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Abstract: Competitive imperatives are causing manufacturing firms to consider multiple
criteria when designing products. However, current methods to deal with multiple criteria in
product design are ad hoc in nature. In this paper we present a systematic procedure to efficiently
solve bicriteria product design optimization problems. We first present a modeling framework,
the AND/OR tree, which permits a simplified representation of product design optimization
problems. We then show how product design optimization problems on AND/OR trees can be
framed as network design problems on a special graph—a directed series-parallel graph. We
develop an enumerative solution algorithm for the bicriteria problem that requires as a subroutine
the solution of the parametric shortest path problem. Although this parametric problem is hard
on general graphs, we show that it is polynomially solvable on the series-parallel graph. As a
result we develop an efficient solution algorithm for the product design optimization problem
that does not require the use of complex and expensive linear/integer programming solvers. As
a byproduct of the solution algorithm, sensitivity analysis for product design optimization is also
efficiently performed under this framework. © 2002 Wiley Periodicals, Inc. Naval Research Logistics
49: 574–592, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/
nav.10031

1. INTRODUCTION

Manufacturing firms today are faced with an increasing array of choices and decisions when
designing a product. Furthermore, competitive imperatives are causing firms to shift their
strategic focus from one of excellence on a single front (for instance, being a low cost producer,
or being a high quality producer) to one where different objectives are prioritized and traded off,
in an effort to better fit narrower market niches. This shift in focus has resulted in the need to
explicitly incorporate an increasing number of typically downstream product life cycle consid-
erations (such as design costs and manufacturing yields) into the decision-making process at the
design stage. Thus, the product design problem, which was traditionally concerned only with the
functionality of the product, is now more accurately modeled as a multicriteria discrete
optimization problem.
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In this paper we describe a modeling framework for product design that permits product
managers to efficiently approximate the set of Pareto optimal solutions for the bicriteria product
design problem. In the context of bicriteria optimization the term efficient, or Pareto optimal,
solutions refers to the set of solutions that are not dominated by any other solution in both
criteria. As an example in the manufacturing application described in this paper, the two criteria
under consideration are cost, which we wish to minimize, and manufacturing yield, which we
wish to maximize. In this situation a solution S with cost CS and yield YS is Pareto optimal to
the bicriteria problem if there is no other feasible solution R to the problem with both a lower
cost and a higher manufacturing yield [i.e., CR � CS and YR � YS and (CR, YR) � (CS, YS)].
Such solutions are important in multicriteria analysis due to the fact that irrespective of how a
decision-maker trades off various criteria, one of these Pareto optimal solutions will be
preferred. In bicriteria optimization one is interested in presenting decision makers the set of
Pareto optimal (or efficient) solutions.

Bicriteria optimization problems are often solved by modeling them as parametric (objective)
optimization problems. This is achieved by setting up a parameter �, which varies from 0 to 1,
that combines the two criteria into a single objective function. When � � 0, the objective
function represents one criterion, and, when � � 1, it represents the other criterion. Values of
� between 0 and 1 represent convex combinations of the two objectives. For the example
involving cost and yield, the parametric objective (that we wish to minimize) is setup as �CS �
(1 � �)YS. In parametric optimization problems one is interested in identifying the set of
(nondegenerate) optimal solutions as � varies from 0 to 1. It is well known that the optimal
solutions to the parametric optimization problem are Pareto optimal solutions to the bicriteria
problem. If the decision maker trades off the various objectives linearly, i.e., has a linear utility
function (this is a reasonable assumption in many instances), then the solutions to the parametric
problem and the Pareto optimal solutions coincide. Otherwise the solutions to the parametric
problem are a subset of the Pareto optimal solutions and serve as an approximation to the
efficient frontier.1

We begin our presentation by reviewing a simple model, the AND/OR tree, first introduced
in the context of product design by Trichur and Ball [26]. This model makes explicit the
decisions involved in designing a product, without specific reference to either the consequences
of these decisions or the interactions between them. We then show an equivalent network
representation of the AND/OR tree, by transforming the AND/OR tree into a directed series-
parallel graph. Further, we establish a one-to-one correspondence between feasible solutions to
the product design optimization problem modeled using the AND/OR tree and paths between
two specified nodes on the directed series-parallel graph. As a result, we show how product
design problems utilizing this framework can be cast as a network design problem—either a
shortest path problem or a more complex variant of it where the path cost is a function of the
arcs on the path.

