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Problem definition: This paper studies the deceased-donor liver allocation policies in the United States

(U.S.). In the transplant community, broader organ sharing is believed to mitigate geographic inequity (inter-

geographical variation in the transplant rates, patient survival rates, waiting times, and offers) in organ

access, and recent policies are moving in that direction in principle. The liver allocation policy has gone

through two major modifications in the last ten years. Despite these overhauls, geographic inequity persists.

Methodology/results: In this study, we develop a patient’s dynamic choice model to analyze her strategic

response to a policy change. We use this to evaluate several (existing and proposed) organ allocation policies.

On historical data, we show that our model’s predictions are more precise than the existing Liver Simulated

Allocation Model. It more accurately captures: 1) a patient’s change in organ-offer acceptance probability

(with their sickness level), and 2) the behavioral change of a patient in terms of their organ-offer acceptance

probability with a change in policy. Next, we study the current Acuity Circles policy (a ‘one-size-fits-all’

variant of broader sharing) and conclude that it would result in lower efficiency (more offer refusals and

a lower transplant benefit) than the previous Share 35 policy while performing similarly on geographic

equity measures. Finally, we show that broader sharing in its current form may not be the best strategy

to balance geographic equity and efficiency. The intuition is that by indiscriminately enlarging the pool

of supply locations from where patients can receive offers, they tend to become more selective, resulting

in more offer rejections and less efficiency. We illustrate that a policy that equalizes the supply (deceased

donors)-to-demand (waiting list patients) ratios across geographies is better than Acuity Circles in achieving

geographic equity at the lowest trade-off on efficiency metrics.

Managerial implications: The key message to policymakers is that they should move away from the ‘one-

size-fits-all’ approach and focus on matching supply and demand to develop organ allocation policies that

score well in terms of efficiency and geographic equity.

Key words : liver allocation, healthcare policy, geographic disparity, structural estimation, dynamic

optimization
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Figure 1 For the purposes of organ allocation, the U.S. is divided into 11 regions (left) comprising of 58 DSAs

(right).

1. Introduction

In the United States (U.S.), an average of three people die every day waiting for a liver transplant,

resulting in 1,133 lives lost in 2021. While 13,439 patients were added to the waiting list in 2021,

only 9,236 patients received deceased-donor liver transplants. Liver transplantation is the only

treatment option for patients with end-stage liver disease when other medical therapies have failed.

Deceased donations have contributed to greater than 95% of liver donations in the last 15 years

in the U.S. Unlike living donations, which can be arranged privately by a patient-donor pair,

deceased-donor organs are considered national resources by law (whose allocation is determined

by government policy). For the purposes of organ allocation, the U.S. is divided into 11 geographic

regions (Figure 1), consisting of 58 Donation Service Areas (DSAs). A DSA-based allocation policy

had been in place for thirty years (from 1989 to Feb. 4, 2020) but was recently replaced by the

Acuity Circles policy (Section 2.2). Medical urgency, used to rank patients for an organ offer, is

quantitatively measured by the Model for End-Stage Liver Disease (MELD) score. The Pediatric

End-Stage Liver Disease (PELD) severity score, a measure calculated slightly differently, is used

for patients ≤12 years old. The MELD score reflects the probability of death within three months

and ranges from 6 to 40, with a higher score indicating a greater mortality risk (Freeman et al.

2002). More serious patients are assigned Status 1A (for adults) and 1B (for non-adults); their

number is fewer than 50 nationwide at any time.

The U.S. government created the Organ Procurement and Transplantation Network (OPTN) in

1984 to coordinate a nationwide transplant system and optimize the use of limited donor organs

for transplants. Since 1986, the United Network for Organ Sharing (UNOS), a nonprofit private

organization, has overseen the operations of OPTN. A key regulatory framework guiding organ

transplantation is the ‘Final Rule’, which was adopted in 1998 by the Department of Health and

Human Services (HHS) to establish a more detailed framework for the structure and operations of



2

OPTN (HHS 1998). The Final Rule states that policies shall not be based on the candidate’s place

of residence or place of listing (a patient lists herself at the transplant center and joins the waiting

list), except to the extent mandated by the other requirements of the Rule. The HHS (1998) [§121.8

(a), (b) and (c)] emphasizes equitable (with reducing inter-geographical variation in the transplant

rates, patient survival rates, and waiting time as illustrative goals) and efficient allocation of organs

(with avoiding wastage, and making the best use of donated organs as illustrative goals) as its

policy development and performance goals. However, disparities in organ access have been a serious

issue for more than two decades. Geographic inequity in accessing liver transplantation across

DSAs is well documented in the literature (see Yeh et al. 2011). In 2012, the OPTN board adopted

a strategic plan that included reducing geographic disparities in accessing transplantation. Hughes

(2015) provides an excellent summary of the laws enacted to improve liver allocation policies in

the U.S.

1.1. Motivation

The decision to accept or decline an organ-offer is a crucial one for any patient. To the best of

our knowledge, there does not exist a patient choice model that endogenizes a patient’s organ-offer

acceptance probability with allocation policy in the liver context, and policy evaluations using a

fixed model is potentially problematic. Our first research objective is to develop a sophisticated

patient choice model and use it to study counterfactual allocation policies. To assess a new pro-

posal and predict its impact, the transplant community uses the Liver Simulated Allocation Model

(LSAM).1 One of its main shortcomings is that it cannot model forward-looking behavior (by

behavior, we mean organ-offer acceptance probability) in a patient due to a new policy (more in

Section 6.5). This model assumes the same organ-offer acceptance probability function, irrespec-

tive of policy, geography, or organ access. Goel et al. (2018) compared LSAM predictions due to

the Share 35 policy with the actual results observed. They found that LSAM overestimated the

increase in the transplant rates for candidates with MELD/PELD scores ≥35 (46% predicted ver-

sus 36% observed), and underestimated the decrease in the transplant rates for candidates with

MELD/PELD scores between 30 and 34 (1% predicted versus 33% observed).

In June 2013, the Share 35 policy was introduced, with the intent of reducing waiting list mor-

tality and addressing geographic disparities across DSAs. It allowed broader organ sharing for

patients with high MELD scores who were outside the local DSA (where the organ was recovered).

Despite implementing broader organ sharing in a region for candidates with MELD scores ≥35 in

2013, geographic inequities have remained in the system. In July 2018, six waiting list patients in

New York, California, and Massachusetts filed a lawsuit (Cruz et al. v. U.S. Dept. of Health and

1 https://www.srtr.org/requesting-srtr-data/simulated-allocation-models/ accessed on July 12, 2020.
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Human Services, S.D.N.Y 18-CV-06371) against the Health Resources and Services Administra-

tion (HRSA), an agency of the HHS. The lawsuit pointed out two main issues. First, significant

geographic variability existed in the median MELD scores of candidates for deceased-donor trans-

plants such that one’s place of residence largely determined her chances of survival in the Share 35

policy. Second, in the previous DSA-based Share 35 allocation policy (due to rigid boundaries), it

was possible for an organ to be offered to a less sick candidate in a more distant transplant center

over a sicker candidate in a closer transplant center. HRSA has already been under pressure over

the last two decades to address geographic disparities (Hughes 2015). The lawsuit precipitated a

change from the Share 35 allocation policy to the Acuity Circles policy in February 2020. The new

policy addressed the second issue of the lawsuit. Nevertheless, it is unclear whether the first issue

(i.e., geographic inequity) will be addressed by the new policy.2 Our second research objective is

to study whether the current Acuity Circles policy is better than the Share 35 policy in terms of

geographic equity and efficiency metrics.

Managing the trade-off between equity and efficiency has been a very active area for researchers

(see Section 3) and policymakers. Recent policies are moving toward broader sharing in principle.

To provide some perspective, the Pre-Share 35 policy historically allowed organ sharing mainly

within the DSA (the average distance between the donor hospital and the transplant center (TC)

pairs within the same DSA is 66 nautical miles (NM)). After that, the Share 35 policy allowed

organ sharing at the regional level for sicker patients (the average distance between the donor

hospital and the TC pairs within the same region is 262 NM). The current Acuity Circles policy

allows organ sharing up to 500 NM for sicker patients. The future policy framework aims to further

increase this distance. Our third and final research objective is to investigate whether there is a

better alternative (in making an equity-efficiency trade-off) than broader organ sharing as currently

implemented.

1.2. Contributions

Our paper makes the following key contributions to the literature. First, we build a structural

model and provide a framework to analyze a patient’s strategic response to a policy change in the

context of liver transplantation. Our model is based on approximately 40 medical characteristics of

patients and donors. We use the logit inclusive value technique to make the analysis computation-

ally tractable (see Section 5.3). Our model’s predictions are much better than the existing model

(LSAM) and other reduced-form models (see Section 6.5). We demonstrate that the structural

model (in comparison to LSAM) more accurately captures: 1) a patient’s change in organ-offer

2 Due to the pandemic, data on the current Acuity Circles policy would not be useful because hospital resources were
shifted to COVID treatment. Moreover, the priorities of the waiting list transplant patients also changed in light of
the new situation.
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acceptance probability (with their MELD score category), and 2) the regime shift (from the Pre-

Share 35 to Share 35 policy) in terms of a patient’s behavior with regards to their organ-offer

acceptance probability. Secondly, we use our model to give accurate policy evaluations to inform

decision makers.

We find that the Acuity Circles policy, which was implemented in February 2020 to ‘improve’

upon the ‘Share 35’ policy performs very similarly (to the Share 35 policy) in geographic equity

metrics but results in more offer refusals and a lower transplant benefit. Next, we illustrate that

broader sharing in its current form may not be the best strategy for balancing geographic equity

and efficiency. The intuition is that by indiscriminately enlarging the pool of supply locations from

where patients can receive offers, these patients tend to become more selective (i.e., organ-offer

acceptance probability decreases), resulting in more offer rejections and less efficiency. We sug-

gest an alternative approach, one that equalizes the supply (deceased donors)-to-demand (waiting

list patients) ratios across geographies by selectively increasing the sharing radius around donor

hospitals. We show that this approach has the highest efficiency among the policies studied while

improving upon geographic equity measures.

The structure of the rest of this paper is as follows. In the next section, we provide a brief overview

of the liver allocation system in the U.S. Section 3 reviews the relevant literature. Section 4 describes

the data and a few model-free pieces of evidence regarding behavioral change. Section 5 presents our

optimization model. Section 6 describes our estimation procedure and results. We derive insights

from the structural model, and conduct out-of-sample comparisons with other models. Section 7

performs a counterfactual study comparing various allocation policies, including our proposed

alternative ‘s/d Match’. Finally, we summarize and conclude in Section 8.

2. Liver Allocation Policy

UNOS supervises the transplantation network in the U.S. Its primary responsibilities include man-

aging the national transplant waiting list, matching organs from deceased donors to candidates,

establishing the medical criteria for allocating organs, facilitating organ distribution, framing equi-

table policies, and so forth. Some of the main UNOS members are the 142 TCs and Organ Pro-

curement Organizations (OPOs) in the 58 DSAs. An OPO coordinates the local procurement of

deceased-donor organs and allocation within a DSA.

Figure 2 shows the flowchart of deceased-donor liver allocation for transplantation. A TC eval-

uates a candidate and decides whether or not to add her to the waiting list. The medical data of

the candidates are shared with UNOS. These pooled data of candidates across all transplant hos-

pitals are constantly updated when new candidates are added, and existing candidates are either

removed or their medical conditions (e.g., MELD scores) are updated. When a deceased-donor
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Figure 2 Flowchart of deceased-donor organ allocation process in the U.S.

organ becomes available, the OPO sends the organ donor’s medical data to UNOS. Subsequently,

the UNOS matching system compares the donor information with the candidate pool to rank can-

didates for organ offers according to the allocation policy. Upon receiving an offer, the transplant

surgeon, in consultation with the candidate, decides whether to accept the offer. The only clinically

approved preservation method in the case of a liver is simple cold storage (see Lee and Mangino

2009). Because organs lose viability due to a lack of oxygen, a liver often gets discarded around

10-12 hours after its recovery.

Now, we describe the allocation policies that we consider in this study.

2.1. Previous Policies

The first objective scoring system adopted by OPTN/UNOS was the Child-Turcotte-Pugh (CTP)

score in 1998. However, this score was not effective in discriminating the illness severity (Wiesner

et al. 2003). Since February 2002, MELD has been used in allocation policies to quantify the

urgency level. Table 1 compares the policy in place before and after June 2013 (until February

4, 2020) for adult donors. We refer to the policy before June 2013 as the Pre-Share 35 policy.

Sequence # Pre-Share 35 Share 35
1 Status 1 (local) Status 1 (local)
2 Status 1 (regional) Status 1 (regional)
3 MELD score ≥15 (local) MELD score ≥35 (local and regional, with

local candidates given preference in case of ties)
4 MELD score ≥15 (regional) MELD score ≥15 (local)
5 MELD score <15 (local) MELD score ≥15 (regional)
6 MELD score <15 (regional) Status 1 (national)
7 Status 1 (national) MELD score ≥15 (national)
8 MELD score ≤40 (national) MELD score <15 (local)
9 - MELD score <15 (regional)
10 - MELD score <15 (national)

Table 1 Comparison of deceased-adult donor allocation policies. The Share 35 policy prioritized sick patients

registered outside the DSA and region, and it can be seen as a broader sharing policy. Local (regional) refers to

the donor and candidate belonging to the same DSA (region), and national in the case of different regions.
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The Share 35 policy brought about the following two changes. First, it increased the priority of

regional patients with a MELD score ≥35. Second, it prioritized national patients with high MELD

scores over local/regional patients with low MELD scores (<15). Because the Share 35 policy led

to prioritizing sick patients registered outside the DSA and region, it can be seen as a broader

sharing policy. In the above policies, the offer-priority hierarchy is based on the MELD score and

sharing type (local/regional/national).

2.2. Current Policy: Acuity Circles

This policy progressively shares organs in circle radii of 150 NM, 250 NM, and 500 NM around

the donor hospital, with the following hierarchy: 1) Status 1 candidates at TCs within 500 NM;

2) candidates with a MELD score ≥37 within 150 NM, then 250 NM, and then 500 NM; 3) can-

didates with a MELD score ≥33 within 150 NM, then 250 NM, and then 500 NM; 4) candidates

with a MELD score ≥29 within 150 NM, then 250 NM, and then 500 NM; 5) candidates with a

MELD score ≥15 within 150 NM, then 250 NM, and then 500 NM, then nationally; 6) candidates

with a MELD score <15 within 150 NM, then 250 NM, then 500 NM, and then nationally. This is

a ‘one-size-fits-all’ policy, as it does not account for the organ arrival rate, candidate waiting list,

or distances of the TCs from a donor hospital.

