819.6 33.9%
5 22866 21897 18329 15150 15099 0.3% 857.0 33.7%
#0023 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 24511 23593 20056 17515 17404 0.6% 116.0 28.5%
2 24511 23593 20740 17359 17350 0.1% 104.0 29.2%
3 24511 23593 19497 17237 17199 0.2% 98.0 29.7%
4 24511 23593 19946 17295 17255 0.2% 109.0 29.4%
5 24511 23593 20834 17353 17277 0.4% 117.0 29.2%
#0038 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 25595 25114 20033 14796 14606 1.3% 71.8 42.2%
2 25595 25114 19964 14741 14570 1.2% 91.2 42.4%
3 25595 25114 20713 14803 14588 1.4% 75.2 42.2%
4 25595 25114 19762 14785 14615 1.2% 80.6 42.2%
5 25595 25114 20026 14811 14614 1.3% 71.2 42.1%
#0062 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 29044 28130 22932 19901 19653 1.2% 130.5 31.5%
2 29044 28130 24116 19961 19685 1.4% 140.6 31.3%
3 29044 28130 22871 19975 19738 1.2% 119.4 31.2%
4 29044 28130 23629 19876 19686 1.0% 145.6 31.6%
5 29044 28130 23789 19948 19676 1.4% 192.1 31.3%
#0138 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 28056 26741 22085 16236 16124 0.7% 266.5 42.1%
2 28056 26741 21535 16302 16104 1.2% 229.4 41.9%
3 28056 26741 20899 16132 16080 0.3% 213.8 42.5%
4 28056 26741 21226 16235 16141 0.6% 219.7 42.1%
5 28056 26741 22285 16239 16153 0.5% 284.8 42.1%

Table EC.9 Detailed Results of the Amazon Instances.



ec14 e-companion to Raghavan and Zhang: The Driver-Aide Problem

#0145 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 27201 25679 21728 17464 17349 0.7% 396.1 35.8%
2 27201 25679 22280 17514 17321 1.1% 409.4 35.6%
3 27201 25679 20568 17451 17339 0.6% 308.3 35.8%
4 27201 25679 21710 17466 17343 0.7% 437.3 35.8%
5 27201 25679 22219 17433 17280 0.9% 526.1 35.9%
#0149 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 29683 27854 23106 19710 19395 1.6% 290.7 33.6%
2 29683 27854 23834 19931 19565 1.8% 247.7 32.9%
3 29683 27854 23164 19997 19615 1.9% 244.0 32.6%
4 29683 27854 23065 19890 19586 1.5% 246.0 33.0%
5 29683 27854 23525 19700 19488 1.1% 245.2 33.6%
#0180 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 25074 23784 19700 15219 15087 0.9% 333.9 39.3%
2 25074 23784 19136 15022 14946 0.5% 319.5 40.1%
3 25074 23784 19411 15186 15062 0.8% 322.2 39.4%
4 25074 23784 19639 15194 15074 0.8% 397.6 39.4%
5 25074 23784 20708 15075 14978 0.6% 395.0 39.9%
#0303 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 29854 29115 23345 17173 17066 0.6% 71.1 42.5%
2 29854 29115 23336 17098 17023 0.4% 55.9 42.7%
3 29854 29115 22409 17160 17078 0.5% 56.2 42.5%
4 29854 29115 23097 17168 17060 0.6% 73.5 42.5%
5 29854 29115 24288 17106 17072 0.2% 57.9 42.7%
#0307 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 27092 25774 22083 17799 17778 0.1% 238.5 34.3%
2 27092 25774 21546 17774 17695 0.4% 360.0 34.4%
3 27092 25774 21557 17860 17750 0.6% 232.6 34.1%
4 27092 25774 21349 17834 17744 0.5% 284.6 34.2%
5 27092 25774 21967 17727 17688 0.2% 392.2 34.6%
#0346 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 33785 32571 28172 20696 20601 0.5% 558.9 38.7%
2 33785 32571 28396 20925 20777 0.7% 415.7 38.1%
3 33785 32571 25938 20734 20681 0.3% 498.8 38.6%
4 33785 32571 26840 20878 20796 0.4% 320.0 38.2%
5 33785 32571 27388 20777 20665 0.5% 418.3 38.5%
#0431 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 20584 20150 16283 13999 13787 1.5% 211.6 32.0%
2 20584 20150 16687 14077 13910 1.2% 114.1 31.6%
3 20584 20150 17370 14174 13923 1.8% 240.7 31.1%
4 20584 20150 17777 14150 13899 1.8% 154.7 31.3%
5 20584 20150 17290 14191 13926 1.9% 151.4 31.1%
#0684 Amz routing TSP Jumper DA UB DA LB Gap Time Savings in Cost
1 28414 27313 22065 17266 17186 0.5% 111.1 39.2%
2 28414 27313 22732 17269 17185 0.5% 122.2 39.2%
3 28414 27313 22453 17233 17130 0.6% 116.6 39.4%
4 28414 27313 21866 17309 17224 0.5% 141.1 39.1%
5 28414 27313 22458 17287 17163 0.7% 93.7 39.2%

