
Modeling and Solving the Capacitated Vehicle

Routing Problem on Trees

Bala Chandran1 and S. Raghavan2

1 Department of Industrial Engineering and Operations Research
University of California
Berkeley, CA 94720
chandran@ieor.berkeley.edu

2 The Robert H. Smith School of Business and
Institute for Systems Research
University of Maryland
College Park, MD 20742
raghavan@umd.edu

Summary. Capacitated vehicle routing problems (CVRPs) form the core of logis-
tics planning and are hence of great practical and theoretical interest. This chapter
considers the CVRP on trees (TCVRP), a problem that often naturally arises in
railway, river, and rural road networks. Our objective is to build high-quality mod-
els that exploit the tree structure of the problem that can also be easily implemented
within the framework of a modeling language (a feature desired by practitioners)
like AMPL, GAMS, or OPL. We present two new integer programming models for
the TCVRP that explicitly take advantage of the tree structure of the graph. The
two models are implemented using the AMPL model building language, and com-
pared along several metrics—computation time, quality of the linear programming
relaxation, and scalability—to examine their relative strengths.

Key words: Capacitated vehicle routing on trees; integer linear programming for-
mulations; high-level modeling languages.

1 Introduction

The capacitated vehicle routing problem (CVRP) is a fundamental problem
in combinatorial optimization with wide-ranging applications in practice. It
forms the core of logistics planning and has been extensively studied by the
operations research community. The last two decades have seen enormous
improvements in the research community’s ability to solve these problems,
due to better algorithms as well as better computational capabilities. Toth
and Vigo [11] provide an upto date survey of problem variants, exact solution
techniques, and heuristics for the vehicle routing problem.

in The Vehicle Routing Problem: Latest Advances and New Challenges

240 Chandran and Raghavan

In this chapter, we consider a special case of the CVRP introduced by
Labbé et al. [8], in which the network is a tree and routes are constrained
only by vehicle capacity. The problem, referred to as the capacitated vehicle
routing problem on trees (TCVRP), may be stated as follows. Given a tree
T = (N0, E) with vertex set N0 and edge set E, non-negative distances for
the edges in E, a depot node in N0 with a fleet of homogeneous vehicles of
capacity C (the size of the fleet is a decision variable), and non-negative integer
node demands (representing customer demands); find a collection of routes
starting and ending at the depot that (i) ensures that the demand serviced
by a vehicle does not exceed its capacity C, (ii) ensures that a customer’s
demand is serviced by exactly one vehicle, and (iii) minimizes a cost function
that is a linear combination of the total distance traveled by these vehicles
and the number of vehicles. Note that in the TCVRP, each vehicle route is a
tree, and a vehicle may pass through nodes that are served by another vehicle.

The TCVRP arises naturally in situations where access construction costs
far exceed routing costs, for example in river networks and pit mine rail net-
works [8]. An application arising in the flexible manufacturing environment
can also be modeled as a TCVRP [2]. Also, some general CVRPs may be
approximated as a TCVRP by clustering groups of customers to reduce the
network to a tree, as shown in Figure 1. In particular, Basnet et al. [1] describe
an application to routing milk tankers in rural New Zealand where building
roads are costly due to the mountainous terrain, resulting in small hamlets of
a few farms connected to each other by a sparse network.

In addition to its applications in practice, the TCVRP is compelling from
a theoretical perspective. Several hard graph problems such as facility location
are easy to solve on trees; therefore, an interesting question is whether the
TCVRP can be solved more efficiently than the general CVRP. The TCVRP
was shown to be NP–hard by a reduction from the bin-packing problem [8].
Hence, we must look to means such as integer programming or branch-and-
bound algorithms that have proven effective for solving the general CVRP,
while adapting these techniques to take advantage of the tree structure of
the network. Previous work on exact solutions to the capacitated vehicle
routing problem on trees is sparse. Labbé et al. [8] describe a branch-and-
bound approach to the problem based on bin-packing lower bounds, and a
2-approximation algorithm for the problem that takes advantage of the tree
structure of the network-. Mbaraga et al. [9] extend the branch-and-bound
approach to the distance-constrained vehicle routing problem on trees and
the distance-constrained capacitated vehicle routing problem on trees. They
introduce a mathematical programming solution approach based on a set cov-
ering formulation, which is solved using a column generation technique. They
also introduce the heterogeneous capacitated vehicle routing problem on trees
(all vehicles do not have the same capacity) and use the set covering approach
to solve this problem.

The previous mathematical programming techniques do not explicitly take
advantage of the tree structure of the underlying graph. Further, these solution

Capacitated Vehicle Routing on Trees 241

Depot

Fig. 1. General VRPs can sometimes be represented as a TCVRP by clustering
certain nodes (clusters shown enclosed by dotted circles).

techniques require specialized implementation, which may be an impediment
to adoption in practice. We elaborate on this point further, as it is related
to one of our main motivations and contributions of this work. There have
been many developments in exact optimization techniques for the CVRP (see
Toth and Vigo [11]). Consequently, it is not uncommon to see CVRP problems
solved to optimality using branch-and-cut or branch-and-price (i.e., column
generation) techniques. In branch-and-cut techniques, the underlying formu-
lations have an exponential number of constraints which are implemented by
dynamically adding these constraints when needed (using so-called separa-
tion routines). Column generation techniques have an exponential number of
variables, and are implemented by dynamically adding variables to the formu-
lation as needed (by solving the underlying pricing problem). Both of these
techniques require significant mathematical sophistication to implement. Con-
sequently, these techniques are sometimes beyond the domain of practitioners.