2.3. Supply-to-demand (s/d) Match Policy

We use the optimization framework proposed in Akshat et al. (2022) and apply the maximin

principle to design heterogeneous radii circles that maximize the minimum value of the supply-

to-demand (s/d) ratio across all TCs. The s/d Match policy adheres to the Final Rule and the

principles adopted by the UNOS board in 2018 for all future organ policies.3 We set the minimum

and maximum circle radii around the donor hospitals to be 150 NM and 500 NM (in line with the

innermost and outermost radii used in the Acuity Circles policy) as an illustration.

Based on the setup considered in Section 7, the optimized set of circles results in a minimum

(maximum) s/d ratio (at the TC level) of 0.58 (0.83). In contrast, if we consider 500 NM circles

around every donor hospital, the s/d ratio range is 0.45-1.14. (We note that a tighter s/d range

can be obtained by changing the maximum radius value. See EC.13 for details on the s/d range

and performance measures when we allow the maximum radius around the donor hospital to be

600 NM.)

3 https://optn.transplant.hrsa.gov/media/2506/geography_recommendations_report_201806.pdf, accessed
April 30, 2022.
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2.4. National Sharing Policy

As the name suggests, candidates are first ranked based on their MELD scores, irrespective of their

location in the U.S. In the case of a tie (i.e., conditional on the MELD score), local candidates are

preferred over regional candidates, and regional candidates are preferred over candidates outside the

region (we set this preference order because Feng et al. (2006) document the increased risk of graft

failure from local to regional, and from regional to national sharing). Therefore, we try to mitigate

(although not eliminate entirely) the role of one’s location through this policy. We note that this

policy might involve long-distance travel and may not be an appealing or practical idea, given that

it may increase the chance of the organ being discarded. Implementing a National Sharing policy

is likely to substantially increase the cold ischemia time (CIT), the time between organ recovery

and organ transplantation. Although Gentry et al. (2014) concluded that the estimated transport

time for livers comprised only 21% of CIT, we note that their model was based on the Pre-Share 35

policy data, where local sharing was dominant.

3. Related Research

There are three main streams of literature relevant to our study: 1) Proposals to address geo-

graphic disparities, 2) Efficiency-equity trade-offs, and 3) Dynamic optimization modeling in organ

transplantation.

Redistricting has been proposed by many researchers in the operations community to address the

issue of geographic inequity. Redistricting is a problem that occurs frequently in multiple domains

(e.g., political redistricting, school redistricting, and sales territory assignment) where a finite,

denumerable set of non-overlapping geographic units are aggregated into regions/districts subject

to some criteria. Hess et al. (1965) and Garfinkel and Nemhauser (1970) introduced the use of

optimization techniques for political redistricting. Stahl et al. (2005) considered geographic equity

(measured by minimum OPO intraregional transplant rate), along with efficiency (measured by

total intraregional transplants), but they restrict their regions to contain up to eight DSAs due

to computational challenges. Extending their work, Demirci et al. (2012) developed a branch-and-

price algorithm to incorporate a larger set of potential regions and explored the efficient frontier

in a trade-off between efficiency and geographic equity. Gentry et al. (2015) used optimization to

reorganize DSAs into regions/districts to reduce geographic disparities. Working closely with the

liver committee of UNOS, they proposed eight-district and four-district (reorganized DSA) maps.

The proposed maps were under active consideration by UNOS from 2015 to 2017, but ultimately

after significant debate and public comment, they were not adopted. Kilambi and Mehrotra (2017)

introduced the neighborhood framework in organ allocation as a way to provide for broader sharing

and improve geographic equity. Each DSA has its own neighborhood consisting of a unique set
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of other DSAs (or neighbors) with which it shares its organs. Rectifying the shortcomings in the

s/d ratio measure used by Kilambi and Mehrotra (2017), Akshat et al. (2022) proposed heteroge-

neous circles around donor hospitals to create an equitable geographic distribution by developing

a scalable set-partitioning optimization model.

Ata et al. (2017) used fluid approximation and game theory to show that multi-listing (a patient

is listed at more than one TC, potentially in other DSAs or regions, so that she can get organ

offers from multiple places) can reduce geographic disparity in kidney allocation. However, fewer

than 2% of patients (on December 19, 2022, the OPTN website showed that fewer than 200 out

of 10,840 candidates were multi-listed) waiting for a liver transplant were multi-listed. Moreover,

multi-listing would not make the system fair; indeed, it would instead create disparity based on a

candidate’s economic means. Bertsimas et al. (2020) suggest using trade-off curves to assess three

organ distribution frameworks identified by UNOS. Running a massive number of simulations for

the three distribution frameworks,4 they plotted trade-off curves of efficiency (measured as the

average travel distance) versus fairness (measured as deaths or variance in the median MELD score

at the time of the transplant). For a given value of the efficiency metric, the trade-off curve then

identifies the policy with the greatest fairness.

Most of the above studies rely on LSAM to assess the performance of their proposals, owing

to policymakers’ reliance on it. LSAM is a sophisticated patient-level simulation that handles

MELD scores, and models whether a candidate accepts or declines an offer (Thompson et al. 2004).

However, it ignores the heterogeneity in patients’ organ acceptance behavior and its dependence

on the policy.

Zenios et al. (2000) study the trade-off between clinical efficiency (measured as Quality Adjusted

Life Years) and equity (among the patient types defined based on their demographics) in the kidney

allocation problem using a fluid model and ignoring patients’ choices. They propose a heuristic

dynamic index policy to maximize the multi-criteria objective function. Su and Zenios (2005) use

a sequential assignment model (of n transplant patients and n kidneys) to investigate the impact

of a patient’s choice in the kidney allocation system. They focus on a social planner’s objective

of maximizing the overall social welfare and conclude that ignoring the patient’s choice leads to

overestimating the efficiencies in the policies they studied. Bertsimas et al. (2012) study the α-

fairness scheme (see Atkinson 1970) to trade off efficiency and fairness. Their measure of efficiency

is the sum total of utilities, and they do not focus on geographic disparity. Su and Zenios (2006)

find that introducing information asymmetry (the transplantation system would not know the

post-transplant outcome, which would be known to the patient) in the allocation policy achieves an

4 https://optn.transplant.hrsa.gov/media/2565/geography_publiccomment_201808.pdf accessed on July 1,
2022.
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overall outcome in the middle of the efficiency-equity spectrum. Bertsimas et al. (2013) proposed a

method to design a point-based kidney allocation system, where policymakers can select the fairness

constraints. This method maximizes the medical efficiency (captured using life-years gained from

the transplant); however, Bertsimas et al. test policies assuming an exogenous organ acceptance

model for patients. Arikan et al. (2018) use a probit model to elicit differences in the intent for

organ (kidney) procurement at the level of DSAs between marginal-quality organs and the rest.

They conclude that geographically broader sharing of the bottom 15% quality kidneys can help

enhance the kidney supply.

Other papers (Washburn et al. 2016, Goldberg et al. 2017) have studied the effect of the Share 35

policy (compared to the Pre-Share 35) using logistic regression models. However, a logistic regres-

sion model does not account for policy change (i.e., the effect of a policy change on a patient’s

rational expectation about her future, which changes her organ-offer acceptance probability). Zhang

(2010) is the closest paper to ours in terms of the methodology. Their focus is on studying the pres-

ence of observational learning in patient behavior in the deceased-donor kidney allocation process.

They treat all patient-specific variables as constant, whereas MELD score evolves stochastically

in our setup. Agarwal et al. (2021) and Ata et al. (2023) study deceased-donor kidney allocation

policies using structural models. Besides the difference in the context (liver versus kidney), there

are three key differences between these two papers and ours. First, in kidney transplantation,

patients who have waited for the longest time on the list are prioritized for an offer (since a patient

can often survive on dialysis for several years) unlike liver transplantation where sickness level is

the primary factor. Second, these two papers assume patient state transitions to be deterministic,

whereas we model the stochastic transition of MELD scores. Third, the liver allocation policy evo-

lution presents a unique opportunity to study the impact of broader sharing on patient outcomes.

Furthermore, Agarwal et al. (2021) do not study geographic disparity. Alagoz et al. (2007) use

a discrete-time, infinite-horizon discounted Markov decision process model to study the patient’s

decision to accept a deceased-donor liver offer or wait. They use a prescriptive model whereas we

first recover a patient’s behavioral primitives that are used in decision-making. They find that the

optimal policy is typically of the control-limit type. They focus on studying the conditions when

a patient should accept an offer under a particular allocation policy which was active during their

study, whereas one of our primary foci is to study several allocation policies. Moreover, unlike

their approach, our methodology endogenizes a patient’s organ-offer acceptance probability with

an allocation policy. Also, they assume that the liver quality does not change in a decision epoch,

i.e., they consider the same reward (or utility) from local, regional, or national offers whereas our

model allows for different utilities from these offers. Further, they assume a fixed cost of waiting

whereas our model uses a richer set of variables to model the utility and waiting cost.
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4. Data and Evidence
4.1. Data

This study used data from the Scientific Registry of Transplant Recipients (SRTR). The SRTR

data system includes data on all donor, waitlisted candidates, and transplant recipients in the U.S.,

submitted by the members of the Organ Procurement and Transplantation Network (OPTN). The

Health Resources and Services Administration (HRSA), U.S. Department of Health and Human

Services provides oversight to the activities of the OPTN and SRTR contractors.

The four main datasets used in the study are candidates’ information at the time of registration,

the transition of their MELD scores while waiting, donor information, and the candidates’ decisions

regarding organ offers. We use nine years (2010 to 2018) of candidate and donor information in

our structural model analysis. This covers both the Pre-Share 35 and Share 35 policy eras. Using

the Pre-Share 35 policy data helps in model validation through out-of-sample comparison (see

Section 6.5), while also adding observations for parameter estimation. We restrict our analysis to

deceased-donor organs from adult donors and to adult candidates (allocation policies are different

for donors <18 years). Because we are interested in analyzing geographic disparity across policies,

we use data from all 11 regions. For the purpose of estimating MELD score transitions, we use a

larger dataset of 16 years (January 2003 to February 2019). EC.1 provides the summary statistics

of a few key variables in the data.

4.2. Model-Free Evidence of Behavioral Change

In this subsection, we argue why we should capture the forward-looking behavior of a patient.

We do so by providing a few pieces of model-free evidence regarding the change in a patient’s

organ-offer acceptance probability when the policy was changed in 2013. Figure 3 compares the

MELD score at the time of an offer and at the time of a transplant (of candidates who accepted

the offer) between the Pre-Share 35 and Share 35 policies using box plots. Consistent with the

Share 35 policy that prioritizes sicker patients, the MELD score at the time of an offer increased.

The MELD score at the time of a transplant also increased slightly, suggesting that a greater

number of sicker patients received transplants, and therefore, avoided death. However, the relative

increase in the MELD score at the time of a transplant is smaller than the MELD score at the

time of an offer, suggesting more offer refusals. One may wonder whether these refusals are due

to lower-quality organs being offered, or whether the candidates became more selective in their

behavior. We find no significant differences in the organ quality of the declined offers between

the two policy eras (see EC.2). Thus, it is likely that the refusals are due to behavioral change.5

5 Offer refusals tend to increase the waiting time for an organ transplant, thereby deteriorating the organ quality (and
its utility from transplantation). On the one hand, the Share 35 policy seems to save more lives, while it may lead to
a decrease in transplant quality (in terms of the graft survival probability) due to more offer rejections on the other
hand.
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Figure 3 Comparison of MELD score at the time of an offer and a transplant between policies using box plots

(Status 1A is assigned a MELD score of 41). From the Pre-Share 35 to Share 35 policy, the increase

in the MELD score at the time of an offer is greater than at the time of a transplant, suggesting more

offer refusals.

Further, we also see interaction effects. Conditional on offers to candidates with a MELD score

<35 (MELD score ≥35), the average MELD score at an offer acceptance increased (decreased) by

0.68 (0.43). Next, we use a straightforward metric to calculate the acceptance probability (ratio of

the number of offers accepted and the number of offers received). Table EC.2 reports the change

in acceptance probabilities as a function of MELD score (for ease of exposition we categorize the

MELD scores into six classes as in Section 6.2) in different regions. We see cases of both an increase

and decrease in acceptance probabilities. Therefore, using a fixed model for organ-offer acceptance

probability is potentially problematic and it is important to develop a model that endogenizes a

patient’s organ-offer acceptance probability with an allocation policy.

5. Patient’s Dynamic Choice Model

We now describe the choice model of a patient. We use the pronoun she for referring to a patient

although we consider all genders in our study. When the patient is offered an organ, she evaluates

the utility (in terms of her survival chances) derived from that organ and decides to either accept

it and undergo transplantation, or decline it and wait for the next offer (anticipating a better one).

A patient, in consultation with a transplant surgeon, evaluates an offer (for confidentiality reasons,

the SRTR data does not contain surgeon-level information). While waiting, her health state will

evolve stochastically, affecting her priority for future offers. In the U.S., there is no implication of a

patient’s offer refusal on her future offers. Now, we formally introduce our model. Table 2 describes

the notation used in the formulation.

We model the patient’s problem as a discrete-time infinite-horizon dynamic optimization prob-

lem, where she faces the trade-off between accepting the current offer and waiting for future offers.