Table EC.10 Detailed Results of the Amazon Instances.



e-companion to Raghavan and Zhang: The Driver-Aide Problem ec15

Route ID t̄ s̄ f̄ θJ H D J t̄DA s̄DA f̄DA γ ∆ ρH Mode
#0002 1 173.5 296.3 0.25 0.28 18 33 15 236.5 217.7 0.38 1.8 632.2 872.6 DA

2 173.5 296.3 0.25 0.28 18 35 13 254.9 179.6 0.42 1.9 660.3 903.8 DA
3 173.5 296.3 0.31 0.28 18 40 8 303.8 290.1 0.43 2.2 659.9 905.6 DA
4 173.5 296.3 0.21 0.28 19 38 9 284.3 182.3 0.40 2.0 646.1 873.2 DA
5 173.5 296.3 0.19 0.28 19 38 9 277.8 192.6 0.31 2.0 648.8 871.7 DA

#0003 1 222.3 427.5 0.28 0.27 11 27 3 409.3 90.0 0.20 2.5 1008.6 1453.8 DA
2 222.3 427.5 0.20 0.27 11 27 3 409.3 90.0 0.33 2.5 1008.6 1457.0 DA
3 222.3 427.5 0.22 0.27 11 25 5 365.4 222.5 0.38 2.3 951.8 1400.1 DA
4 222.3 427.5 0.32 0.27 10 24 7 351.0 276.0 0.34 2.4 1005.1 1470.2 DA
5 222.3 427.5 0.29 0.27 10 24 7 345.0 263.1 0.43 2.4 1001.0 1502.0 DA

#0012 1 207.7 260.4 0.37 0.32 14 19 19 244.6 259.1 0.36 1.4 469.0 631.1 DA
2 207.7 260.4 0.26 0.32 14 25 13 292.0 240.2 0.35 1.8 548.5 724.6 DA
3 207.7 260.4 0.17 0.32 16 27 9 306.4 240.3 0.41 1.7 531.5 694.4 DA
4 207.7 260.4 0.27 0.32 15 26 11 298.5 212.4 0.35 1.7 559.7 718.3 DA
5 207.7 260.4 0.27 0.32 16 25 11 292.0 157.5 0.35 1.6 531.8 689.1 DA

#0019 1 148.7 301.1 0.29 0.26 12 23 11 167.2 379.2 0.37 1.9 611.7 881.3 DA
2 148.7 301.1 0.34 0.26 14 21 11 153.9 242.5 0.40 1.5 589.8 827.8 DA
3 148.7 301.1 0.29 0.26 14 23 9 166.0 339.7 0.42 1.6 581.2 818.1 DA
4 148.7 301.1 0.20 0.26 16 26 4 186.0 181.6 0.25 1.6 595.9 798.3 DA
5 148.7 301.1 0.32 0.26 14 24 8 165.4 262.9 0.36 1.7 635.6 861.4 DA

#0020 1 108.5 175.8 0.29 0.29 18 35 24 129.3 107.0 0.33 1.9 450.6 603.8 DA
2 108.5 175.8 0.24 0.29 19 36 22 131.3 121.4 0.33 1.9 428.3 571.8 DA
3 108.5 175.8 0.28 0.29 18 36 23 135.2 94.9 0.37 2.0 468.4 617.4 DA
4 108.5 175.8 0.31 0.29 18 33 26 120.7 125.3 0.32 1.8 433.4 582.9 DA
5 108.5 175.8 0.26 0.29 18 37 22 132.0 107.9 0.32 2.1 465.1 619.1 DA