On the other hand, over the past 10 years, there has been an increased
use of high-level modeling languages in practice (see, for example, Kallrath
[7]). Modeling languages make optimization packages like CPLEX, OSL, and
XPRESS (that solve linear, integer, and mixed-integer programs) quite easily
accessible to practitioners. They do not require the mathematical and pro-
gramming sophistication that is required to implement specialized techniques
in the optimization language. Of course, the downside is that solution tech-
niques developed in high-level modeling languages are likely to be significantly

242 Chandran and Raghavan

slower than those developed in the native code of the optimization software.
However, the fact remains that models and methodologies that can be easily
implemented in a high-level modeling language are more likely to be imple-
mented in practice, than specialized algorithms, that require sophisticated
implementation.

Consequently, our study should not be viewed as an attempt to solve the
problem in the shortest amount of time; rather, it is an attempt to solve the
problem as efficiently as possible while working within the degrees of freedom

offered by general purpose commercial solvers and modeling languages. To
this end we propose two integer programming formulations for the TCVRP
that exploit the tree structure of the underlying network and are easy to
build in a high-level modeling language. Our main contribution is that we
develop models that take advantage of the tree structure of the problem with
a performance that is competitive with solution methods that use special
purpose code.

The rest of the chapter is organized as follows. In Section 2 we introduce
notation and state our assumptions. In Section 3, we present our first formu-
lation that is based on a depth first indexing of nodes in the tree. In Section
4, we present our second integer program that is based on the observation
that all vehicle routes for the TCVRP may be modeled as trees. In Section 5,
we describe an approximation algorithm for the problem that combines the
approaches of Labbé et al. [8] and Basnet et al. [1]. In Section 6, we discuss our
computational experience with these formulations. In Section 7, we present
our conclusions.

2 Preliminaries

Given a rooted tree T = (N0, E), the root of T (representing the depot) is a
unique node in N0. The set of nodes other than the depot is denoted by N . If
[i, j] ∈ E and i is closer to the root than j, then i is the parent of j and j is a
child of i. Node i is an ancestor of node j (and j is a descendant of node i) if i
lies on the unique simple path from the root to j. We will use the convention
that the tree is represented topologically “downward”. Therefore, a node is
“below” its ancestors and “above” its descendants. A leaf node of the graph
is a node that does not have children. A sub-tree S is a connected sub-graph
of T . The root of a sub-tree S, denoted by rS , is the node in S that is closest
to the depot. Given a node i, the tree “below” node i denoted by T (i) is the
sub-tree induced by node i and its descendants. The weight of a sub-tree is
the sum of weights of the edges in the sub-tree.

Given a subset of nodes L ⊆ N0, the minimal covering sub-tree (henceforth
referred to as the covering sub-tree) is the union of all (unique) paths from
each node in L to the depot. Observe that the covering sub-tree is rooted at
the depot. The covering sub-tree is the minimum set of edges that need to be
traversed in order to visit each node in L.

Capacitated Vehicle Routing on Trees 243

Depot

Fig. 2. A tree in which the degree of the depot is greater than 1 can be split into
multiple sub-trees.

Without loss of generality, we assume that the degree of the depot is
1. First, consider the situation where there is no fixed cost associated with
the use of a vehicle. Observe that a route that includes the depot as a non-
terminal node can be broken up into multiple routes—each route originating
and terminating at the depot—with no change in the objective value. Thus, in
this situation, the problem may simply be decomposed into multiple smaller
problems—one for each subtree incident to the depot node. Figure 2 illustrates
this situation. On the other hand, when there is a fixed cost associated with
a route (such as a loading/unloading cost), we add a new node and connect
it to the depot by an edge whose cost equals the fixed cost. We make this
new node the depot (observe that this node has degree 1). Finally, we set the
demand of the old depot node to zero and solve the TCVRP on this network
(where the depot has degree 1).

3 Depth First Ordered Formulation

Our first formulation exploits Lemma 1, which is illustrated in Figure 3.

Lemma 1. Suppose the nodes in a tree are indexed in depth-first order. Then,

given a set of nodes in a vehicle’s route, a minimum cost route is obtained by

visiting the nodes in increasing order of index.

Proof. Given a set of nodes and the corresponding covering sub-tree, the ve-
hicle must traverse each edge in the sub-tree at least twice — once going away

244 Chandran and Raghavan

0

1

2 5 7

3 4 6 8
10

9

Fig. 3. Idea behind the DFS formulation. Given a set of nodes serviced by a vehicle
(3, 4, and 8), the distance-minimizing tour for the vehicle is obtained by visiting
nodes in order of increasing index when nodes are indexed by a depth-first ordering.

from the depot and once towards. Therefore, a lower bound on the tour length
is twice the weight of the covering sub-tree.

Suppose we construct a tour by visiting nodes in order of depth first order.
Given a covering sub-tree S, let T (i) be a sub-tree of S rooted at node i. For
any i in S, the lowest indexed node in T (i) is i (due to depth-first ordering of
nodes).

For every i in S, the vehicle enters the sub-tree T (i), and services all nodes
in T (i). The key observation is that once the vehicle leaves T (i) it never returns
since nodes are being serviced in increasing order of index. Therefore, for all
i in S, the edge from i to its parent is traversed at most twice — once into
the sub-tree and once out of it. This yields a feasible tour of length twice the
weight of the covering sub-tree.

Since the feasible tour length is equal to the lower bound, it must be
optimal. ⊓⊔

A tour for each vehicle consists of a path from the depot to the first (lowest
indexed) node in the vehicle tour, a set of arcs connecting nodes in the vehicle
tour in increasing order of node index, and a path from the last (highest
indexed) node in the tour back to the depot.

We introduce the following four sets of binary variables in our formulation.