We consider the Markov perfect equilibrium, and patients account for only payoff-relevant variables,

compositely represented by Sit, in their decision-making.
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Notation Description
i Patient (or candidate)

t= 1, ...,∞ Organ arrival time (in days)
δ Daily discount factor

Payoff-relevant variables
Patient-specific variables:

MELDit MELD category of patient i at time t (MELD score is treated as
a categorical variable)

Rec ageit Patient i’s age group at time t
Rec life supportit Patient i ’s life support status (‘Yes’ or ‘No’) at time t
Rec med condit Patient i’s medical condition (‘ICU’: Intensive Care Unit, ‘H’:

Hospitalized, or ‘NH’: Not Hospitalized) at time t
Organ-specific variables:

Don ageit Age of the donor whose organ is offered to patient i at time t
Don raceit Race of the donor whose organ is offered to patient i at time t
Don codit Cause of death of the donor whose organ is offered to patient i at

time t
Don dcdit Indicates donation after circulatory death (‘Yes’ or ‘No’) of the

donor whose organ is offered to patient i at time t
Qit Characteristics of the organ offered to patient i at time t:

(Don ageit,Don raceit,Don codit,Don dcdit)
Joint patient-donor variables:

Zit Patient’s and donor’s medical attributes used in the SRTR Risk
Adjustment Model (uses 41 attributes)

GSit One-year graft survival probability modeled as a function of
(MELDit,Rec ageit,Rec life supportit,Rec med condit,Qit)

Sharing typeit Denotes whether the organ offer (with respect to patient i’s DSA)
at time t is classified as local, regional, or national sharing

Sit (MELDit,Rec ageit,Rec life supportit,Rec med condit,Qit,
Zit,Sharing typeit)

P(Si,t+1|Sit) Transition probability of patient i’s state from t to t+1
Payoff functions

Uit(Sit) Utility to patient i upon accepting an offer at time t
Wit(Sit) One-period waiting cost incurred by patient i at time t
V (Sit) Patient’s maximum expected present discounted value associated

with state Sit

Decision variable
dit 1 if patient i accepts the offer at time t, and 0 otherwise

Table 2 Model Notation

Upon accepting an offer, a patient receives an expected utility of EU(Sit) and is removed from

the waiting list (and we assume that she never joins again). EU(Sit) captures the expected present

discounted payoff from accepting an offer (in state Sit). If a patient declines the offer, then she

incurs an immediate waiting cost (as modeled in Section 5.2) and expects to receive some utility

in the future (as modeled in Section 6.1.1). Formally, the Bellman equation for patient i’s dynamic

optimization problem at time t is:
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V (Sit) =max

EU(Sit),−EW (Sit)+ δ
∑
Si,t+1

P(Si,t+1|Sit, dit = 0)×V (Si,t+1)

 (1)

5.1. Utility Function

We consider a linear functional form for modeling the utility associated with a candidate-donor

pair. For a pair, we estimate the graft survival probability using the SRTR Risk Adjustment

Model,6 which is based on a total of 41 predictors (Zit) that include the candidate’s and donor’s

medical attributes, and CIT. Using the post-transplant outcome in the utility is in line with the

extant literature (Su and Zenios 2006). Moreover, we believe that a patient would be interested

in maximizing her eventual survival outcome (post-transplantation) without incorporating her

survival chance without a transplant. CIT is realized and observed only for transplants that took

place. Predicting CIT for an offer is very difficult primarily due to the nonavailability of data on

the mode of organ transport (driving, helicopter, or fixed-wing), and non-transport factors (such

as back-table preparation) at SRTR (Gentry et al. 2014). We set CIT equal to its median value

(=6.9 hours) in Zit, and include the Sharing type variable to capture the effect of the elapsed time

between organ recovery and transplantation on the (prospective) transplant quality.7 We model

the utility of the transplantation to be derived from the one-year graft survival probability (GSit

to be precise; see Section 5.3 for details) and Sharing typeit, which captures the effect of CIT. The

utility to patient i at time t is given by:

Uit(Sit) =

{
β0 +βGSGSit +βSharing Sharing typeit + ϵit, if candidate i accepts the organ at time t,

ϵit. otherwise.

(2)

GSit and Sharing typeit are observable to both patient i and the econometrician. βGS and βSharing

are the associated utility parameters; β0 is the intercept. ϵit denotes the idiosyncratic utility shock

experienced by patient i while evaluating the offer at time t. It represents the random factors

(playing a role in the decision-making) that are unobserved to the econometrician such as weather

conditions, momentary inconvenience to the patient, surgery-related factors, randomness involved

in the survival probability assessment, and so forth. ϵit is assumed to follow an independent and

identically distributed (i.i.d.) Gumbel distribution across patients and offers. We subtract E(ϵit),

a constant, from the utility so that the expected utility upon accepting an offer is given by:

EU(Sit) = β0 +βGSGSit +βSharing Sharing typeit (3)

6 https://www.srtr.org/reports-tools/posttransplant-outcomes/ accessed on July 12, 2020.

7 One may wonder if Sharing type is a good proxy for CIT. A variation in CIT with local/regional/national sharing
would support the case. For ease of exposition, we focus on the acceptances by patients with MELD scores ≥35 and
local/regional sharing (national sharing will have a large variability in CIT). The average CIT was 6.0 hours for local
patients, and 6.9 hours for regional patients, suggesting that Sharing type can be used as a proxy for CIT.
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5.2. Waiting Cost Function

A candidate incurs a waiting cost if she declines the offer or does not receive one at time t. To

model her waiting cost, we use variables such as age, life support status, and medical condition

(equation 4). ωAge, ωLS, and ωMC are the associated waiting cost parameters. Given that Death is

an undesirable and terminal state, we add the term 1{MELDit=Death} to the waiting cost function

such that a patient incurs a one-time expected cost of 1
1−δ
×ωd upon death. Formally,

Wit(Sit) =

{
ωd + ϵi0t, if candidate dies at time t,

ωAgeRec ageit +ωLSRec life supportit +ωMCRec med condit + ϵi0t. otherwise.

(4)

where ϵi0t is an independent and identically distributed (i.i.d.) Gumbel distribution across patients

and times. We subtract E(ϵi0t), a constant, from the function so that the expected waiting cost is

given by:

EW (Sit) = 1{MELDit=Death}ωd +1{MELDit ̸=Death}[ωAgeRec ageit+

ωLSRec life supportit +ωMCRec med condit] (5)

5.3. (Simplifying) State Transition Probability

A patient forms beliefs about future states based on the evolution of elements in the state space

(including Zit). Following the extant literature on the logit inclusive value (Gowrisankaran and

Rysman 2012), we make a simplifying assumption: the evolution of multidimensional Zit is approx-

imated using a lower-dimensional GSit. In doing so, we consider a patient to be boundedly rational,

and they use fewer elements to form predictions about the future.

We model GSit as a function of (MELDit,Rec ageit,Rec life supportit,Rec med condit,Qit). We

group the offers by (MELDit,Rec ageit,Rec life supportit,Rec med condit,Qit), and GSit is the aver-

age of the graft survival probabilities (calculated using the respective Zit’s) for these offers. Thus,

we only need the evolution of GSit in the state transition probability matrix, which is relatively

easier to estimate than the evolution of Zit. EC.3 provides details. If a patient declines an offer

or does not receive one, she transitions to a new state on the next day. EC.4 gives the detailed

expression for P(Si,t+1|Sit, dit = 0).

5.4. Offer Acceptance Probability

It follows from the i.i.d. Gumbel assumption of the idiosyncratic shocks in the payoff functions,

and the fact that the difference of two Gumbel-distributed random variables follows a logistic

distribution, that the logit choice probability of accepting an offer is:

P (accepting an offer|Sit) =
eEU(Sit)

eEU(Sit) + e
−EW (Sit)+δ

∑
Si,t+1

P(Si,t+1|Sit,dit=0)×V (Si,t+1)
, (6)
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where EU(.) and EW (.) represent the expected utility and waiting cost, respectively. We assume

that the probability of offer acceptance is the same for all the patients belonging to the same state

at a particular TC or DSA (depending on the geographic unit) in our setup.

6. Model Estimation

In this section, we describe the estimation procedure, parameter identification, and results. Our

estimation framework closely follows Zhang (2010), in combination with the logit inclusive value

technique of Gowrisankaran and Rysman (2012) to make our model tractable.

6.1. Estimation Procedure

We estimate the model using the nested fixed point algorithm (Rust 1987). First, given a set

of parameter values, an ‘inner’ algorithm computes the value function, EV (Sit). Then, the log-

likelihood function is calculated using the parameter values and the value function vector. An

‘outer’ algorithm chooses the next set of parameters to maximize the log-likelihood function.

6.1.1. Value Function. The value function, denoted by EV (Sit), is defined as the total future

value that candidate i expects to receive when she waits (declines or does not receive an offer) at

time t. The future value depends on her state transition, and the expected payoff in the new state.

EV (Sit) =
∑
Si,t+1

P(Si,t+1|Sit, dit = 0)×V (Si,t+1) (7)

Substituting equation 7 into equation 1, we get:

V (Sit) =max{EU(Sit),−EW (Sit)+ δEV (Sit)} (8)

Using the aggregation properties of the Gumbel distribution,

V (Sit) = ln
[
eEU(Sit) + e−EW (Sit)+δEV (Sit)

]
(9)

We can rewrite the value function as follows:

EV (Sit) =
∑
Si,t+1

P(Si,t+1|Sit, dit = 0)× ln
[
eEU(Si,t+1) + e−EW (Si,t+1)+δEV (Si,t+1)

]
, (10)

where the second term under summation corresponds to the expected payoff when in state Si,t+1.

The state space (described in Section 6.2) in our setting is discrete. Let K be the dimension of

the state space, and let Π be a K ×K Markov transition matrix of the state elements (calculated

using equation EC.5). The value function can be concisely represented as:

EV (.) =Π× ln
[
eEU(.) + e−EW (.)+δEV (.)

]
, (11)

where EV (.),EU(.), and EW (.) are all K × 1 vectors. This nonlinear system of equations can be

solved iteratively using a fixed-point algorithm.
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6.1.2. Log-Likelihood Function. We use the maximum likelihood estimation approach to

estimate the structural model parameters. EC.5 describes the derivation and final expression of

the log-likelihood function. We maximize the log-likelihood function, equation EC.11, to estimate

the parameters (β0, βGS, βSharing, ωd, ωAge, ωLS, and ωMC).

6.2. Parameter Identification

Before we present the parameter estimates, we expand on some of the state variables. The variable

selection and discretization are primarily motivated by the medical literature (Schaubel et al. 2009,

Feng et al. 2006). We discretize Rec age into three groups: R1: <45 years, R2: (45−65) years, and

R3: ≥65 years; Don age into four groups: (18− 39) years, (40− 49) years, (50− 59) years, and

≥60 years; Don race into ‘White’ and ‘Others’ categories; Don cod into ‘Anoxia’, ‘Cerebrovascu-

lar accident (CVA)’, and ‘Others’ categories; Rec life support into ‘Yes’ and ‘No’; Rec med cond

into ‘ICU’ (Intensive Care Unit), ‘H’ (Hospitalized), and ‘NH’ (Not Hospitalized) categories; and

Don dcd into ‘Yes’ and ‘No’.

We classify the MELD scores into six categories: MELD 6-14, MELD 15-28, MELD 29-32,

MELD 33-34, MELD 35-36, and MELD >36, and add the terminal Death state. This creates a 7×7

MELD category transition matrix (Table EC.3). The above classification of MELD scores provides

sufficient granularity to evaluate the Pre-Share 35, Share 35, and Acuity Circles policies. Overall,

there are 18 patient types, 49 organ types, and 15,678 elements in the state space; consequently,

every geographic unit (DSA or TC, depending on the allocation policy) has its own K×K Markov

transition matrix, where K = 15,678. Now we discuss the identification of the structural model

parameters, one by one.

GSit is a function of the MELD category, age group, life support status, medical condition,

and organ type (see EC.3 for details). A variation in the accept/decline decisions of patients with

their MELD categories, and organ type helps to identify βGS. For example, patients might have a

different probability of offer acceptance at a lower MELD score, keeping everything else (age group,

life support status, medical condition, sharing type, and organ type) the same. This difference in

the probability of offer acceptance with MELD score can be attributed to the difference in GSit

(GSit is a function of MELD category). EC.6 provides more details on the identification of the

parameter associated with GSit.

We summarize the probability of acceptance (calculated as the ratio of the number of offers

accepted and the number of offers received) for some of the variables that are part of the state space

in Table 3. The variation in the acceptance probability enables the identification of the parameters

associated with these variables in the structural model. After controlling for the candidate and

donor-specific state variables, there exists variation in probability of acceptance with the sharing



17

type (local/regional/national). The differences in the candidates’ acceptance probabilities help

identify βSharing. A candidate might die if she keeps declining offers and continues to wait. The

MELD category transition matrix, P(MELDi,t+1|MELDit, dit = 0), enables us to identify ωd. In

the data, we have candidates of various age groups, life support statuses, and medical conditions.

The variations in their offer acceptance probabilities facilitate the identification of the parameters

(ωAge, ωLS, and ωMC). We assume the daily discount factor, δ= 0.99, in our estimation. Our value

of δ is in line with that of Zhang (2010), who uses a discount factor of 0.99 for every six days

(equivalent to a daily discount factor of 0.991).

6.3. Estimates

Table 4 reports the estimates of the structural model.8 The estimates of the parameters associated

with Sharing type: Regional and Sharing type: National (with respect to Sharing type: Local) are

negative, and national sharing is associated with the least utility. This is reasonable because local

organs travel smaller distances than regional or national organs, and thus are of higher quality in

8 We used Julia 1.5.3 and the KNITRO solver to estimate our model on a 3.2 GHz 6-Core Intel Core i7 MAC with
32 GB RAM. Due to the size of the problem, it took approximately two weeks to solve the model.

Sharing Candidate Candidate Candidate
type P (%) age group P (%) life support P (%) medical condition P (%)
Local 9.0 R1 6.7 No 5.8 NH 5.5

Regional 4.4 R2 6.1 Yes 20.9 H 13.3
National 1.2 R3 5.2 ICU 24.5

Table 3 Summary statistics of probability of acceptance (P := # of offers accepted/# of offers received) for

some of the variables in the state space. The variation in P enables the identification of the parameters

associated with these variables in the structural model.

Variable Parameter Estimate Standard Error
Utility Function:
Intercept β0 -21.7803 0.3145
Sharing type: Regional

βSharing
-1.0348 0.0113

Sharing type: National -2.3328 0.0243
Graft survival probability (GS) βGS 19.5200 0.3353

Waiting Cost Function:
Death ωd 0.1160 0.0007
Candidate age group: R2 (45-65 years)

ωAge
0.0057 0.0002

Candidate age group: R3 (≥65 years) 0.0061 0.0003
Candidate life support: Yes ωLS 0.0134 0.0008
Candidate medical condition: H

ωMC
0.0114 0.0004

Candidate medical condition: ICU 0.0229 0.0008

No. of observations = 890,402
Log-likelihood = -173,630.9

Table 4 Estimation results of the structural model.
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general. In fact, Feng et al. (2006) found similar estimates (0.105 for regional sharing and 0.244

for national sharing, with respect to local sharing) for donor risk index (DRI), a measure of the

riskiness of graft failure associated with a donor organ. The estimate of βGS is positive, which

is consistent with the fact that organs that provide better survival are more desirable. Death is

associated with a positive estimate (the estimate should be multiplied by 1
1−δ

(=100) to model it

as a one-time expected cost). We observe that the waiting cost increases with age (most likely due

to a decrease in well-being and the chances of comorbidities). Thus, older patients are more likely

to accept an offer. Patients on life support incur a higher waiting cost than their counterparts.