#0023 1 158.8 198.6 0.27 0.32 23 32 11 217.3 107.8 0.25 1.4 407.4 485.1 DA
2 158.8 198.6 0.22 0.32 20 28 18 203.7 105.5 0.29 1.4 419.3 516.9 DA
3 158.8 198.6 0.31 0.32 17 24 25 190.7 144.3 0.37 1.4 414.4 537.6 DA
4 158.8 198.6 0.28 0.32 20 28 18 202.8 115.2 0.34 1.4 413.2 518.1 DA
5 158.8 198.6 0.21 0.32 22 30 14 214.4 92.4 0.29 1.4 402.0 490.7 DA

#0038 1 174.1 564.5 0.26 0.23 7 21 6 245.8 213.9 0.32 3.0 1547.7 2372.8 DA
2 174.1 564.5 0.27 0.23 7 22 5 251.6 135.0 0.34 3.1 1616.6 2459.4 DA
3 174.1 564.5 0.23 0.23 8 23 3 272.4 62.0 0.17 2.9 1455.7 2191.3 DA
4 174.1 564.5 0.28 0.23 8 24 2 303.8 62.0 0.15 3.0 1454.4 2192.2 DA
5 174.1 564.5 0.27 0.23 8 24 2 306.4 62.0 0.20 3.0 1452.9 2189.8 DA

#0062 1 176.4 249.8 0.32 0.30 25 32 9 236.9 200.4 0.33 1.3 430.8 556.3 DA
2 176.4 249.8 0.24 0.30 23 29 14 227.2 236.6 0.35 1.3 423.7 548.1 DA
3 176.4 249.8 0.32 0.30 21 27 18 220.4 179.7 0.37 1.3 453.5 596.2 DA
4 176.4 249.8 0.27 0.30 23 30 13 227.3 158.6 0.35 1.3 458.4 593.5 DA
5 176.4 249.8 0.26 0.30 23 30 13 223.4 155.1 0.37 1.3 465.2 602.3 DA

#0138 1 169.5 399.5 0.20 0.25 10 30 7 256.0 273.5 0.40 3.0 1091.2 1652.0 DA
2 169.5 399.5 0.23 0.25 10 34 3 327.0 415.3 0.33 3.4 1130.4 1693.9 DA
3 169.5 399.5 0.26 0.25 10 32 5 279.2 233.2 0.40 3.2 1135.1 1713.4 DA
4 169.5 399.5 0.24 0.25 11 32 4 284.5 337.6 0.38 2.9 1026.0 1537.2 DA
5 169.5 399.5 0.20 0.25 10 35 2 346.7 177.1 0.50 3.5 1190.2 1768.3 DA
Table EC.11 Detailed Calculations of the Comparative Metrics for the Amazon Instances.



ec16 e-companion to Raghavan and Zhang: The Driver-Aide Problem

Route ID t̄ s̄ f̄ θJ H D J t̄DA s̄DA f̄DA γ ∆ ρH Mode
#0145 1 148.0 229.7 0.25 0.29 20 35 13 207.3 177.6 0.41 1.8 466.1 646.9 DA

2 148.0 229.7 0.22 0.29 21 34 13 194.2 134.2 0.32 1.6 466.2 635.7 DA
3 148.0 229.7 0.33 0.29 21 32 15 185.0 138.1 0.38 1.5 457.9 628.7 DA
4 148.0 229.7 0.25 0.29 21 34 13 192.5 122.4 0.32 1.6 472.7 644.1 DA
5 148.0 229.7 0.22 0.29 19 34 15 200.2 174.2 0.35 1.8 478.7 664.8 DA

#0149 1 173.4 230.3 0.30 0.31 19 33 17 215.5 202.6 0.41 1.7 530.7 691.2 DA
2 173.4 230.3 0.25 0.31 22 35 12 220.0 179.4 0.37 1.6 510.2 640.6 DA
3 173.4 230.3 0.30 0.31 20 33 16 213.3 209.3 0.31 1.7 512.3 647.9 DA
4 173.4 230.3 0.30 0.31 19 30 20 209.6 176.0 0.31 1.6 502.3 650.1 DA
5 173.4 230.3 0.27 0.31 18 31 20 207.8 137.1 0.35 1.7 562.7 735.9 DA