Capacitated Vehicle Routing on Trees 245

Decision Variables

xij =

{

1 if node i immediately precedes node j in the vehicle tour;
0 otherwise.

yij =

{

1 if nodes i and j are visited by the same vehicle;
0 otherwise.

wi =

{

1 if node i is the first node visited in the vehicle tour;
0 otherwise.

zi =

{

1 if node i is the last node visited in the vehicle tour;
0 otherwise.

Our model uses the following data that is available as input.

Input Parameters

Di Demand at node i
Lij Shortest path distance between nodes i and j
Si Shortest path distance between the node i and the depot
N Set of all nodes other than the depot; N = {1, .., n}
C Capacity of each vehicle

V min
k A lower bound on the number of vehicles required to service nodes

{k, . . . , n}

We may now state our formulation as follows, assuming that nodes are
indexed in depth first order.

Minimize

n
∑

i=1

Si(wi + zi) +

n−1
∑

i=1

n
∑

j=i+1

Lijxij (1)

Subject to Di +

n
∑

j=i+1

Djyij ≤C ∀ i ∈ N (2)

yij + yjk − yik ≤1 ∀ i, j, k ∈ N : i < j < k (3)

xij − yij ≤0 ∀ i, j ∈ N (4)

wj +

j−1
∑

i=1

xij =1 ∀ j ∈ N (5)

zi +
n
∑

j=i+1

xij =1 ∀ i ∈ N (6)

wi, xij , yij , zi ∈ {0, 1} ∀ i, j ∈ N : i < j (7)

The objective function is to minimize the distance of all traversed arcs
(leaving and entering the depot and those in-between). Constraint (2) is the
vehicle capacity constraint. Although there is no explicit concept of a vehicle
in this formulation, capacity constraints are captured by summing demand
over nodes that are in the same vehicle. Constraint (3) creates a clique among
nodes in the same vehicle—if nodes i and j are in the same vehicle, and nodes

246 Chandran and Raghavan

j and k are in the same vehicle, then nodes i and k must be in the same
vehicle. Constraint (4) enforces that node i cannot precede node j unless
they are both in the same vehicle. Constraints (5) and (6) force the demand
at a node to be served by exactly one vehicle. Constraint (7) enforces that
all variables are binary. An interesting observation is that the integrality of
x, w, and z variables can be relaxed (i.e., 0 ≤ x, w, z ≤ 1) without affecting
the integrality of the solution. However, we observed that in practice, the
problem was solved faster if all variables were specified to be binary. Note
that the number of integer variables in the DFS formulation is O(|N |2) and
the number of constraints is O(|N |3).

3.1 Valid Inequalities

We now describe some valid inequalities to improve the strength of our for-
mulation.

The number of vehicles that service the set of nodes {k, . . . , n} is the
number of vehicles that enter this set directly from the depot plus the number
of vehicles that enter the set from a lower indexed node in {1, . . . , k − 1}.
Our first valid inequality states that the number of vehicles servicing nodes
{k, . . . , n} is at least some lower bound V min

k .

n
∑

j=k

(

wj +
k−1
∑

i=1

xij

)

≥ V min
k ∀ k ∈ {1, . . . , n} (8)

The lower bound may be obtained, for example, by solving a bin-packing
problem with the node demands. Since the bin-packing problem is itself not
trivially solved and our objective is ease and speed of implementation, we
use an O(|N |2) procedure, developed by Labbé et al. [8], to compute a lower
bound on the bin-packing solution.3

The next set of valid inequalities are the following: two vehicles whose
cumulative demand exceeds the vehicle capacity cannot be in the same vehicle.
This can be stated as follows.

yij = 0 ∀ i, j ∈ N : i < j, Di + Dj > C (9)

3 The bound relies on the fact that at most one node with demand greater than
C/2 and at most two nodes with demand in (C/3, C/2] can belong to the same
vehicle. First, nodes with demand > C/2 are assigned to separate vehicles. An
attempt is then made to assign the nodes with demand in (C/3, C/2] to these
vehicles according to a first-fit procedure [4], i.e., by assigning the remaining
node with smallest demand to the vehicle with the least remaining capacity (ties
are broken arbitrarily) At most one node with demand in (C/3, C/2] can fit in
each of these bins. Let K be the number of nodes with demand in (C/3, C/2] that
cannot be assigned to a vehicle through this process. Then, at least ⌈K/2⌉ vehicles
are needed. A lower bound on the packing problem is then generated using the
vehicles assigned so far, ⌈K/2⌉, and remaining nodes with demand ≤ C/3.

Capacitated Vehicle Routing on Trees 247

0

1

2 5 7

3 4 6 8
10

9

Fig. 4. Idea behind the treeroute formulation. Given a set of nodes serviced by a
vehicle (3, 4, and 8), the distance-minimizing tour for the vehicle is a tree.

Note that this inequality is a restricted case of cover inequalities (see, for
example, Nemhauser and Wolsey [10]). We do not explicitly add any more
cover inequalities since there are an exponentially large number of them, and
integer programming software systems have built-in algorithms for adding
these cuts efficiently.

4 Treeroute Formulation

In this formulation, we exploit the fact that the route of a vehicle is a tree.
We replace the edges in the tree with arcs pointing “downwards” to eliminate
ambiguity in the parent-child relationship of the nodes in an edge—given an
arc (i, j), i is the parent and j is the child. The route is constructed for
each vehicle by “building upwards” from every node serviced by the vehicle
towards the depot. This generates the covering sub-tree of the nodes, and will
henceforth be referred to as the route-tree of that vehicle. This is shown in
Figure 4.

We introduce the following binary variables in our model.

Decision Variables

xijv =

{

1 if arc (i, j) is in the route of vehicle v;
0 otherwise.

yiv =

{

1 if vehicle v services node i;
0 otherwise.

Our model uses the following data that is available as input.