Compared to patients who are not hospitalized, hospitalized patients incur more costs, and ICU

patients incur double the cost, compared to hospitalized patients. A higher waiting cost indicates

greater urgency in accepting an offer. As a test for robustness, we relax the assumption of a fixed

value of CIT in the utility function, and report the parameter estimates in EC.7. A reader who is

more interested in policy comparisons can directly jump to the counterfactual study (Section 7)

without losing the crux of the analysis.

6.4. Insights from the Structural Model

Now we study how patients would react to the possibility of a transplant, both based on their

health status and future prospects of being offered an organ. We use a stylized setup of two regions

and three DSAs (Region A: DSA 1 and DSA 2; Region B: DSA 3), each with a single TC, in our

numerical study to draw key insights. We compare five settings of demand and supply across the

DSAs (Set 1,..., Set 5; see Table 5). Note that the future prospect (captured by EV (Sit)) depends on

the organ offer probability, which depends on the supply and demand in various geographies (e.g.,

DSAs) and on the allocation policy in place (we consider both Share 35 and Acuity Circles). For this

reason, we study the effect of a change in supply and demand on a patient’s organ-offer acceptance

probability (the steady state equilibrium organ-offer acceptance probabilities are estimated using

Algorithm 1 in EC.8). By comparing the patient’s organ-offer acceptance probabilities between

these sets, we draw inferences of the effect of the supply and demand volume, and the s/d ratio.

We consider a single patient type (Rec age: (45 − 65) years, Rec life support=‘No’,

Rec med cond=‘NH’), and a single organ type (Don age: (18 − 39) years, Don race = ‘White’,

Don cod = ‘Others’, Don dcd = ‘No’). They represent the most frequent patient and organ types.

We simulate the organ and candidate arrivals for a two-year time period (t= 1, ...,730).

The absolute numbers in Table 5 are less important than their relative ordering with MELD

categories. EC.9 provides a detailed comparison. The main insights are as follows: 1) When the

s/d ratio differs between two DSAs (see DSA 1 and 2 in Set 2; DSA 2 in Set 1 and 2; and DSA 3 in

Set 1 and 3), the difference (in terms of probability of offer acceptance) is greater for patients with
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Set 1* Set 2 Set 3 Set 4 Set 5
d s/d d s/d d s/d d s/d d s/d

Region A:
DSA 1 250 0.7 250 0.7 250 0.7 250 0.7 250 0.7
DSA 2 250 0.7 250 0.5 250 0.7 350 0.7 250 0.7

Region B:
DSA 3 500 0.7 500 0.7 500 0.5 500 0.7 700 0.7

Share 35:

MELD 6-14
DSA 1 [0.073, 0.073] [0.074, 0.074] [0.074, 0.074] [0.073, 0.073] [0.073, 0.073]
DSA 2 [0.073, 0.073] [0.076, 0.076] [0.074, 0.074] [0.073, 0.073] [0.073, 0.073]
DSA 3 [0.072, 0.073] [0.073, 0.073] [0.077, 0.077] [0.072, 0.073] [0.072, 0.073]

MELD 15-28
DSA 1 [0.076, 0.077] [0.079, 0.079] [0.077, 0.078] [0.076, 0.077] [0.077, 0.077]
DSA 2 [0.076, 0.077] [0.084, 0.085] [0.078, 0.078] [0.074, 0.075] [0.076, 0.077]
DSA 3 [0.074, 0.075] [0.074, 0.075] [0.086, 0.087] [0.074, 0.074] [0.072, 0.073]

MELD 29-32
DSA 1 [0.141, 0.144] [0.143, 0.146] [0.143, 0.147] [0.136, 0.141] [0.137, 0.141]
DSA 2 [0.139, 0.143] [0.149, 0.153] [0.145, 0.149] [0.129, 0.134] [0.135, 0.139]
DSA 3 [0.124, 0.128] [0.126, 0.13] [0.137, 0.14] [0.12, 0.124] [0.112, 0.117]

MELD 33-34
DSA 1 [0.271, 0.28] [0.273, 0.282] [0.275, 0.289] [0.256, 0.27] [0.254, 0.266]
DSA 2 [0.266, 0.277] [0.276, 0.287] [0.278, 0.291] [0.246, 0.263] [0.252, 0.264]
DSA 3 [0.241, 0.256] [0.247, 0.261] [0.258, 0.269] [0.231, 0.24] [0.222, 0.234]

MELD 35-36
DSA 1 [0.467, 0.486] [0.469, 0.486] [0.473, 0.492] [0.441, 0.467] [0.438, 0.46]
DSA 2 [0.464, 0.48] [0.471, 0.487] [0.483, 0.501] [0.432, 0.462] [0.431, 0.459]
DSA 3 [0.437, 0.46] [0.447, 0.467] [0.456, 0.472] [0.426, 0.444] [0.416, 0.435]

MELD >36
DSA 1 [0.694, 0.718] [0.697, 0.717] [0.702, 0.724] [0.667, 0.697] [0.663, 0.686]
DSA 2 [0.687, 0.704] [0.694, 0.71] [0.705, 0.724] [0.661, 0.691] [0.657, 0.688]
DSA 3 [0.666, 0.687] [0.681, 0.697] [0.682, 0.701] [0.661, 0.679] [0.648, 0.669]

Acuity Circles#:

MELD 6-14
DSA 1 [0.073, 0.073] [0.074, 0.074] [0.074, 0.074] [0.073, 0.073] [0.073, 0.073]
DSA 2 [0.072, 0.073] [0.076, 0.076] [0.074, 0.074] [0.072, 0.073] [0.073, 0.073]
DSA 3 [0.073, 0.073] [0.073, 0.074] [0.077, 0.077] [0.073, 0.073] [0.073, 0.073]

MELD 15-28
DSA 1 [0.076, 0.077] [0.079, 0.079] [0.078, 0.079] [0.076, 0.077] [0.076, 0.077]
DSA 2 [0.076, 0.077] [0.083, 0.084] [0.079, 0.079] [0.074, 0.075] [0.076, 0.077]
DSA 3 [0.074, 0.075] [0.075, 0.076] [0.085, 0.086] [0.074, 0.074] [0.072, 0.073]

MELD 29-32
DSA 1 [0.133, 0.136] [0.135, 0.138] [0.137, 0.141] [0.126, 0.131] [0.126, 0.132]
DSA 2 [0.131, 0.136] [0.137, 0.141] [0.138, 0.143] [0.123, 0.128] [0.125, 0.129]
DSA 3 [0.122, 0.127] [0.125, 0.129] [0.134, 0.137] [0.118, 0.122] [0.111, 0.115]

MELD 33-34
DSA 1 [0.26, 0.27] [0.261, 0.271] [0.266, 0.281] [0.24, 0.256] [0.237, 0.252]
DSA 2 [0.253, 0.266] [0.259, 0.272] [0.268, 0.282] [0.237, 0.255] [0.236, 0.249]
DSA 3 [0.239, 0.255] [0.245, 0.259] [0.254, 0.266] [0.229, 0.238] [0.22, 0.233]

MELD 35-36
DSA 1 [0.468, 0.488] [0.466, 0.485] [0.473, 0.493] [0.441, 0.468] [0.433, 0.457]
DSA 2 [0.462, 0.48] [0.471, 0.487] [0.484, 0.502] [0.43, 0.461] [0.424, 0.455]
DSA 3 [0.436, 0.46] [0.446, 0.466] [0.453, 0.471] [0.423, 0.443] [0.414, 0.434]

MELD >36
DSA 1 [0.696, 0.721] [0.697, 0.72] [0.702, 0.726] [0.667, 0.698] [0.66, 0.685]
DSA 2 [0.687, 0.706] [0.696, 0.713] [0.706, 0.727] [0.66, 0.692] [0.652, 0.688]
DSA 3 [0.667, 0.689] [0.682, 0.698] [0.684, 0.704] [0.661, 0.681] [0.649, 0.67]

Table 5 Demand and Supply settings used in a numerical study to analyze their effect on a patient’s

organ-offer acceptance probability. 95% confidence intervals of the probability of offer acceptance are shown in

square brackets. *: Set 1 is the baseline setting. #: To model the Acuity Circles policy in this geographic setup of

two regions and three DSAs, we assume local → Regional → National sharing (instead of different circular bands

of radii 150, 250, and 500 NM) within each MELD category.
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lower MELD scores. The difference is attenuated at higher MELD scores due to the prioritization

of patients with higher MELD scores through broader sharing (Share 35 and the Acuity Circles

policy). If the s/d ratio decreases at a DSA (see DSA 2 in Set 1 and 2; and DSA 3 in Set 1

and 3), a patient reacts by becoming aggressive in organ acceptance behavior (i.e., the organ-offer

acceptance probability increases for the same organ). 2) Increasing the supply and demand volume

(keeping the s/d ratio the same) in a DSA leads to an enlarged supply from where patients can

receive an offer, which induces more selective behavior (see DSA 3 in Set 1 and 5; and DSA 2 in

Set 1 and 4). This shift is not merely limited to the DSA at which a change is made; indeed, it

also has a spillover effect on other DSAs.

6.5. Benchmarking

Our data cover two policy regimes (Pre-Share and Share 35). The observations (accept/decline

decisions) provide ground truth, which provides an opportunity to conduct an out-of-sample com-

parison, i.e., training a model using the Pre-Share 35 policy era observations, and testing it on the

Share 35 policy era. This lays the foundations of a strongly validated structural model, which we

use to study counterfactual policies in the next section.

We compare various models (different versions of the dynamic and reduced-form models) on sev-

eral important goodness-of-fit metrics in Table 6. In the category of dynamic models, we consider

three structural models: Full Model (as described in Section 5), and two simplified versions of the

Full Model (DM1 and DM2). In DM1, the Sharing type variable is not there, and DM2 does not

contain the richness in the waiting cost function (i.e., it assumes a fixed cost of waiting regardless

of a patient’s characteristics). The intent behind comparing with DM1 and DM2 is to show that

there is value in including the Sharing type variable and in expanding the waiting cost function

(to the best of our knowledge, no other liver transplantation study that uses dynamic optimiza-

tion has considered either a Sharing type variable, or a waiting cost function). In the category of

reduced-form models, we consider three logistic regression models (RM1, RM2, and RM3), with the

accept/decline decision as the dependent variable. To make it comparable with the dynamic mod-

els, we consider the following independent variables (EC.10 contains the regression estimates). We

find that the structural model (Full Model) outperforms all other models in every metric (except

MAE, where RM1 and RM2 are better).

RM1: dit = a1 + b1GSit + c1P (death|MELDit)+d1Sharing typeit + e1Rec ageit+

f1Rec life supportit +g1Rec med condit

RM2: dit = a2 + b2GSit + c2Wait time (in years)+d2Sharing typeit + e2Rec ageit+

f2Rec life supportit +g2Rec med condit

RM3: dit = a3 +b3MELDit +d3Sharing typeit + e3Rec ageit + f3Rec life supportit +g3Rec med condit
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Measure
Dynamic Models Reduced-form Models

Full Model DM1 DM2 RM1 RM2 RM3
AUC (ROC) 0.772 0.694 0.772 0.756 0.728 0.762
AUC (PRC) 0.202 0.166 0.197 0.194 0.141 0.182
Log-likelihood -118,076.2 -125,045.4 -118,792.5 -119,525.8 -124,941.3 -121,758

RMSE 0.224 0.227 0.225 0.225 0.229 0.227
MAE 0.103 0.110 0.106 0.101 0.102 0.116

Table 6 Comparing the goodness-of-fit (out-of-sample) of various models on threshold-independent measures.

The Full Model fits better than the rest. AUC (ROC) and AUC (PRC) are the area under the receiver operating

characteristic and precision-recall curves, respectively. RMSE and MAE stand for the root-mean-square error and

mean absolute error, respectively.

Figure 4 Out-of-sample comparison of LSAM with the structural model. The structural model more accurately

captures the organ-offer acceptance probabilities of the patients than LSAM.

Next, we compare the structural model (Full Model) with LSAM (which is based on 59 parame-

ters). Many studies (Goldberg et al. 2017, Goel et al. 2018) have already pointed out the limitations

of LSAM in predicting a patient’s organ-offer acceptance probability in a counterfactual policy.

Nevertheless, to illustrate, we consider the Pre-Share 35 and Share 35 policies. The structural model

uses the Pre-Share 35 policy era observations to estimate the parameters; and we then use them to

predict the probability of offer acceptance in the Share 35 policy era. In Figure 4(a), we plot the

probability of offer acceptance (calculated as the fraction of the offers that were accepted based on

the observed data) by the MELD category and use this as a reference. In Figures 4(b) and (c), we

plot the structural model’s and LSAM’s predicted probabilities of offer acceptance, respectively.

The structural model (in comparison to LSAM) more accurately captures: 1) a patient’s change in

organ-offer acceptance probability (with their MELD category), and 2) the regime shift (from the

Pre-Share 35 to Share 35 policy) in terms of a patient’s behavior with regards to their organ-offer

acceptance probability. EC.10 provides a few more out-of-sample comparisons.

In the next section, we compare various allocation policies (including hypothetical ones) using

simulation. For a reader who is interested in knowing how the Share 35 policy affected the organ-
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offer acceptance probabilities on the ground (and not in the controlled simulation environment),

we document the details in EC.11.

7. Counterfactual Study

We now discuss the various performance metrics to measure geographic equity and efficiency,

as emphasized by HHS (1998), and compare the following policies of interest: 1) Pre-Share 35,

2) Share 35, 3) Acuity Circles, 4) s/d Match, and 5) National Sharing. To separate the effect of

the allocation policy from other factors such as changes in the patient and organ arrival processes,

we simulate various policies using common data on patient and organ arrivals. In our simulation

setup, we have 5,000 patients and 3,600 donors arriving at different points in time.