#0180 1 96.0 239.0 0.24 0.25 26 42 3 119.9 114.3 0.43 1.6 443.2 612.1 DA
2 96.0 239.0 0.27 0.25 22 37 12 106.7 227.2 0.43 1.7 452.4 655.2 DA
3 96.0 239.0 0.26 0.25 25 40 6 114.0 103.0 0.38 1.6 450.9 626.9 DA
4 96.0 239.0 0.24 0.25 26 42 3 118.7 154.1 0.33 1.6 441.3 609.0 DA
5 96.0 239.0 0.18 0.25 24 41 6 115.7 188.9 0.38 1.7 458.8 642.4 DA

#0303 1 202.9 653.4 0.26 0.23 8 25 1 412.4 0.0 0.20 3.1 1682.6 2533.0 DA
2 202.9 653.4 0.26 0.23 7 23 4 345.4 394.9 0.50 3.3 1786.9 2769.5 DA
3 202.9 653.4 0.30 0.23 8 24 2 369.9 134.7 0.40 3.0 1665.8 2514.4 DA
4 202.9 653.4 0.27 0.23 8 23 3 345.4 229.0 0.33 2.9 1617.4 2464.8 DA
5 202.9 653.4 0.22 0.23 7 23 4 343.9 353.1 0.35 3.3 1798.1 2753.5 DA

#0307 1 176.2 197.4 0.27 0.33 22 37 10 245.2 166.7 0.35 1.7 409.7 558.9 DA
2 176.2 197.4 0.31 0.33 22 37 10 248.3 166.9 0.32 1.7 405.7 552.1 DA
3 176.2 197.4 0.31 0.33 23 40 6 268.9 101.9 0.30 1.7 420.7 565.1 DA
4 176.2 197.4 0.32 0.33 21 38 10 253.5 182.5 0.34 1.8 425.8 579.1 DA
5 176.2 197.4 0.28 0.33 20 38 11 254.2 190.8 0.37 1.9 435.5 601.4 DA

#0346 1 152.9 319.1 0.20 0.26 21 37 11 175.8 276.6 0.43 1.8 640.6 926.4 DA
2 152.9 319.1 0.19 0.26 22 38 9 176.2 121.9 0.29 1.7 668.5 935.4 DA
3 152.9 319.1 0.30 0.26 19 36 14 167.5 269.2 0.37 1.9 691.4 996.1 DA
4 152.9 319.1 0.26 0.26 21 37 11 174.7 204.7 0.38 1.8 663.2 944.8 DA
5 152.9 319.1 0.24 0.26 21 39 9 180.9 229.9 0.29 1.9 674.6 948.7 DA

#0431 1 186.5 251.5 0.33 0.31 14 21 11 224.7 188.7 0.37 1.5 519.7 691.1 DA
2 186.5 251.5 0.30 0.31 14 21 11 228.4 146.3 0.36 1.5 531.3 704.3 DA
3 186.5 251.5 0.24 0.31 17 24 5 253.1 58.6 0.24 1.4 494.8 635.4 DA
4 186.5 251.5 0.21 0.31 15 21 10 226.1 85.5 0.31 1.4 529.8 690.0 DA
5 186.5 251.5 0.25 0.31 18 25 3 264.2 41.7 0.30 1.4 475.2 608.7 DA

#0684 1 150.2 320.7 0.28 0.26 17 32 9 145.2 236.0 0.43 1.9 722.5 1030.1 DA
2 150.2 320.7 0.25 0.26 19 32 7 139.6 298.7 0.39 1.7 659.1 925.2 DA
3 150.2 320.7 0.26 0.26 16 31 11 144.4 294.5 0.40 1.9 721.3 1040.6 DA
4 150.2 320.7 0.29 0.26 19 32 7 142.0 156.2 0.43 1.7 684.9 956.7 DA
5 150.2 320.7 0.26 0.26 19 34 5 153.3 298.6 0.34 1.8 672.6 938.3 DA
Table EC.12 Detailed Calculations of the Comparative Metrics for the Amazon Instances.