248 Chandran and Raghavan

Input Parameters

Lij Distance from node i to node j
Di The demand at node i
Pi The parent node of i
V The set of vehicles
N The set of nodes other than the depot
C Capacity of each vehicle

c(i) Set of children of i
T (i) Sub-tree rooted at node i

A The set of all arcs (directed downwards) in the tree
V min

i A lower bound on the number of vehicles required to service all nodes
in T (i).

We may now formulate our model as follows.

Minimize 2
∑

(i,j)∈A

Lij

∑

v∈V

xijv (10)

Subject to xPiiv ≥xijv ∀ v ∈ V, i ∈ N : c(i) 6= φ, j ∈ c(i) (11)

xPiiv ≥ yiv ∀ i ∈ N, v ∈ V (12)
∑

i∈N

yivDi ≤C ∀ v ∈ V (13)

∑

v∈V

yiv =1 ∀ i ∈ N (14)

yjv, xijv ∈ {0, 1} ∀ (i, j) ∈ A, v ∈ V (15)

The objective is to minimize the weighted sum over all arcs of the number
of vehicles that use each arc. Constraint (11) ensures that if an arc (i, j) is in
the vehicle route tree, then the unique preceding arc (Pi, i) must also exist in
the route tree. Constraint (12) ensures that, in order to service a particular
node, a vehicle must travel along the unique arc leading to that node. Con-
straint (13) is the vehicle capacity constraint. Constraint (14) enforces that
the demand at every node is completely satisfied by exactly one vehicle.

We note that the x variables may be relaxed without affecting integrality
of the solution; however, our initial computations indicated that the problem
was solved faster if all variables were defined to be binary. Also, observe that
the number of integer variables in the treeroute formulation is O(|N ||V |), and
the number of constraints is O(|N ||V |).

4.1 Valid Inequalities

We now discuss valid inequalities for the treeroute formulation.
As the model stands it suffers from symmetry, i.e., exchanging the set of

customers between any two vehicles produces an alternative optimal solution.

Capacitated Vehicle Routing on Trees 249

Table 1. Two solutions that are feasible to the first set of symmetry cuts. Only
solution 2 is feasible to the second set.

Solution 1 Solution 2

Vehicle Customers Vehicle Customers

2 5, 7, 9 2 4, 6, 8
3 4, 6, 8 3 5, 7, 9

This phenomenon increases run-time by expanding the search space of solu-
tions. To get rid of the symmetry in the problem we introduce the following
two sets of valid inequalities.

The first set of symmetry cuts forces each node to be serviced by a vehicle
whose index is not greater than the index of the node. Node 1 is in vehicle 1,
node 2 is in vehicles 1 or 2, node 3 is in vehicles 1, 2, or 3, and so on. This
can be stated as follows.

i
∑

j=1

yij = 1 ∀ i ∈ {1, . . . , |V |} (16)

The second set of symmetry cuts force the lowest indexed node in each
vehicle to increase with vehicle index. This is stated as follows.

yi,i−k+3 ≤
k−2
∑

j=1

yi−j,i−k+2 ∀ i ∈ {k, .., |V |}, k ∈ {3, .., |V |} (17)

Consider the solutions in Table 1 that are feasible to constraint (16). In
the first solution, the lowest indexed node of vehicle 2 is greater than the
lowest indexed node of vehicle 3. Thus, the first solution violates constraint
(17) while the second solution is feasible.

The next set of inequalities stipulates that two nodes whose cumulative
demand is greater than the capacity cannot be in the same vehicle.

yiv + yjv ≤ 1 ∀ i, j ∈ N : Di + Dj > C, v ∈ V (18)

In our computational experiments we found that the above valid inequal-
ities improve the LP relaxation when the node demands are large (the mean
node demand is comparable to half the vehicle capacity). To address the situ-
ation when the node demands are low we develop additional valid inequalities.

Our next set of valid inequalities places a lower bound on the number of
vehicles that use an arc. For each arc, such a bound could be obtained by
solving a bin-packing problem on the nodes of the sub-tree below that arc.
The constraint, illustrated in Figure 5, is stated as follows.

∑

v∈V

yPiiv ≥ V min
i ∀i ∈ N (19)

250 Chandran and Raghavan

i

i

Ti

P

Fig. 5. The solution to the bin-packing problem on demands in T (i) is a lower
bound on the number of vehicles that travel along arc (Pi, i).

The lower bound we use is the bin-packing lower bound developed by
Labbé et al. [8].

The final valid inequality stipulates that if a vehicle travels down an arc
but does not service the node at the end of that arc, it must service some
node below that arc in the tree. This constraint is illustrated in Figure 6.

∑

j∈c(i)

xijv ≥ xPiiv − yiv ∀ v ∈ V, i ∈ N, c(i) 6= φ (20)

5 Approximation Algorithm

In this section we describe an approximation algorithm that is a combination
of the algorithms of Labbé et al. [8] and Basnet et al. [1]. We will later use
the upper bound distance from this algorithm to obtain an upper bound on
the fleet size.

i

i

xP(i),i,v = 1

yi,v = 0

P

Fig. 6. If a vehicle travels along arc (Pi, i) but does not service node i, then it
must service some node below i.

Capacitated Vehicle Routing on Trees 251

The heuristic of Labbé et al. [8] proceeds as follows. At each iteration, an
arbitrary leaf node is chosen, and an attempt is made to merge the node with
its parent. If the cumulative demand of the leaf node and its parent is less than
or equal to the vehicle capacity, the demand of the leaf node is added to that
of its parent, and the leaf node is removed from the tree. When the merger is
not possible due to the cumulative demand exceeding vehicle capacity, there
are two cases. If the leaf node has greater demand than that of its parent, a
new vehicle route is created to the leaf node, and the leaf node is eliminated
from the tree. Otherwise, a new route is created to the parent, the demand
at the parent is replaced by that of its child, and the leaf node is eliminated.
The process terminates since a leaf node is eliminated from the tree at each
iteration.