Recent studies (Ata et al. 2023, Agarwal et al. 2021) have widely used the iterative simulation

approach to estimate the equilibrium organ offer probabilities in a counterfactual study. Instead

of a simulation-based iterative approach, we derive analytical expressions to calculate quantities

such as the number of offers, transplants, deaths, and so forth. We use these in an iterative frame-

work (see EC.8 for details, including the simulation setup) to compute the equilibrium organ offer

probabilities in an allocation policy. The benefit of using analytical expressions is that it avoids

randomness due to the candidates’ accept/decline decisions and their MELD score transitions,

which helps achieve faster convergence with tighter tolerance limits. For performance metrics whose

analytical computations are cumbersome, we simulate the organ allocation policy 50 times (using

its equilibrium organ offer probabilities) and report the average. Performance metrics based on

analytical computations are reported as an expected quantity.

7.1. Geographic Equity

Figure 5 compares the expected number of deaths, expected number of transplants, average waiting

time in months (that a patient spends on the waiting list until transplantation, death or the end of

a simulation), and expected number of offers across regions and between various allocation policies.

We report the values after normalizing them with the waiting list volumes in their respective

regions. Glancing over the charts, we see that the Pre-Share 35 policy has the highest variability for

all the metrics. This corroborates with the geographic inequity observed on the ground. Another

noticeable observation is that the expected number of offers is higher in the Share 35 policy than

in Pre-Share 35. This is consistent with the takeaway we had drawn (i.e., the Share 35 policy

resulted in higher offer refusals) while discussing Figure 3. In Table 7, we report the standard

deviations, calculated across regions, for different geographic equity metrics and allocation policies.

Compared to the Pre-Share 35 policy, other policies (Share 35, Acuity Circles, National Sharing,

and s/d Match) increase geographic equity (as indicated by the decrease in the variability of the

performance metrics across regions). The s/d Match (Pre-Share 35) policy has the lowest (highest)
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Figure 5 Comparison of different geographic equity measures between policies (and across regions).

variability across all performance measures. Even if we exclude the Pre-Share 35 policy from the

comparison, the s/d Match policy has a (0-13)% lower standard deviation (compared to the rest)

in the expected number of deaths, (24-35)% less variability (as measured by standard deviation)

in the expected number of transplants, (9-22)% less variability in the average waiting time, and

(41-54)% less variability in the expected number of offers.

On an aggregate basis, we find that, out of a total of 5,000 patients in our study, the Pre-

Share 35 policy resulted in 499.0 expected deaths; the Share 35 policy resulted in 463.2 deaths;

the Acuity Circles policy resulted in 462.2 deaths; the s/d Match policy resulted in 459.9 deaths;

and the National Sharing policy resulted in the least number of deaths, 454.1. Out of a total of

3,600 organs, the Pre-Share 35 policy resulted in 3,575.4 expected transplants; the Share 35 policy

resulted in 3,570.4 transplants; the Acuity Circles policy resulted in 3,564.3 (lowest) transplants;

the s/d Match policy resulted in 3,570.8 (best after the Pre-Share 35 policy) transplants; and the

Geographic equity Standard deviation across regions
metrics (normalized) Pre-Share 35 Share 35 Acuity Circles National Sharing s/d Match

Deaths 0.031 0.015 0.013 0.014 0.013
Transplants 0.109 0.043 0.038 0.037 0.028

Waiting (in months) 2.164 1.024 0.964 0.878 0.801
Offers 4.350 2.626 3.413 3.364 1.553

Table 7 Comparison of the standard deviation of various geographic equity measures between policies. The s/d

Match policy has the lowest values for each of the geographic equity metrics.
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Figure 6 Comparison of the position at offer acceptance between policies. As sharing becomes broader (Pre-

Share 35 → Share 35 → National Sharing; s/d Match → Acuity Circles), the position at acceptance

(and thus, offer refusals) increase and lowers efficiency.

National Sharing policy resulted in 3,564.6 transplants. The relative ordering is more important

than the magnitude of difference (since we allow for 500 offers before discarding an organ).

7.2. Efficiency

We capture efficiency using four performance metrics: position in the queue at offer acceptance,

utility derived from transplantation, increase in the patient’s survival probability (calculated at

the end of one year) due to the transplant, and distance traveled by the organ.

In Figure 6, we compare the average position at which a candidate accepts an offer across

regions and between various allocation policies. The three policies (Pre-Share 35, Share 35, and

National Sharing) are in increasing order of broader sharing. The Pre-Share 35 policy prioritizes

local patients; the Share 35 policy allows more regional and national sharing than its predecessor

policy, while the National Sharing policy does not consider geography conditional on the patient’s

MELD score. The Acuity Circles policy can be seen as a broader sharing analogue of the s/d Match

policy (since the latter allows the radius around a donor hospital to be less than 500 NM). We

observe that as sharing becomes broader, the position at acceptance and offer refusals increase as

a consequence. In other words, if broader sharing is not done carefully, it can result in more offer

refusals. This is consistent with the takeaway we had drawn (i.e., the Share 35 policy resulted in

higher offer refusals) while discussing Figure 3, and is also in line with the second insight gleaned

in Section 6.4.

Given that utility on its own has no physical interpretation, we report the fractional change in

the average utility from transplantation with respect to the Pre-Share 35 policy in Figure 7. We

see that all policies are associated with lower transplant utility (as compared to the Pre-Share 35

policy). We also observe that, as the position at the offer acceptance increases, the transplant
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Figure 7 Comparison of the fractional change in the utility from the transplant (with respect to the Pre-Share 35

policy) between policies. Compared to the Pre-Share 35 policy (which is the most efficient), all policies

have lower transplant utility.

Figure 8 Cost of fairness for various policies. It is defined as the fractional decrease in the transplant utility with

respect to the Outcome-based policy. Overall, the Share 35 and s/d Match policies have the least cost.

utility decreases. This is reasonable because offer refusals tend to deteriorate the quality of the

organ, and thus, the transplant utility.

Further, we simulate a new policy, Outcome based, where the candidates are sequenced (for

organ offers) in decreasing order of the prospective expected utility derived from transplantation.

It sets a benchmark for the best outcomes that can be expected for an allocation policy (we note

that the Outcome-based policy does not follow the federal guidelines because it does not offer the

organ to the sickest patient first). We then estimate the cost of fairness (fractional decrease in

the transplant utility with respect to the Outcome-based policy) in Figure 8. Aggregated over the

regions, the Share 35 and s/d Match policies have the least cost (a 13% decrease in the transplant

utility with respect to the Outcome-based policy), while the Acuity Circles and National Sharing

policies result in 17% and 19% decrements, respectively.
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Pre-Share 35 Share 35 Acuity Circles National Sharing s/d Match
Mean 240 390 357 503 360

1st quartile 46 59 56 71 52
Median 114 176 197 279 180

3rd quartile 282 528 435 760 417

Table 8 Comparison of the travel distance (in NM) between policies.

Next, we calculate the increase in a patient’s survival probability due to a transplant as the

difference between the graft survival probability and the patient’s survival probability without

a transplant, both measured at the end of one year. EC.12 provides methodological details. We

simulate a new policy, Survival Benefit, where the candidates are sequenced (for organ offers) in

decreasing order of the increment in the patient’s survival probability due to the transplant. It

sets a benchmark for the greatest benefits (in terms of survival probability) that can be expected

for an allocation policy (again this policy does not follow the federal guidelines). We find that the

Survival Benefit and National Sharing policies result in the highest benefits (survival probability

increases by 0.186 on average), followed by the s/d Match (0.183), Acuity Circles (0.181), Share 35

(0.180), and Pre-Share 35 (0.169) policies. The s/d Match policy is comparable to the benchmark,

if not the best.

In Table 8, we compare the travel distance between the policies (we exclude the observations

associated with the donor hospitals and transplant centers situated at HIOP (DSA in Hawaii) and

PRLL (DSA in Puerto Rico) from the analysis). The distance between any two DSAs’ i and j is

calculated as the mean of the transplant-volume-weighted distance between the donor hospitals in

DSA i and the transplant centers in DSA j, and the reverse. We see that the National Sharing

policy results in the largest travel distance, while the Pre-Share 35 policy results in the smallest

travel distance. This is reasonable, given that they are at the two extremes of the broader sharing

level. The s/d Match policy is marginally better than the Acuity Circles policy and outperforms

the Share 35 policy (in all but the median travel distance).

Overall, the s/d Match policy, which is based on equalizing the s/d ratios by selectively increasing

the sharing of donor organs, has the lowest trade-off on the efficiency metrics (compared to the

Pre-Share 35 policy) in addressing the issue of geographic inequity. In fact, when a larger radius

is allowed around a donor hospital, the s/d ratios are much closer at the transplant centers (i.e.,

equalized better), and the efficiency metrics are further improved. See EC.13 for details. Thus,

the s/d Match policy offers a significantly better alternative to the Acuity Circles policy while

following the guiding allocation principles laid out by UNOS.
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8. Conclusions

We develop a structural model that endogenizes the forward-looking behavior of patients with

the allocation policy. We formulate the problem as a discrete-time infinite-horizon dynamic opti-

mization model and use a rich set of patient and donor medical attributes without losing the

model’s tractability. We compare our dynamic model with LSAM and other reduced-form models

to establish the credibility of our structural model, which we use to study counterfactual policies.

Recent policies are moving toward broader sharing in principle. The current ‘one-size-fits-all’

Acuity Circles policy performs very similarly to the Share 35 policy under geographic equity met-

rics. However, it leads to even lower efficiency (more offer refusals and less utility from transplan-

tation). We illustrate that broader sharing in its current form is not the best strategy to balance

geographic equity and efficiency. The intuition is that by indiscriminately enlarging the pool of

supply locations from where patients can receive offers, the patients tend to become more selective,

resulting in more offer rejections and less efficiency. Instead, a customized approach (equalizing the

supply-to-demand ratios across geographies) through the s/d Match policy performs best (among

the policies studied) in addressing the issue of geographic inequity while sacrificing the least effi-

ciency (compared to the Pre-Share 35 policy). This policy selectively enhances the radii around

donor hospitals, increasing broader sharing as necessary to equalize the supply and demand. We

strongly recommend that policymakers move away from a ‘one-size-fits-all’ approach to broader

sharing and instead develop broader sharing in a framework that matches the supply and demand.

Such a policy has the potential to score well both in terms of efficiency and geographic equity.

Previous policy proposals have been assessed using LSAM, which uses the same probability

acceptance function for candidates and does not consider whether a candidate is residing in an

organ-rich/-deficient location. Our study provides a framework for researchers and policymakers to

incorporate patients’ potential behavioral changes, when policies change, affecting their organ-offer

acceptance probabilities. There is a considerable push in the transplant community to eventually

move to a continuous scoring framework. This framework conceptually gets rid of boundaries. For

each organ offer it computes a composite score (used to determine offer sequence) for candidates

on the waitlist, which is a combination of factors related to medical priority, the efficiency of organ

placement, expected post-transplant outcome, and equity.9 At this point, the policy parameters

(i.e., weights on the different components of the score) are yet to be determined. An interesting and

potentially impactful future study would be to determine the policy parameters in this continuous

scoring framework to equalize the s/d ratios across transplant centers.

9 https://optn.transplant.hrsa.gov/media/3111/thoracic_publiccomment_201908.pdf accessed on January 30,
2022
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We limit our study to focus only on geographic inequity (as motivated by prior lawsuits) and

do not consider other kinds of disparities such as race, gender, socio-economic factors, organ size,

and blood type. Developing a model to incorporate and mitigate these additional disparities is an

interesting direction for future research.

Disclaimer: The data reported here have been supplied by the Hennepin Healthcare Research

Institute (HHRI) as the contractor for the Scientific Registry of Transplant Recipients (SRTR).

The interpretation and reporting of these data are the responsibility of the author(s) and in no

way should be seen as an official policy of or interpretation by the SRTR or the U.S. Government.
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Electronic Companion

EC.1. Summary Statistics
Table EC.1 reports the summary statistics of various patients, donors, and transplant attributes used in the

model. We see that the new patients’ age, MELD score at listing, and life support status remain almost

the same in the Pre-Share 35 and Share 35 policy eras. There is a slight difference in the distribution of

the medical condition between the two periods. The distributions of a donor’s age, race, and donation after

circulatory death (DCD) status do not change much. However, there is a difference in the distribution of

cause of death between the two periods. Thus, it is important to control for the donor characteristics in the

model. The fractions of the donations after circulatory death and discards do not change much. After the

Share 35 implementation, on average, offers were accepted later in the queue. Comparing the transplant

sharing types, the Share 35 policy resulted in a greater (lower) proportion of regional (local) sharing. Inter-

estingly, CIT decreased on average (although the coefficient of variation is more than 40%). One might

expect the CIT to increase with broader sharing. However, CIT does not follow a linear relationship with

distance (due to switching of the mode of transport, e.g., from driving to flying for a longer distance). In

addition, non-transport factors play a significant role in determining CIT. See Gentry et al. (2014) for a

detailed discussion on modeling CIT.

Of all the offers, 93.3% were made to the patient-donor pairs of identical blood types, and only 2.4% and

4.3% were made to compatible and incompatible pairs, respectively. Therefore, to keep our model simple

and tractable, we do not consider blood type compatibility.

In Table EC.2, we report the candidate’s organ-offer acceptance probabilities in the Share 35 policy

era, and compare them with the Pre-Share 35 policy era in parentheses. We used a straightforward metric

to calculate the acceptance probability (ratio of the number of offers accepted and the number of offers

received). We see cases of both an increase and decrease in their acceptance probabilities (e.g., MELD 6-14

category in Region 10 saw a 6% increase, whereas MELD 33-34 category in Region 6 saw a 26% decrease).