The shortest path connection allows one to devise computationally efficient solution tech-
niques for bicriteria product design problems modeled via this approach. The solution procedure
models the bicriteria design problem as a parametric optimization problem. It is based on the
observation that fixing some of the choice variables in the product design problem results in a
shortest path problem. Thus, it enumerates these choice variables (there are a small number of

1In certain cases, like bicriteria linear programming problems, there is a one-to-one correspondence
between the solutions to the parametric problem and the Pareto optimal solutions. However, for discrete
optimization problems, like the product design optimization problem or even the shortest path problem,
this does not generally hold.
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them), and so the core of the solution procedure calls for the repeated solution of the parametric
shortest path problem.

Several researchers [2, 11, 21, 28] have studied network flow problems on directed series-
parallel graphs, and described polynomial time dynamic programming algorithms for solving
them. Since the shortest path problem is a special case of the minimum cost network flow
problem, it can be solved in �(�A�) time, where �A� is the number of arcs, using the algorithms
described therein. The parametric shortest path problem is known to be hard on general graphs
in the sense that there may be up to �(�V�log�V�) paths that must be found to solve the parametric
problem [9], where �V� is the number of vertices in a graph. Thus, for general graphs, it is not
polynomially solvable irrespective of whether � � �� (since the size of the output is not
polynomial). In this paper, we generalize the dynamic programming algorithm and show that the
parametric shortest path problem can be solved efficiently in �(�A�2) time on a directed
series-parallel graph. (Note, however, the algorithm for the bicriteria product design problem
has exponential worst-case complexity, since it is an enumerative algorithm). Importantly, our
result also shows that the parametric value function for the shortest path problem on a directed
series-parallel graph has at most �A� � 1 breakpoints (for general graphs Gusfield [9] shows that
the value function can have up to �(�V�log�V�) breakpoints). Consequently, we show that an
alternate technique for parametric optimization, due to Eisner and Severance [5], when applied
to this problem also has an �(�A�2) running time.

Our approach has several advantages. First, it provides a systematic way to describe explicitly
the decisions involved in designing a product. Second, the AND/OR tree and its corresponding
network formulation provide additional insight into the problem structure, allowing for the
development of efficient algorithms for product design problems that are modeled using our
framework. Third, bicriteria analysis of the product design problem can be efficiently performed
within this framework (either exactly under the assumption that product managers have linear
utility functions or as an approximation otherwise). Fourth, since sensitivity analysis is essen-
tially a parametric optimization problem, (objective function) sensitivity analysis for product
design optimization can be efficiently carried out under this framework. Finally, our approach
allows for the development of algorithms that do not require the use of commercial LP or IP
solvers. Avoiding the use of commercial LP or IP solvers can, in many instances, significantly
drive down the cost of a software product.

The rest of this paper is organized as follows. At the conclusion of this section we provide a
brief literature overview. In Section 2 we describe the AND/OR framework for product design
and establish the correspondence between AND/OR trees and directed series parallel graphs. In
Section 3 we describe the application of this framework to the design of printed circuit board
assemblies at a FORTUNE 100 company. We also outline the solution procedure that requires,
as a subroutine, the solution to a parametric shortest path problem. In Section 4 we present our
polynomial time solution algorithm to the parametric shortest path problem on a directed
series-parallel graph, thereby providing the core algorithm for the solution procedure to the
bicriteria product design problem. We conclude in Section 5 with a discussion on some
suggested extensions and directions for further research. In particular we discuss the extension
of the solution procedure to multicriteria (i.e., with more than two objectives) product design
problems.

1.1. Literature Overview

Krishnan and Ulrich [14] give a comprehensive survey of the product development literature.
Other useful survey articles are by Finger and Dixon [7, 8] on detailed design decisions, and by
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Papalambros [18] on using mathematical programming approaches, typically involving nonlin-
ear programming models, to solve parametric design problems.

Several researchers [3, 10, 12, 15] have proposed algorithms for the bicriteria shortest path
problem. In particular, Mote, Murthy, and Olson [15] describe an approach for the bicriteria
shortest path problem that involves the use of a (simplex based) parametric shortest path
algorithm to identify a subset of the Pareto optimal solutions. It then uses a label-correcting
procedure to identify the remaining Pareto optimal solutions. Recall that, under the assumption
of linear tradeoffs, the Pareto optimal solutions are solutions to the parametric problem. Thus
one may use use a parametric network simplex algorithm [23, 24] to solve the parametric
shortest path problem discussed in this paper. However, the approach described in this paper has
much lower complexity.

Many network design problems that are hard on general graphs admit polynomial time
algorithms on directed series-parallel graphs. Ward [28] contains a nice summary of results on
polynomial-time dynamic programming algorithms for network flow problems on directed
series-parallel graphs.