The heuristic of Basnet et al. [1] could be viewed as a savings heuristic
(Clarke and Wright [3]) specifically adapted to trees. Their heuristic proceeds
as follows (the description provided here is different from the one in their
paper). Define a non-grandparent node to be one that has only leaf nodes as
children. At each iteration, the heuristic picks a non-grandparent node i that
is farthest from the root. It then picks an arbitrary child j of this node i, and
attempts to merge it with another child of node i. If i has multiple children,
then j is merged with another child of i, say k, with the greatest demand
such that Dj + Dk ≤ C. While Basnet et al.[1] did not provide any worst case
analysis, they showed that, in practice, their algorithm was better than that
of Labbé et al. [8] over a wide range of problem instances.

Our algorithm proceeds as follows. At each stage, we pick a non-grandpare-
nt node i. We then pack the sub-tree T (i) = c(i) ∪ {i} into a minimal set of
bins using a bin-packing heuristic. This creates possibly several bins, each
with some total demand not exceeding the vehicle capacity. The nodes in
the subtree T (i) are then removed from the graph and are replaced by nodes
representing the packed bins (one node for each packed bin), which are added
to the tree as the children of Pi (parent of node i). This procedure continues
until the depot is reached.

Our heuristic could be viewed as a combination of the heuristics of Labbé
et al. [8] and Basnet et al. [1] in the following sense. While the former heuris-
tic attempts to pack the demand of an arbitrary leaf node and its parent,
and the latter attempts to pack the demand of all children of the farthest
non-grandparent node from the depot, our algorithm picks an arbitrary non-
grandparent node and attempts to pack its demand and those of its children.
What sets our heuristic apart is that it simultaneously considers several nodes
for merging, instead of merging nodes in a pair-wise fashion.

Figure 7 illustrates the algorithm. The sample problem is shown in Figure
7(a). In the first iteration, the nodes with demands 40, 50 and 70 are packed.
This results in two nodes—one with demand 90 and one with demand 70. In
the next iteration (see Figure 7(b)), nodes with demand 5, 10, 20, 70 and 90
are packed to give two nodes—one with demand 100 and one with demand 95.
Since the depot has been reached (in Figure 7(c)), the algorithm stops. The

252 Chandran and Raghavan

90

0

100 95

0

10

40
50

20 70

5

Vehicle 2Vehicle 1

Nodes to be
packed

(d)(c)

(a) (b)

40

5
2010

0

50

70

5
2010

0

70

Fig. 7. (a) Initial tree, (b) and (c) Tree after packing operations, (d) Feasible
solution obtained from the approximation algorithm.

solution is shown in Figure 7(d). The pseudocode for the algorithm is given
in Figure 8.

Lemma 2. Approx-TCVRP, described in Figure 8, is a 2-approximation algo-

rithm.

Proof. Our proof is similar to that of Labbét al. [8]. At each iteration, a
node i is chosen and the set of nodes c(i) ∪ {i} is packed. The result of this
packing generates a set of bins such that at most one bin carries demand
not exceeding half the vehicle capacity (if two bins each carried demand less
than or equal to half the vehicle capacity, they would be merged into one
vehicle). Thus, the number of vehicles that travel down the arc (Pi, i) is at
most ⌈(

∑

j∈T (i) Di)/(C/2)⌉. The number of vehicles required to service T (i)

is at least ⌈(
∑

j∈T (i) Di)/C⌉. Thus, the number of vehicles that travel on arc

(Pi, i) from the algorithm is at most twice the lower bound. Summing over all
arcs in the tree, the total distance traveled by all vehicles in the algorithm is
at most twice that of the lower bound, and thus at most twice the optimal
distance. ⊓⊔

The algorithm has as many iterations as there are non-leaf nodes. Hence,
the complexity of the algorithm is essentially the complexity of the packing
function times the number of non-leaf nodes. If we choose a “simple” pack-

Capacitated Vehicle Routing on Trees 253

/* This function computes an upper bound on the optimal TCVRP dis-
tance.*/

Notation:

N Set of nodes in the tree.
A Set of arcs in the tree.
Pi Parent of node i.

c(i) Set of children of node i.
C Vehicle capacity.
z The total distance of the feasible solution.

BinPack A function that takes as input a set of demand
nodes, packs them into bins of capacity C, and
returns the set of packed bins.

function approx-TCVRP:
begin

z ← 2
∑

i∈N
Si;

while ∃ i ∈ N : (i 6= Depot)∧ (c(i) 6= φ)∧ (c(j) = φ ∀j ∈ c(i)) do

R← c(i) ∪ i;
Q← BinPack(R);
z ← z − Si (|R| − |Q|);
Pj ← Pi ∀ i ∈ Q;
N ← N ∪Q \R;
A← A ∪ {(Pi, i) ∀j ∈ Q} \ {(i, k) ∀k ∈ c(i)} \ {(Pi, i)};

end

Fig. 8. The approx-TCVRP algorithm.

ing heuristic such as the first fit decreasing heuristic which has complexity
O(|N |2), the overall complexity of the approximation algorithm is O(|N |3).

6 Computational Experiments

6.1 Enhancements to the Treeroute Formulation

We now discuss some details of the implementation of the treeroute formula-
tion that significantly affect its performance.