EC.2. Comparing the Organ Quality of Declined Offers
We use the metric, the donor risk index (DRI), proposed by Feng et al. (2006) to evaluate the quality of

declined offers. This index measures the quality of an organ using demographic factors (age, race, height),

cause and type of donor death, sharing type (local/regional/national), and CIT. A higher DRI is associated

with a greater risk of graft failure. Because CIT is observed only for accepted offers, we use the median

value (=6.9 hours) in our calculation. In Figure EC.1, we compare the box plots of the DRI between the

Pre-Share 35 and Share 35 policy eras. We see that there is no significant difference in the distributions of

organ quality.
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Characteristic Pre-Share 35 Share 35
(January 2010-June 2013) (July 2013-December 2018)

Patients
Age (in years): Mean/SD 54.9/10.3 55.8/11.0
MELD score (at listing): Mean/SD 19.3/9.2 19.7/9.8
Life support status:

Yes 4% 5%
No 96% 95%

Medical condition:
Intensive care unit (ICU) 8% 3%
Hospitalized 12% 4%
Not hospitalized 80% 93%

Donors
Age (in years): Mean/SD 44.3/15.2 43.6/14.9
Race:

White 80% 80%
Black 17% 16%
Others 3% 4%

Cause of death:
Anoxia 26% 38%
Cerebrovascular accident (CVA) 40% 31%
Others 34% 30%

Donation after circulatory death:
Yes 13% 17%
No 87% 83%

Fraction of discards 0.252 0.250
Match
Position at acceptance: Mean/SD 10.6/38.0 15.2/42.5
Cold Ischemia Time (of accepted offers): Mean/SD 6.3/3.0 6.0/2.5
Sharing type (of accepted offers):

Local 78% 65%
Regional 20% 31%
National 3% 4%

Table EC.1 Summary statistics of patient, donor, and transplant characteristics.

Figure EC.1 Comparison of the organ quality of declined offers between the Pre-Share 35 and Share 35 policy

eras using the donor risk index (DRI). No significant difference in the distributions of organ quality

is observed.
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MELD 6-14 MELD 15-28 MELD 29-32 MELD 33-34 MELD 35-36 MELD >36
Region 1 4.8% (1.5%) 4.5% (-2.8%) 6.1% (-7.6%) 13.9% (-10.4%) 26% (1.5%) 29.5% (-2.3%)
Region 2 1% (0.9%) 2.8% (-1.5%) 8% (-6.1%) 9.1% (-7.8%) 17% (-3%) 22.3% (-3.6%)
Region 3 3.4% (1%) 12.1% (-0.1%) 23.6% (-11.1%) 26.4% (-15%) 37.6% (1.9%) 36.9% (-8.6%)
Region 4 0.7% (0.4%) 2.5% (-4.3%) 9.2% (-18%) 16.8% (-21.3%) 25% (-11.7%) 32% (-4.9%)
Region 5 1.2% (0.9%) 2.1% (-0.8%) 3.4% (-7.3%) 5.1% (-10.9%) 10.9% (-13.4%) 23.7% (-9%)
Region 6 0% (0%) 6.1% (-6.3%) 14.9% (-17.7%) 20.4% (-25.9%) 27.2% (-24.8%) 28.6% (-17.1%)
Region 7 1% (-0.3%) 3.4% (-6.4%) 9.7% (-9.9%) 14.5% (-14%) 22.4% (-10.5%) 27.8% (-8.9%)
Region 8 0.5% (0.2%) 7.5% (-2.1%) 16.8% (-19.6%) 20.8% (-19.3%) 34.5% (4.2%) 38.3% (-3.4%)
Region 9 0.9% (0.8%) 1.4% (-0.3%) 2.6% (-5.1%) 6.4% (-9.6%) 14.1% (-6.9%) 25.6% (-11%)

Region 10 8.3% (6.2%) 10.7% (-5.2%) 20.6% (-12.9%) 20.3% (-10.6%) 34.6% (-8.5%) 40.3% (0.6%)
Region 11 1.5% (1.3%) 8.7% (-5.2%) 21.4% (-18%) 24.6% (-15.9%) 42.4% (-6.2%) 45% (0.8%)

Table EC.2 Organ-offer acceptance probabilities (in the Share 35 policy era) as a function of the MELD

category. Parentheses report the change, compared to the Pre-Share 35 policy era. Values are calculated using

summary statistics.

EC.3. Details on Logit Inclusive Value
In a dynamic model, agents (patients, in our case) form beliefs about future states based on the evolution

of elements in the state space. If the number of elements is large, it can make the model very complex. To

make the problem tractable, we approximate the evolution of the space space using a lower dimensional

Markov process (see Gowrisankaran and Rysman 2012). In other words, agents are considered boundedly

rational, and they use fewer elements to form predictions about the future.

In our context, the graft survival probability is calculated using the SRTR Risk Adjustment Model,10

which is based on a total of 41 predictors (Zit) that include the candidate’s and donor’s medical attributes,

and CIT. Including all the 41 predictors in the state space will result in a curse of dimensionality. Follow-

ing the extant literature (Gowrisankaran and Rysman 2012) on the logit inclusive value, we simplify the

evolution of those 41 medical attributes using the evolution of lower-dimensional GSit.

We model GSit as a function of the MELD category (MELDit), age group (Rec ageit), life support status

(Rec life supportit), medical condition (Rec med condit), and organ type (Qit). For every combination of

the (values taken by the) above variables, we first filter the offers. For this subset of offers, we use the

values of all the 41 predictors11 to calculate the graft survival probability (using the SRTR Risk Adjustment

Model) for each offer in the subset. The average of the graft survival probabilities is the value of GSit.

In other words, we group the offers by (MELDit,Rec ageit,Rec life supportit,Rec med condit,Qit), and

GSit is the average of the graft survival probabilities obtained on these offers. Thus, GSit is always≤1. We

approximate the evolution of 41-dimensional Zit with the evolution of GSit, which is lower-dimensional. As

10 https://www.srtr.org/reports-tools/posttransplant-outcomes/ accessed on July 12, 2020.
11 We use a constant value of CIT (=6.9 hours) in our model. We do not model GSit to depend on Sharing typeit because
Sharing typeit is already a part of the utility function, and Zit does not contain Sharing typeit variable.
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a sanity check, we regress GSit with the MELD category, age group, life support status, medical condition,

and organ type in Table EC.4. We find that the signs and the relative ordering of the regression estimates

are as expected.

EC.4. State Transition Probability
A patient’s health condition evolves stochastically and is a major determinant of her priority in a queue in

the organ allocation policies studied. The state transition probability is written as:

P(Si,t+1|Sit, dit = 0)=P(MELDi,t+1,Rec agei,t+1,Rec life supporti,t+1,Rec med condi,t+1,

Qi,t+1,Zi,t+1,Sharing typei,t+1|MELDit,Rec ageit,Rec life supportit,

Rec med condit,Qit,Zit,Sharing typeit, dit = 0) (EC.1)

Because the priority of a candidate on the offer list does not depend on past offers, by dropping the history

of the previous period’s offer (i.e., Qit and Sharing typeit), the transition probability can be rewritten as:

P(Si,t+1|Sit, dit = 0)=P(MELDi,t+1,Rec agei,t+1,Rec life supporti,t+1,Rec med condi,t+1,

Qi,t+1,Zi,t+1,Sharing typei,t+1|MELDit,Rec ageit,Rec life supportit,

Rec med condit,Zit, dit = 0) (EC.2)

We assume that the MELD category transition is the same for all age groups, life support statuses, and

medical conditions (the pooling of various patient types enables the estimation of the MELD category

transition matrix with greater confidence than estimating multiple (18 in our case) matrices for different

patient types). Death is an absorbing state. Next, when an organ arrives, the allocation policy does not

depend on the candidate’s age, life support status, or medical condition. Thus, only MELD category plays a

role in determining the organ offer probabilities, P(Q), in a policy. These allow us to simplify the transition

probability as:

P(Si,t+1|Sit, dit = 0)=P(MELDi,t+1|MELDit, dit = 0)×P(Qi,t+1|MELDi,t+1, dit = 0)×

P(Rec agei,t+1,Rec life supporti,t+1,Rec med condi,t+1,Zi,t+1,Sharing typei,t+1|

MELDi,t+1,Qi,t+1,MELDit,Rec ageit,Rec life supportit,Rec med condit,Zit, dit = 0) (EC.3)

We estimate P(MELDi,t+1|MELDit, dit = 0) from the data (January 2003 to February 2019) on MELD

score transitions (Table EC.3). To estimate P(Qi,t+1|MELDi,t+1, dit = 0), we adopt an approach identical

to Alagoz et al. (2007):

P(Qi,t+1|MELDi,t+1, dit = 0)=

∑
i # of offers of type Qi,t+1 candidate i received at MELDi,t+1∑

i # of days candidate i waited at MELDi,t+1

(EC.4)
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MELD 6-14 MELD 15-28 MELD 29-32 MELD 33-34 MELD 35-36 MELD >36 Death
MELD 6-14 0.9958 0.0036 0.0002 0.0001 0.0000 0.0000 0.0003
MELD 15-28 0.0049 0.9922 0.0016 0.0002 0.0001 0.0002 0.0008
MELD 29-32 0.0041 0.0120 0.9693 0.0082 0.0022 0.0020 0.0021
MELD 33-34 0.0042 0.0070 0.0092 0.9508 0.0166 0.0086 0.0036
MELD 35-36 0.0062 0.0112 0.0114 0.0114 0.8809 0.0688 0.0102
MELD >36 0.0098 0.0123 0.0051 0.0036 0.0059 0.9335 0.0299

Death 0 0 0 0 0 0 1

Table EC.3 MELD category transition matrix.

It is possible that a candidate does not receive an offer on a given day. We add no offer to Qit (calculated as

per equation EC.4) and Sharing typeit (if Qit = no offer, Sharing typeit=no offer, and vice versa).

Now, we are left with modeling the evolution of Sharing typeit, Zit, Rec ageit, Rec life supportit, and

Rec med condit. The sharing-type probability depends on the candidate’s MELD category and organ char-

acteristics. Low-quality organs are usually declined more often and are likely to be shared nationally. Sicker

patients get higher priority; therefore, they are likely to receive local/regional offers more often. We calcu-

late the sharing-type probability as per equation EC.6. Next, Zit consists of 41 predictors, each of which

takes a set of values. Including them in the structural model will cause a state space explosion and impede

the transition probability matrix estimation. We use the logit inclusive value technique to simplify the evolu-

tion of 41 predictors using the transition of lower-dimensional GSit (see EC.3). We replace Zit (and Zi,t+1)

with GSit (and GSi,t+1) in the state transition probability expression (equation EC.3). A patient predicts

the value of GSi,t+1 based on (MELDi,t+1,Rec agei,t+1,Rec life supporti,t+1,Rec med condi,t+1,Qi,t+1).

Next, the data do not include the patient’s transition of life support or medical condition. Only the MELD

score of the patient evolves over time. Patients differing in age group, life support status, and medical con-

dition can be thought of as different patient types. These assumptions allow us to simplify the transition

probability to:

P(Si,t+1|Sit, dit = 0)=P(MELDi,t+1|MELDit, dit = 0)×P(Qi,t+1|MELDi,t+1, dit = 0)×

P(GSi,t+1|MELDi,t+1,Rec agei,t+1,Rec life supporti,t+1,Rec med condi,t+1,Qi,t+1, dit = 0)×

P(Sharing typei,t+1|MELDi,t+1,Qi,t+1, dit = 0)×

1{Rec agei,t+1=Rec ageit,Rec life supporti,t+1=Rec life supportit,Rec med condi,t+1=Rec med condit}, (EC.5)

where P(Sharing typei,t+1|MELDi,t+1,Qi,t+1, dit = 0) is estimated as:∑
i # of offers of type Qi,t+1 received at MELDi,t+1 that have Sharing typei,t+1∑

i # of offers of type Qi,t+1 received at MELDi,t+1

(EC.6)

The MELD category transition matrix and GSit are estimated once based on the

data of the entire U.S. However, the estimation of P(Qi,t+1|MELDi,t+1, dit = 0) and

P(Sharing typei,t+1|MELDi,t+1,Qi,t+1, dit = 0) are done for every DSA-policy era pair separately (when
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evaluating a policy that uses TC instead of DSA, we estimate the quantities for every TC). This is because

the organ offer and sharing-type probabilities might differ across the DSAs and, in the Pre-Share 35 and

Share 35 policy eras.

EC.5. Log-Likelihood Function
When an offer is made, the probability of accepting an offer, equation 6, can be rewritten as:

P (dit = 1|Sit) =
eEU(Sit)

eEU(Sit) + e−EW (Sit)+δEV (Sit)
(EC.7)

Taking the log of both sides,

ln (P (dit = 1|Sit)) = ln
[
eEU(Sit)

]
− ln

[
eEU(Sit) + e−EW (Sit)+δEV (Sit)

]
(EC.8)

Also, ln (P (dit = 0|Sit)) = ln
[
e−EW (Sit)+δEV (Sit)

]
− ln

[
eEU(Sit) + e−EW (Sit)+δEV (Sit)

]
(EC.9)

The log-likelihood of a candidate’s observed decision is:

{ln (P (dit = 1|Sit))}dit ×{ln (P (dit = 0|Sit))}(1−dit) (EC.10)

Grouping over all patients’ decisions, the log-likelihood function is:∑
i,t

(
1{dit=1} ln (P (dit = 1|Sit))+1{dit=0} ln (P (dit = 0|Sit))

)
=
∑
Sit

(
nSit
accept ln (P (dit = 1|Sit))+nSit

decline ln (P (dit = 0|Sit))
)

=
∑
Sit

nSit
accept

(
EU(Sit)− ln[eEU(Sit) + e−EW (Sit)+δEV (Sit)]

)
+

nSit
decline

(
−EW (Sit)+ δEV (Sit)− ln[eEU(Sit) + e−EW (Sit)+δEV (Sit)]

)
=
∑
Sit

nSit
acceptEU(Sit)+nSit

decline(−EW (Sit)+ δEV (Sit))−

(nSit
accept +nSit

decline)× (ln[eEU(Sit) + e−EW (Sit)+δEV (Sit)]) (EC.11)

Every candidate i has an associated state Sit at time t; therefore, we can sum over the elements in the

state space, accounting for the number of candidates in those states (instead of summing over the candidates

and time periods when they made the decisions). The first equality follows from this fact, where nSit
accept and

nSit
decline denote the number of candidates who accepted and declined the offers in state Sit, respectively.