Upper bound on the fleet size

The treeroute formulation requires the maximum number of vehicles to be
specified. An upper bound on the number of vehicles (see Section 5) is given
by

|V | ≤

⌈

2
∑

i∈N Di

C

⌉

254 Chandran and Raghavan

However, we would like to have a tighter upper bound on the number of vehi-
cles to reduce the number of variables in the formulation. Let ẑ be a heuristic
upper bound on the optimal distance. Consider the optimization problem ob-
tained by taking the constraints in the treeroute formulation, placing a bound
on the objective function, and maximizing the number of vehicles leaving the
depot

Maximize
∑

v∈V

x0c(0)v (21)

Subject to 2
∑

(i,j)∈A

∑

v∈V

Lijxijv ≤ ẑ (22)

and (11) − (20)

The objective function maximizes the number of vehicles leaving the depot.
Clearly, an optimal solution to this optimization problem will be an upper
bound on the number of vehicles in the optimal solution to the TCVRP.
However, since this integer program is as hard to solve as the original TCVRP,
we solve the linear programming relaxation of this optimization problem and
round down the optimal objective function value to obtain an upper bound
on the fleet size. The time taken to solve this LP is negligible, and in our
experiments gave very tight upper bounds (within 5-10% of optimal) on the
fleet size.

Node ordering

In its basic form, the LP relaxation is quite poor. This is because the LP
relaxation tends to split demands between vehicles. In initial experiments, we
found that the ordering of nodes (order in which nodes are indexed) affects
performance. The node indexing scheme that we found to improve perfor-
mance the greatest was to order nodes in order of decreasing demand. This
makes use of the symmetry cuts early on to “fill up” lower indexed vehicles
(which leads to less unused capacity). There is less opportunity to split the
demand of a high-indexed node among the low indexed vehicles.

Variable branching order

Finally, we consider the order of branching of variables in the branch-and-
cut procedure. Most software packages for solving integer linear programs
allow the user flexibility in specifying the branching order of variables. Since
the lower indexed nodes have fewer vehicles available to them, we branch on
these variables first (to prevent splitting early on in the branch-and-cut tree).
Thus, yiv is branched on before yjv for all i < j. Given a node, the order of
branching among the different vehicles is left to the default strategy of the
solver.

Capacitated Vehicle Routing on Trees 255

6.2 Experimental Setup

We tested the formulations on networks with 20, 40, 60, 80, and 100 nodes. We
forced the degree of the depot to 1 in all our test instances. In reality, since the
degree of the depot need not be 1, it is conceivable that substantially larger
problems than the ones listed in this section can be solved (recall problems
with depot degree k can be decomposed into k separate problems).

We generated test problems as in Labbé et al. [8] and Mbaraga et al. [9].
The arc distances were integers uniformly distributed in [1,100]. The vehi-
cle capacity for all vehicles was set to be 100 units. Each node in the tree
(apart from the depot) had between 1 and 5 children (distributed uniformly).
Node demands were integers uniformly distributed between a lower and up-
per bound, which were varied to create 10 instance classes with the following
demand bounds: [1,100], [10,90], [20,80], [30,70], [1,50], [1,30], [1,10], [30,30],
[20,20], and [10,10].

The times reported in this section are CPU times. The formulations were
coded in AMPL [5] and solved using CPLEX 9.0 [6] on a PC with 3.06 GHz
processor and 512 MB of RAM. The data for all the problems requires some
pre-processing (node ordering, finding lower and upper bounds on the num-
ber of vehicles, generating arc minimum-traversal constraints) but the time
required to perform this computation is insignificant (of the order of seconds)
compared to the time to solve the IP, and is not included under the solving
time listed.

6.3 Experimental Results

Computational results are presented in Tables 2 through 6, which contain the
following information/notation.

1. Solved — Number of instances (out of 10) that were solved to optimality
within 3600 CPU seconds.

2. Time — The CPU time averaged only over solved instances.

3. LP/IP — Ratio of the linear programming relaxation to the optimal dis-
tance, averaged only over solved instances.

4. LP∗/IP — Ratio of linear programming relaxation without valid inequali-

ties (constraints (2)–(6) for the DFS formulation and constraints(11)–(14)
for the treeroute formulation) to the optimal distance, reported only for
the 20-node instances.

5. Gap — This is defined as (U − L)/L, where U is the best solution found
at termination, and L is the bound at termination (3600 seconds). This
is averaged only over unsolved instances.

We observe that for the 20 node instances, the treeroute formulation per-
forms extremely well, while the DFS formulation performs well on all but three
instance classes, i.e., when the demands are in [1, 50], [1, 30], and [30, 30]. This

256 Chandran and Raghavan

Table 2. Results for 20 Node Problems.

DFS FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP LP∗/IP Gap

[1,100] 1310 380 10 0.26 185 0.980 0.690 -

[10,90] 1310 380 10 0.37 274 0.977 0.662 -

[20,80] 1304 380 10 0.17 10 0.973 0.652 -

[30,70] 1297 380 10 0.07 3 0.980 0.602 -

[1,50] 1216 380 9 267.45 66492 0.983 0.738 0.012

[1,30] 1216 380 10 50.97 2568 0.990 0.839 -

[1,10] 1216 380 10 0.06 0 1.000 0.932 -

[30,30] 1216 380 5 1678.45 524860 0.965 0.667 0.029

[20,20] 1216 380 10 1.33 30 1.000 0.738 -

[10,10] 1216 380 10 2.92 16 1.000 0.953 -

TREEROUTE FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP LP∗/IP Gap

[1,100] 655 456 10 0.03 10 0.979 0.447 -

[10,90] 644 456 10 0.06 44 0.977 0.481 -

[20,80] 668 475 10 0.07 21 0.972 0.491 -

[30,70] 631 448 10 0.08 54 0.980 0.439 -

[1,50] 319 224 10 1.36 1251 0.982 0.700 -

[1,30] 214 144 10 0.06 49 0.990 0.818 -

[1,10] 129 76 10 0.00 0 1.000 0.930 -

[30,30] 368 266 10 18.26 19791 0.960 0.633 -

[20,20] 220 152 10 0.02 1 1.000 0.710 -

[10,10] 129 76 10 0.01 0 1.000 0.943 -

difference in performance occurs in spite of the LP relaxations being compa-
rably strong. Note that the valid inequalities significantly improve the quality
of the LP-relaxation for both formulations.

As the problem sizes increase, the DFS formulation starts to perform very
poorly except on the [20, 80] and [30, 70] instances. Interestingly, although the
time taken by the treeroute formulation on these instances is less than the
DFS formulation, the number of branch-and-bound nodes explored by the
DFS formulation is much smaller. This suggests that the DFS formulation
performs a lot of work solving the successive linear programs, which is not
surprising given the huge number of constraints.

In all of the instances, the termination gap for the treeroute formulation
is very small (almost always less than 2%, and often less than 1%), which is
a sufficiently high accuracy in most practical situations.

Capacitated Vehicle Routing on Trees 257

Table 3. Results for 40 Node Problems.

DFS FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 10433 1560 5 90.02 4859 0.993 0.016

[10,90] 10375 1560 6 944.99 29622 0.972 0.013

[20,80] 10390 1560 8 38.26 648 0.960 0.015

[30,70] 10369 1560 10 5.63 82 0.968 -

[1,50] 10036 1560 0 - - - 0.023

[1,30] 10036 1560 2 61.04 16 1.000 0.011

[1,10] 10036 1560 10 283.61 86 0.998 -

[30,30] 10036 1560 0 - - - 0.024

[20,20] 10036 1560 4 932.21 1920 1.000 0.000

[10,10] 10036 1560 4 1251.99 408 1.000 0.001

TREEROUTE FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 2544 1864 10 1.65 319 0.979 -

[10,90] 2447 1794 10 14.31 2481 0.968 -

[20,80] 2594 1888 10 135.30 30969 0.959 -

[30,70] 2516 1833 9 70.75 13905 0.969 0.003

[1,50] 1205 913 5 356.74 38562 0.998 0.023

[1,30] 743 554 10 113.93 43781 0.996 -

[1,10] 346 226 10 0.04 6 0.998 -

[30,30] 1389 1061 4 321.46 13011 0.982 0.012

[20,20] 836 624 10 18.35 1187 1.000 -

[10,10] 459 320 10 0.96 176 0.999 -

The DFS formulation appears to perform best on instances where the de-
mand is in [30, 70]. This is because the size of the cliques created are relatively
small. The DFS formulation does extremely poorly when the demand is small
(packing problem is more complex). The treeroute formulation, on the other
hand, does poorly on the [30, 70] and [20, 80] instances and does well when the
demands are relatively small. Although the LP relaxation is very strong, the
treeroute formulation struggles on some instances due to problem symmetry.

7 Conclusions

In this chapter we presented two integer linear programming formulations
and valid inequalities for the capacitated vehicle routing problem on trees.

258 Chandran and Raghavan

Table 4. Results for 60 Node Problems.

DFS FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 35327 3540 3 811.53 9978 0.977 0.022

[10,90] 35373 3540 3 710.26 10341 0.981 0.023

[20,80] 35306 3540 7 605.51 2928 0.973 0.006

[30,70] 35260 3540 9 316.52 2 0.971 0.002

[1,50] 34456 3540 0 - - - 0.030

[1,30] 34456 3540 0 - - - 0.018

[1,10] 34456 3540 7 399.91 0 1.000 0.024

[30,30] 34456 3540 0 - - - 0.039

[20,20] 34456 3540 0 - - - 0.000

[10,10] 34456 3540 0 - - - 0.012

TREEROUTE FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 5744 4283 9 100.97 7757 0.971 0.010

[10,90] 5965 4437 7 34.52 2939 0.977 0.005

[20,80] 5843 4342 7 736.61 58913 0.975 0.003

[30,70] 5787 4295 9 230.44 20653 0.974 0.004

[1,50] 2829 2171 0 - - - 0.026

[1,30] 1630 1251 4 382.15 11975 0.998 0.004

[1,10] 707 496 10 0.34 18 0.999 -

[30,30] 3127 2407 0 - - - 0.015

[20,20] 1831 1416 5 474.45 5578 1.000 0.000

[10,10] 1063 791 6 444.46 28984 1.000 0.004

The formulations proposed exploit the tree structure of the graph to achieve
high quality solutions for the TCVRP.

While it is difficult to compare the results of Mbaraga et al. [9] to ours
due to differences in testing methodology (restricting the degree of the depot,
different cutoff time limits, different computing resources), we were able to
solve problems of comparable size to those in their study (they tested and
were able to solve problems of up to 140 nodes). Our key contribution is
that the performance of these formulations is competitive with other special
purpose code developed for the problem, and can be implemented easily using
off-the-shelf software for modeling and solving integer programs. This is a
significant benefit to practitioners, who may not have the mathematical and
programming sophistication to implement branch-and-cut, branch-and-price,

Capacitated Vehicle Routing on Trees 259

Table 5. Results for 80 Node Problems.