EC.6. Details on Identification of βGS

We want to check whether the variables (on which we rely to identify GSit, and whose variation we observe

in the data) are correlated with GSit or not. In Table EC.4, we regress GSit with the MELD category, age

group, life support status, medical condition, and organ type. We find that most of the regression estimates

are statistically significant, and 55% of the variability in GSit is explained by the independent variables

used in the regression. Thus, we can identify GSit in the structural model through the variation of these

independent variables in the observed data.
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Independent variable Estimate
Intercept 0.9582∗∗∗

MELD 15-28 0.0028
MELD 29-32 -0.0058∗

MELD 33-34 -0.008∗∗

MELD 35-36 -0.0127∗∗∗

MELD >36 -0.0203∗∗∗

Candidate age group: R2 (45-65 years) -0.0211∗∗∗

Candidate age group: R3 (≥65 years) -0.0268∗∗∗

Candidate life support: Yes -0.0492∗∗∗

Candidate medical condition: H -0.0182∗∗∗

Candidate medical condition: ICU -0.0649∗∗∗

Donor controls: Yes
No. of parameters: 58

(Adjusted) R-squared = (0.5438) 0.5518
No. of observations = 3,264

***p < 0.001; **p < 0.01; *p < 0.05
Table EC.4 Estimation results of regressing GS.

EC.7. Relaxing the Assumption of a Fixed Value of CIT
In our main model, we assume a fixed value of CIT and endogenize sharing type (which captures the

effect of CIT) with the allocation policy. As a robustness check, we relax the assumption and build a CIT

prediction model (a linear regression model). We need a prediction model because CIT is only observed

for accepted offers, and not for declined offers. We then used the predicted CIT values (instead of a fixed

value of 6.9 hours) in calculating the one-year graft survival probability. In Table EC.5, we compare the

structural model estimates (when we use fixed CIT versus the predicted CIT). We find that there’s only

a slight change in the estimates of the utility and waiting cost functions parameters. The estimates of the

parameters associated with regional and national sharing are closer to zero in the predicted CIT model than

the fixed CIT model. This is because some of the disutilities (associated with regional/national sharing) are

captured by the higher CIT in the predicted CIT model. Although the log-likelihood value is slightly better

in the latter case, we prefer to use the fixed CIT model in our main analysis due to the following reasons:

1) Nonavailability of the key variables (mode of organ transport) for predicting CIT; 2) In counterfactual

studies, we would need to predict CIT. Because we are less confident in the CIT prediction model, the

prediction inaccuracies will make the policy evaluation less reliable; and 3) The measurement error in CIT

(due to using a predicted value) will be passed over to the structural model.

EC.8. Iterative Method for Estimating the Equilibrium
We simulate different organ allocation policies. The common inputs across the policies are the sampled

organ and candidate arrivals, the MELD category transition matrix, and the estimates from the structural

model. We randomly sample 5,000 patients and 3,600 donors from the 11 regions, which arrive at different

points in time (t = 1, ...,730). Every organ is offered to a maximum of 500 candidates (which is close

to the 99th percentile in the actual dataset) before being discarded. We let 34% of the patients be on the
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Variable Parameter Fixed CIT Predicted CIT
Estimate (SE) Estimate (SE)

Utility Function:
Intercept β0 -21.7803 (0.3145) -22.5536 (0.3257)
Sharing type: Regional

βSharing
-1.0348 (0.0113) -0.9655 (0.0114)

Sharing type: National -2.3328 (0.0243) -2.0680 (0.0247)
Graft survival probability (GS) βGS 19.5200 (0.3353) 20.3111 (0.3468)

Waiting Cost Function:
Death ωd 0.1160 (0.0007) 0.1153 (0.0007)
Candidate age group: R2 (45-65 years)

ωAge
0.0057 (0.0002) 0.0058 (0.0002)

Candidate age group: R3 (≥65 years) 0.0061 (0.0003) 0.0063 (0.0003)
Candidate life support: Yes ωLS 0.0134 (0.0008) 0.0130 (0.0008)
Candidate medical condition: H

ωMC
0.0114 (0.0004) 0.0115 (0.0004)

Candidate medical condition: ICU 0.0229 (0.0008) 0.0232 (0.0008)

No. of observations 890,402 890,402
Log-likelihood -173,630.9 -173,579.2

Table EC.5 Comparison of the estimation results of the structural models (when CIT is fixed versus predicted).

The estimates are qualitatively the same.

waiting list at t= 1, and the initial MELD score distribution of the patients is representative of the actual

data. We consider two patient groups ({(Rec age:<45 years, Rec life support=‘No’, Rec med cond=‘NH’)

and (Rec age: (45 − 65) years, Rec life support=‘No’, Rec med cond=‘NH’)}, which constitute 83% of

the patient population in the UNOS data) and 48 organ types in the simulation study. Various patient groups

may have different probabilities of acceptance for the same organ due to differences in the expected utilities

(derived from the transplant) and waiting costs. The equilibrium behavior of each group will depend on

the presence of the others; further, by considering two groups in our study, we capture their interactions in

the equilibrium organ-offer acceptance probabilities. The steps to estimate the steady state equilibrium (for

each allocation policy) using the iterative method are as follows:

1. Start with the organ offer and sharing-type probabilities: P(k)(Qit|MELDit) and

P(k)(Sharing typeit|MELDit,Qit). This enables us to calculate the state transition matrix, Π(k). Using

the ‘inner’ algorithm of the nested fixed-point algorithm, estimate EV (k)(.). When k = 0, we start with

arbitrary values of the above quantities. Skip the next step if k= 0.

2. If ||EV (k)(.)−EV (k−1)(.)||∞ < ε1, stop, or else go to the next step. We use ε1 = 10−5.

3. Calculate the probability of acceptance: P (k)(dit = 1|Sit) =
eEU(Sit)

eEU(Sit)+e−EW (Sit)+δEV (k)(Sit)
.

4. Policy simulation: For an allocation policy, we analytically calculate the expected number of offers,

expected number of transplants, and expected waiting period by any time t. Using analytical expressions

avoids the randomness introduced due to candidates’ accept/decline decisions and their MELD score tran-

sitions, which helps achieve faster convergence with tighter tolerance limits. First, we create a table of

states for every geography (TC or DSA) and tabulate the patient counts in those states. Each state has its

own probability of acceptance. A patient’s state might transition to other states (the patient’s geography
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does not change). At different points in time, new patients join the waiting list, and donors arrive; some

patients receive offers, get a transplant, and leave the system. To analytically calculate the expected num-

ber of offers received and transplants (to patients in various MELD categories and geographies) due to an

organ arriving at time t, we sum the finite geometric series sequentially in the order (determined by the

allocation policy) in which the offers were made to the various patient groups. The patients who received

transplants are removed from the waiting list. Using the MELD category transition matrix, we calculate the

expected number of patients transitioning to different MELD categories at time t+1 and update the waiting

list. New patients who join the waiting list at time t+ 1 are added. If no donor arrives at time t+ 1, only

the MELD category transitions occur. We can track the expected number of patients on the waiting list,

number of offers received, and number of transplants at different instances of t. Finally, we calculate the

quantities of interest to us, which are the organ offer and sharing-type probabilities: P(k)(Qit|MELDit) and

P(k)(Sharing typeit|MELDit,Qit) in the kth step of the iterative method.

5. Update k to k+1. Go to Step 1.

Algorithm 1 Steady State Equilibrium
Input: Candidate and organ characteristics, allocation policy, structural parameters (β0, βGS, βSharing,

ωd, ωAge, ωLS, ωMC), MELD category transition matrix. Let t be the arrival time of an organ.

Output: EV ∗(Sit),P∗(Qit|MELDit),P∗(Sharing typeit|MELDit,Qit).

1 Initialize k=0 and beliefs EV k(Sit),Pk(Qit|MELDit), and Pk(Sharing typeit|MELDit,Qit) for all possi-

ble values of Sit,Qit,MELDit and Sharing typeit.

repeat
2 Πk← Compute state transition matrix (see equation EC.5)

Initialize m= 0 and EV m(.)

repeat
3 EV m(.)←Πk× ln

[
eEU(.) + e−EW (.)+δEV m(.)

]
m←m+1

4 until m≥ 1,
∥∥EV m(.)−Π× ln

[
eEU(.) + e−EW (.)+δEV m(.)

]∥∥
∞ < 10−9;

5 EV k(.)←EV m(.)

pkacpt(Sit) := P k(dit = 1|Sit)← Compute offer acceptance probabilities ∀Sit (see equation EC.7)

Pk(Qit|MELDit),Pk(Sharing typeit|MELDit,Qit)← Policy Simulation (pkacpt(.))

k← k+1
6 until k > 1,

∥∥EV k(.)−EV k−1(.)
∥∥
∞ < 10−5;

7 EV ∗(Sit)←EV k(Sit),P∗(Qit|MELDit)←Pk(Qit|MELDit),

P∗(Sharing typeit|MELDit,Qit)←Pk(Sharing typeit|MELDit,Qit)

Each iteration took approximately 25 hours for policies using the TC as the geographic unit (and approx-

imately nine hours for DSA-based policies), and we were able to achieve convergence within 10 iterations
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for every policy. For the Acuity Circles policy, we define ‘local’ sharing if the distance between the donor

hospital and the TC is <66 NM (average of the distance between the donor hospital and TC pairs in the

same DSA), ‘regional’ sharing if the distance is ≥66 NM and <262 NM (average of the distance between

the donor hospital and TC pairs in the same region), and ‘national’ otherwise.

EC.9. Numerical Study to Derive Insights from the Structural Model
The allocation policies essentially differ in the utility of waiting or the future prospects of being offered an

organ (through the expected future value, EV (Sit)). The objective of this exercise is to generate insights

about how a patient would react to the possibility of a transplant based on her health status and her future

prospect of being offered an organ. This, in turn, depends on the organ offer probability, which depends on

the supply and demand at the various DSAs and the allocation policy in place. For this reason, we study the

effect of a change in supply and demand on a patient’s organ-offer acceptance probability.

We simulate the organ and candidate arrivals for a two-year time period (t= 1, ...,730). We use a stylized

setup of two regions and three DSAs (Region A: DSA 1 and DSA 2; Region B: DSA 3), each with a

single TC, in our numerical study. We let 34% of the patients be on the waiting list at t= 1, and the initial

MELD score distribution of the patients is representative of the actual data. We only consider a single

patient type (Rec age: (45− 65) years, Rec life support=‘No’, Rec med cond=‘NH’), and a single organ

type (Don age: (18−39) years, Don race = ‘White’, Don cod = ‘Others’, Don dcd = ‘No’). They represent

the most frequent patient and organ types.

We study a total of five settings of demand and supply across the DSAs (Set 1,..., Set 5; see Table 5). The

organ and the candidate’s arrival times are random; we run 20 iterations for each setting. The steady state

equilibrium organ-offer acceptance probabilities are estimated using Algorithm 1 in EC.8. We consider two

organ allocation policies: Share 35 and Acuity Circles. The insights, as we will see, are similar.

Discussion of Insights

In Table 5, we report the probability of offer acceptance (95% confidence interval) as a function of a patient’s

MELD category and DSA. We select Set 1 as the baseline scenario: a similar supply and demand volume

(in aggregate) is there at Region A and Region B, and at DSA 1 and DSA 2. We then change either the

demand or s/d ratio, one at a time. We conduct an intra-set analysis (discuss the results of each set on its

own), and an inter-set analysis (compare a set with the baseline setting, Set 1). Before we proceed, it is

useful to do a quick sanity check. The two DSAs in Region A have similar characteristics in Set 1, Set 3

and Set 5. Therefore, the probability of offer acceptance should also be the same for a patient in DSA 1

and DSA 2 (for a given MELD category and a given set). The results are consistent with our expectation,

i.e., the confidence intervals overlap. We note that there are more observations for lower-MELD categories;

therefore, the confidence interval is smaller for lower-MELD categories. The absolute numbers are less

important than their relative ordering with MELD categories. In the ensuing discussion, for brevity, we
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combine the range of MELD scores when referring to multiple MELD categories whose MELD scores are

contiguous (e.g., MELD 29-34 categories refers to the MELD 29-32 and MELD 33-34 categories).

Set 1 (baseline setting): The aggregate s/d ratio is the same for Regions A and B. One may expect that the

probability of offer acceptance should also be the same. However, sharing within Region B is all local,

whereas sharing within Region A will be a mix of local and regional. Therefore, the behavior of Region B

patients might be different from their counterparts in Region A.

We find that DSA 3 patients are more selective than DSA 1 and 2 patients. This selective nature is

more prominent in middle-MELD categories (such as MELD 29-34 categories). For a lower-MELD cate-

gory patient to receive an organ offer, it has to be declined by the higher-MELD category patients of both

the regions. Thus, we do not see a significant difference between the organ-offer acceptance probabilities

between the two regions in lower-MELD category patients. Higher-MELD (MELD score ≥35) category

patients do not have significant difference in organ access, in this stylized model, due to broader sharing

under both the Share 35 and Acuity Circles policies.

Set 2 (and its comparison with Set 1): In Set 2, we decrease the supply at DSA 2 such that the new s/d ratio

in DSA 2 becomes 0.5 (from 0.7). The DSA 2 patients have a higher probability of offer acceptance than

DSA 1 patients due to reduced organ access. This aggressive behavior is especially seen at lower MELD

scores (the impact of difference in the s/d ratio is attenuated at higher MELD scores due to the prioritization

of higher-MELD patients through broader sharing).

Upon comparing with Set 1, we see that DSA 2 patients react by increasing their probability of offer

acceptance (especially at MELD 6-32 categories). We also observe that a decrease in supply at DSA 2 affects

other DSAs as well. DSA 1 patients became aggressive (than Set 1), especially at MELD 6-28 categories.

DSA 3 patients were less impacted than DSA 1 patients, and we did not see a significant change in their

probability of offer acceptance (compared to Set 1).

Set 3 (and its comparison with Set 1): In Set 3, we decrease the supply at DSA 3 such that the new s/d ratio

in DSA 3 becomes 0.5 (from 0.7). The DSA 3 patients have a higher probability of offer acceptance than

DSA 1 and 2 patients in lower-MELD categories (i.e., MELD 6-28).

Upon comparing with Set 1, we see that DSA 3 patients react by increasing their probability of offer

acceptance (especially at MELD 6-32 categories). DSA 1 and 2 patients also felt the effect, and they became

more aggressive (than Set 1), especially at MELD 6-32 categories.

Set 4 (and its comparison with Set 1): In Set 4, we increase the supply and demand volume at DSA 2 by

40%. DSA 2 patients became more selective than DSA 1 patients at the MELD 15-28 category (and the

MELD 29-32 category in the Share 35 policy but not in the Acuity Circles policy) due to an enlarged supply

from where the patients could receive an offer.