DFS FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 83897 6320 0 - - - 0.042

[10,90] 83956 6320 0 - - - 0.037

[20,80] 83993 6320 3 1622.71 326 0.974 0.024

[30,70] 84062 6320 6 2016.72 1 0.976 0.028

[1,50] 82476 6320 0 - - - 0.023

[1,30] 82476 6320 0 - - - 0.018

[1,10] 82476 6320 0 - - - 0.003

[30,30] 82476 6320 0 - - - 0.047

[20,20] 82476 6320 0 - - - 0.002

[10,10] 82476 6320 0 - - - 0.008

TREEROUTE FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 9670 7173 4 896.29 30387 0.975 0.009

[10,90] 10167 7616 4 1526.81 59840 0.969 0.009

[20,80] 10671 7853 4 719.30 17443 0.968 0.011

[30,70] 10941 8105 7 167.33 7033 0.977 0.004

[1,50] 4472 3460 0 - - - 0.023

[1,30] 2880 2244 1 3489.74 14669 1.000 0.014

[1,10] 1110 806 10 4.03 183 1.000 -

[30,30] 5715 4440 0 - - - 0.024

[20,20] 3280 2544 1 245.37 876 1.000 0.002

[10,10] 1767 1359 3 899.29 12397 1.000 0.005

or even native optimization code (i.e., code directly using the callable library
of the optimization package).

The formulations were tested on a large set of instances with varying num-
ber of nodes and demand patterns. As shown by the results in Table 2, the
proposed valid inequalities significantly improve the strength of both formu-
lations. It is found that the DFS formulation performs well on small problems
where the demands exhibit low variance and average demand is large. The
DFS formulation performs poorly when the packing problem is complex (if
there exist demands that are much smaller than the vehicle capacity). The
treeroute formulation performs well on instances where the average demand is
large and the demands show considerable variance, due to a lack of symmetry
in these problems. In general, both formulations have tight LP relaxations,

260 Chandran and Raghavan

Table 6. Results for 100 Node Problems.

DFS FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 164495 9900 0 - - - 0.043

[10,90] 164450 9900 0 - - - 0.044

[20,80] 164540 9900 0 - - - 0.039

[30,70] 164491 9900 1 3480.01 0 0.972 0.035

[1,50] 162096 9900 0 - - - 0.041

[1,30] 162096 9900 0 - - - 0.020

[1,10] 162096 9900 0 - - - 0.005

[30,30] 162096 9900 0 - - - 0.048

[20,20] 162096 9900 0 - - - 0.003

[10,10] 162096 9900 0 - - - 0.005

TREEROUTE FORMULATION

Demand Cons. Vars. Solved Time (sec.) Nodes LP/IP Gap

[1,100] 15357 11484 1 128.74 5743 0.982 0.007

[10,90] 16022 12019 1 16.74 54 0.971 0.008

[20,80] 16530 12296 2 475.99 30570 0.981 0.009

[30,70] 16739 12474 2 30.87 672 0.975 0.010

[1,50] 7882 6158 0 - - - 0.041

[1,30] 4457 3524 0 - - - 0.015

[1,10] 1717 1287 8 53.56 867 0.999 0.001

[30,30] 9088 7088 0 - - - 0.026

[20,20] 5080 4019 0 - - - 0.003

[10,10] 2728 2119 1 57.79 285 1.000 0.003

but the treeroute formulation often out-performs the DFS formulation and
should be the model of choice.

Recall, the number of integer variables in the DFS formulation is O(|N |2)
and for the treeroute formulation is O(|N ||V |). Further, the number of con-
straints in the DFS model is O(|N |3), while that in the treeroute formulation
is O(|N ||V |). Hence, the treeroute formulation is more scalable than the DFS
formulation, which is one reason for its better performance. We should also
note that the 2-approximation algorithm described in Section 5 gives very
tight upper bounds (usually within 2% of optimal).

The treeroute formulation can be extended to the heterogeneous vehicle
routing problem introduced by Mbaraga et al. [9]. This is done by eliminating
the symmetry cuts and modifying the capacity constraint (13) to

Capacitated Vehicle Routing on Trees 261

∑

i∈N

yivDi ≤ Cv ∀ v ∈ V, (23)

where Cv is the capacity of vehicle v.
In summary, we have developed strong models that exploit the structure

of the underlying graph, and a heuristic procedure, for the TCVRP problem.
Our motivation, was to develop models within the framework afforded by high-
level optimization modeling languages like AMPL, GAMS, and OPL, with a
view to easy implementation for the practitioner. To that end, we believe
we have successfully demonstrated that by cleverly exploiting the structure of
the underlying graph, it is possible to solve large-scale versions of the TCVRP
even while using a high-level modeling language. We hope this research will
spur further discussion of specialized models for VRP (and other network
problems), with a greater focus on the use of the models within a high-level
modeling language (as is often the case in practice).

References

1. C. Basnet, L.R. Foulds, and J.M. Wilson. Heuristics for vehicle routing on tree-
like networks. Journal of the Operational Research Society, 50:627–635, 1999.

2. I. Berger, J.-M. Bourjolly, and G. Laporte. Branch-and-bound algorithms for
the multi-product assembly line balancing problem. European Journal of Oper-
ational Research, 58:215–222, 1992.

3. G. Clarke and J. Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12:568–581, 1964.

4. E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for
bin packing – an updated survey. In G. Ausiello, M. Lucertini, and P. Serafini,
editors, Algorithms design for computer system design, pages 49–106. Springer-
Verlag, New York, 1984.

5. R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. The Scientific Press, 1993.

6. ILOG. Cplex 9.0 reference manual, 2003.
7. J. Kallrath, editor. Modeling Languages in Mathematical Optimization, vol-

ume 88 of Applied Optimization. Springer Publishing Company, 2004.
8. M. Labbé, G. Laporte, and H. Mercure. Capacitated vehicle routing on trees.

Operations Research, 39:616–622, 1991.
9. P. Mbaraga, A. Langevin, and G. Laporte. Two exact algorithms for the vehicle

routing problem on trees. Naval Research Logistics, 46:75–89, 1999.
10. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.

John Wiley and Sons, New York, 1988.
11. P. Toth and D. Vigo, editors. The Vehicle Routing Problem, volume 9 of SIAM

Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia,
PA, 2002.