Upon comparing with Set 1, we see that DSA 2 patients react by becoming more selective, especially at

MELD 15-36 categories (except that the MELD 33-34 category did not see a significant effect in the Acuity
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Circles policy). DSA 1 and DSA 3 patients also became more selective (than Set 1), especially at MELD 29-

36 and MELD 29-34 categories, respectively. The selectiveness in the patient’s behavior (compared to Set

1) is driven by the enlarged supply (even though demand also proportionally increased) from where the

patients could receive an offer.

Set 5 (and its comparison with Set 1): In Set 5, we increase both the supply and demand volume at DSA 3

by 40% keeping the s/d ratio same as before. DSA 3 patients are more selective than DSA 1 and 2 patients

at MELD 15-34 categories.

Upon comparing with Set 1, we see that DSA 3 patients react by becoming more selective, especially

at MELD 15-36 categories. Again, the selectiveness in the patient’s behavior (compared to Set 1) is driven

by the enlarged supply (even though demand also proportionally increased) from where the patients could

receive an offer. DSA 1 and 2 patients also became more selective (than Set 1), especially at MELD 29-36

categories.

To summarize, the main insights are: 1) When the s/d ratio differs between two DSAs (see DSA 1 and

2 in Set 2; DSA 2 in Set 1 and 2; and DSA 3 in Set 1 and 3), its impact (in terms of the probability of

offer acceptance) is felt more by patients with lower MELD scores. The impact becomes attenuated at

higher MELD scores due to the prioritization of patients with larger MELD scores through broader sharing

(Share 35 and the Acuity Circles policy). If the s/d ratio decreases at a DSA (see DSA 2 in Set 1 and

2; and DSA 3 in Set 1 and 3), their patients react by becoming aggressive in organ acceptance behavior.

2) Increasing the supply and demand volume (keeping the s/d ratio the same) in a DSA leads to an enlarged

supply from where the patients can receive an offer, which induces selective behavior (see DSA 3 in Set 1

and 5; and DSA 2 in Set 1 and 4). This shift is not just limited to the DSA at which a change is made; it also

has a spillover effect on other DSAs.

EC.10. Details of Logistic Regression Models
In Table EC.6, we report the coefficients corresponding to various logistic regression models (RM1, RM2,

and RM3) that we used in Table 6. The dependent variable in all the models is the accept/decline decision.

Overall, we find the coefficients to be reasonable for predicting the acceptance of an offer.

In Figure EC.2(a), we plot the probability of offer acceptance (calculated as the fraction of offers that

were accepted based on the observed data) by MELD category and use this as a reference. In Figure EC.2(b),

(c), and (d), we plot the reduced-form models’ predicted probabilities of offer acceptance. RM1 and RM2

do not capture a patient’s change in organ-offer acceptance probability (with their MELD category), and

the regime shift (from the Pre-Share 35 to Share 35 policy) in terms of a patient’s behavior with regards to

their organ-offer acceptance probability. RM3, which has more variables, is relatively better.
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Figure EC.2 Out-of-sample comparison of reduced-form models.

EC.11. Comparison of the Pre-Share 35 and Share 35 Policy Eras using the
Structural Model

In this section, we compare the organ-offer acceptance probabilities of a patient between the Pre-Share 35

and Share 35 policy eras. Only the second term in the denominator of equation EC.7 might vary between the

two time periods. Specifically, only EV (.), the value function denoting the future discounted value upon

waiting, might differ due to factors such as the changes in organ offer probabilities, and the quality of those

offers. The comparison based on equation EC.7 gives a more complete picture than a straightforward metric

to calculate the acceptance probability (ratio of the number of offers accepted and the number of offers

received) as used in Table EC.2. This is because the latter does not account for the quality of organ offers

(it might happen that a patient is declining more often not because she became selective, but because the

offers are of poorer quality).

Independent variable RM1 RM2 RM3
Intercept -20.659∗∗∗ -16∗∗∗ -5.714∗∗∗

Graft survival probability (GS) 19.322∗∗∗ 15.136∗∗∗ -
MELD 15-28 - - 3.287∗∗∗

MELD 29-32 - - 3.987∗∗∗

MELD 33-34 - - 4.419∗∗∗

MELD 35-36 - - 4.899∗∗∗

MELD >36 - - 5.2∗∗∗

P(death|MELD) 80.745∗∗∗ - -
Wait time (in years) - -0.423∗∗∗ -

Sharing type: Regional -1.228∗∗∗ -1.224∗∗∗ -1.089∗∗∗

Sharing type: National -2.105∗∗∗ -1.969∗∗∗ -2.38∗∗∗

Candidate age group: R2 (45-65 years) 0.433∗∗∗ 0.278∗∗∗ 0.182∗∗∗

Candidate age group: R3 (≥65 years) 0.546∗∗∗ 0.356∗∗∗ 0.085∗∗

Candidate life support: Yes 0.962∗∗∗ 1.165∗∗∗ -0.058
Candidate medical condition: H 1.079∗∗∗ 1.278∗∗∗ 0.549∗∗∗

Candidate medical condition: ICU 1.735∗∗∗ 2.398∗∗∗ 0.625∗∗∗

Log-likelihood -57,861.72 -58,629.47 -53,815.62
No. of observations = 277,367

***p < 0.001; **p < 0.01; *p < 0.05
Table EC.6 Regression estimates of the reduced-form models.



ec14 e-companion to Akshat, Ma, and Raghavan: Improving Broader Sharing to Address Geographic Inequity

MELD 6-14 MELD 15-28 MELD 29-32 MELD 33-34 MELD 35-36 MELD >36
Region 1 4% (0%) 4.4% (-0.2%) 7.5% (-0.3%) 13.6% (-0.3%) 22.1% (-1.1%) 33.7% (-1.5%)
Region 2 3.8% (0.1%) 4.1% (-0.1%) 7% (-0.5%) 11% (-1.3%) 14.9% (-4.9%) 23.5% (-7.7%)
Region 3 3.1% (0.2%) 4.5% (0.1%) 6.6% (0.3%) 10.2% (-0.2%) 12.7% (-4.3%) 21.5% (-6.4%)
Region 4 4.6% (-0.2%) 4.7% (-0.6%) 7.7% (-1.3%) 12.9% (-2.6%) 16.9% (-7.1%) 27.2% (-10.2%)
Region 5 3.9% (-0.1%) 4.1% (-0.4%) 6.3% (-0.9%) 10.2% (-1.3%) 15.7% (-3.4%) 25.7% (-7%)
Region 6 4.2% (0.1%) 4.8% (-0.1%) 7.7% (-0.5%) 13.6% (-2.1%) 19.8% (-4.8%) 31.8% (-7.5%)
Region 7 3.6% (-0.1%) 4.1% (-0.5%) 6.8% (-1.1%) 11.9% (-2.3%) 16.5% (-6%) 27.1% (-8.8%)
Region 8 3.7% (0.1%) 4.5% (0%) 7.3% (0.4%) 11.4% (0.5%) 16.7% (-1.4%) 27.1% (-3%)
Region 9 4.6% (0.2%) 4% (0.1%) 6.3% (0.3%) 11% (0.3%) 19.9% (0.8%) 31.5% (1.7%)
Region 10 3.6% (0%) 4.5% (-0.2%) 6.8% (-1%) 9.3% (-2%) 14.5% (-5.7%) 24% (-9.3%)
Region 11 2.9% (0.1%) 4.2% (0%) 6.6% (-0.2%) 10.5% (-0.9%) 14.4% (-5.5%) 23.5% (-8.6%)

Table EC.7 Organ-offer acceptance probabilities (in the Share 35 policy era) as a function of the MELD

category. Parentheses report the change compared to the Pre-Share 35 policy era. Values are calculated using the

structural model (whose parameters are estimated using data from 2010 to 2018).

We compare the candidates as a function of their MELD category, region-wise. Given that the probability

of an offer acceptance depends on the candidate’s state (Sit), we weigh the states to come up with a single

number for each MELD category and region. For each MELD category (in a region), the weights assigned to

the corresponding states (associated with that MELD category) reflect the empirical probabilities (estimated

using the data) of being in those states. In Table EC.7, we report the candidate’s organ-offer acceptance

probabilities in the Share 35 policy era. Parentheses report the change compared to the Pre-Share 35 policy

era. We see that some estimates of the change vary significantly between the structural model (Table EC.7)

and summary statistics (Table EC.2). For example, MELD 33-34 category (Region 6) values differ by

23.8%, MELD 35-36 category (Region 6) and MELD 29-32 category (Region 8) values differ by 20%, and

so on. Thus, it is important to use a structural model to compare policies.

Coming back to Table EC.7, we see that high-MELD category candidates (MELD score ≥35) in all

regions (except region 9) became more selective in the Share 35 policy era, as their acceptance probabilities

decreased.12 Given that the Share 35 policy prioritized sicker candidates in a geographically broader sense,

by allowing access outside their DSAs, they can afford to be more selective. For lower-MELD categories,

we observe heterogeneity (across regions) in their behavioral change. For example, MELD 6-14 category

candidates experienced a negative effect and became aggressive in more than half of the regions (Regions:

2, 3, 6, 8, 9, 11). It turns out that these regions were associated with a relatively higher organ supply. The

average supply (number of deceased donors)-to-demand (number of new patients joining the waiting list)

ratio (based on the 2010 to 2018 time period) in these regions was 0.82, compared to 0.67 in the rest of the

12 Region 9 had the lowest ratio (0.51) of the number of deceased donors to the number of new patients joining the waiting list
among all regions (based on the 2010 to 2018 time period). It is likely that the Share 35 policy increased competition among the
already organ-deficient DSAs (in Region 9), which led to an increase in aggressive behavior in even higher-MELD category patients
in Region 9 in the Share 35 policy era.
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Covariate Graft survival Patient survival without transplant
Hazard ratio Hazard ratio

MELD 6-14 1.13∗ 0.45∗∗∗

MELD 29-32 0.91∗ 3.63∗∗∗

MELD 33-34 0.75∗∗∗ 4.49∗∗∗

MELD 35-36 0.92 5.97∗∗∗

MELD >36 1.04 11.24∗∗∗

Candidate age group: R1 (<45 years) 1.51∗∗∗ 0.63∗∗∗

Candidate age group: R3 (≥65 years) 0.65∗∗∗ 1.28∗∗∗

Candidate life support: Yes 1.09 2.67∗∗∗

Candidate medical condition: H 1.18∗∗∗ 1.65∗∗∗

Candidate medical condition: ICU 1.09 2.07∗∗∗

Donor age group: (40 to 49 years) 1.35∗∗∗ -
Donor age group: (50 to 59 years) 1.58∗∗∗ -

Donor age group: (≥60 years) 1.78∗∗∗ -
Donor race: Other 1.08∗∗ -

Donor cause of death: Anoxia 0.84∗∗∗ -
Donor cause of death: CVA 1.10∗∗ -

Donor DCD: Yes 1.56∗∗∗ -
Sharing type: Regional 1.00 -
Sharing type: National 1.34∗∗∗ -

***p < 0.001; **p < 0.01; *p < 0.05
Table EC.8 Survival model estimates.

regions. Because the Share 35 policy increased the priority of national patients over local/regional patients

with a low MELD score (< 15), the low-MELD scoring patients in the regions with a higher organ supply

became aggressive in response to potentially losing access to organs that were now offered to candidates

outside their respective regions.

To summarize, we find that sicker patients benefited and became more selective in their behavior (i.e.,

their organ-offer acceptance probability decreased for the same organ in consideration) in the Share 35

policy era (compared to the Pre-Share 35 policy era). However, there was heterogeneity in the behavioral

change across geographies in less sick patients.

EC.12. Survival Benefit due to a Transplant
We estimate the survival benefit due to a transplant as the difference between the graft survival probabil-

ity and the patient’s survival probability without a transplant, both calculated at the end of one year. The

baseline survival functions are estimated using the Kaplan-Meier curves. The estimated graft survival prob-

ability (at t=1 year) of the baseline is 0.98 (standard error = 0.05), and the patient’s survival probability

without a transplant of the baseline is 0.875 (standard error = 0.04). We use the Cox proportional-hazards

model (Cox 1972) to estimate the hazard ratios (HR) associated with the organ and patient characteristics

used in our simulation study. The estimates of the HRs are reported in Table EC.8.

EC.13. s/d Match Policy (Maximum Radius = 600 NM)
When we allow the maximum radius around the donor hospital to be 600 NM, the s/d ratio (at the TC level)

ranges from 0.62 to 0.73. In Table EC.9, we compare the geographic equity metrics between the two s/d
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Geographic equity Standard deviation across the regions
metrics (normalized) s/d Match (500 NM) s/d Match (600 NM)

Deaths 0.013 0.013
Transplants 0.028 0.034

Waiting (in months) 0.801 0.793
Offers 1.553 1.994

Table EC.9 Comparison of the standard deviation of geographic equity measures between s/d Match policies.

Figure EC.3 Comparison of the position at offer acceptance, fractional change in utility from the transplant

(with respect to Pre-Share 35), and cost of fairness (with respect to Outcome-based) between the

two s/d Match policies. The s/d Match (600 NM) policy results in greater efficiency.

s/d Match (500 NM) s/d Match (600 NM)
Mean 360 337

1st quartile 52 60
Median 180 206

3rd quartile 417 427

Table EC.10 Comparison of travel distance (in NM) between the two s/d Match policies.

Match policies (maximum radius equals 500 NM versus 600 NM) using the simulation setup described in

EC.8. Although we do not observe improvement in all the metrics, we find that the expected number of

deaths decreases from 459.9 (maximum radius = 500 NM) to 455.4 (maximum radius = 600 NM), and the

expected number of transplants increases from 3,570.8 to 3,578.5.

In Figure EC.3, we compare the efficiency metrics such as the position at offer acceptance, fractional

change in the utility from the transplant (with respect to the Pre-Share 35 policy), and cost of fairness (with

respect to the Outcome-based policy) between the two s/d Match policies. We see that the bigger radius

policy results in greater efficiency. The average increase in a patient’s survival probability due to a transplant

is also slightly higher (0.185 versus 0.183) in the bigger radius s/d Match policy. Table EC.10 compares the

distance traveled by the organ between the two s/d Match policies. While the mean distance is lower in the

bigger radius policy, the other measures are only marginally higher. In conclusion, if broader sharing is done

right by matching supply and demand, it results in greater equity with minimal impact on the efficiency

metrics!