2. MODELING PRODUCT DESIGN PROBLEMS: AND/OR TREES AND
DIRECTED SERIES PARALLEL GRAPHS

In order to develop the basic model of a generic product, we utilize a structure known as an
AND/OR tree. This is a special case of more general structures, AND/OR graphs, that have been
studied in the computer science literature (see Nilsson [17]). An AND/OR tree is a natural
starting point for representing a hierarchical system (one that can be decomposed in a top-down
fashion into subsystems, subsubsystems, and so forth) in the presence of alternatives for
some/all of the subsystems/atomic elements (elements that cannot be decomposed further).
Figure 1 illustrates this concept. Here, the system B contains subsystems C and D (indicated by
the “AND-node”). C can be decomposed further in two alternative ways; thus, C contains either
subsystem E, or subsystem F. E contains atomic units A1 and A2, F contains A3 and A4, and
D contains either A5 or A6.

Observe that in Figure 1, each node is either an AND-node, whose selection necessitates the
selection of all of its child nodes, or an OR-node, whose selection necessitates the selection of
exactly one of its child nodes—B, E, and F are AND-nodes, while C and D are OR-nodes.
Notice that the OR, in the AND/OR tree is an exclusive OR. In the rest of the paper, we use OR
to denote an exclusive OR. It might appear that AND and OR nodes are insufficient to model
logical conditions such as ( A1 AND A5) OR A6. However, it is easy to see that by decomposing
this expression into its constituent AND and OR parts, we may represent this on an AND/OR

Figure 1. Modeling a hierarchical system via an AND/OR tree.
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tree by using an AND node, say Ni, to represent ( A1 AND A5), and then an OR node to
represent Ni OR A6. We refer to this case as the standard form, and henceforth assume that the
AND/OR tree is of this form.

In order to use AND/OR trees to model a product, we note that any product is designed to
satisfy a certain function; this basic function can then be recursively decomposed into subfunc-
tions. These function blocks are, thus, abstract representations of what a product must do in
order to accomplish its function. For example, in Figure 2(A) the product must do Function 1
and Function 2 to accomplish its function. With a function block representation of a product,
designers can postulate alternate function blocks that achieve the same function. For example,
in Figure 2(A) Function 1 may be achieved by either providing Function 3 or Function 4. The
decomposition process continues until the function blocks become “concrete” enough, i.e., until
it becomes possible to map a function block on to an assembly/component that can be
manufactured/purchased. For example, in Figure 2(A) Function 3 is accomplished using
Assembly 1, which in turn is composed of Assembly 4 and Assembly 5.

Consider the manufacture of each of the terminal assembly nodes in Figure 2(A). An
assembly can be decomposed into its constituent components. Each of these components will
have alternatives; moreover, each component will have a set of processes that need to be
performed on it, and each of these processes will also have alternatives. Figure 2(B) shows this
decomposition of an assembly into its constituent components and processes. The generic
component and generic process nodes serve as dummy nodes that cast the AND/OR tree into the
standard form.

We note that it is possible for an assembly to satisfy multiple functions and thus occur
multiple times on the leaves of the AND/OR tree. We assume that an assembly used on a
product may only satisfy a single functionality at a time. In other words, using an assembly that
can provide two functionalities requires multiple installations of the assembly on the product.
However, if an assembly could simultaneously satisfy multiple functions (such assemblies
would typically be few and much more expensive), we can modify the AND/OR tree to model
this situation and satisfy our assumption. As an example, suppose a product has two functions
F1 AND F2. Further, F1 may be provided by assembly A1 OR A2 OR A3, while F2 may be
provided for by A3 OR A4 OR A5. If using A3 for F1 as well as for F2 requires two installations
of A3, then we leave the AND/OR tree unchanged. If A3 can simultaneously be used to provide
functions F1 and F2, and thus only a single installation of A3 is required, we modify the
AND/OR tree as follows. We create a new dummy function F3 that represents the use of
assemblies that can simultaneously provide both functionalities F1 and F2. F3 has a single child

Figure 2. Decomposition of a product.
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or assembly, A3. Our tree then replaces the expression (F1 AND F2), by the appropriate creation
of AND/OR nodes, by the new expression F3 OR (F1 AND F2). As might be inferred, a
systematic way to transform the tree to the required form may easily be obtained by considering
assembly blocks that can simultaneously satisfy multiple functionalities.

We now establish a correspondence between AND/OR trees and directed series parallel
graphs. A directed series-parallel graph is a directed acyclic graph (a graph that contains no
directed cycles) that can be constructed solely by series and parallel operations starting from a
single arc. A series operation replaces a single arc by two or more arcs in a linear chain. A
parallel operation replaces a single arc by two or more parallel arcs between the two end points
of the arc.

Valdes, Tarjan, and Lawler [27] describe a tree data structure, that we refer to as a
SERIES/PARALLEL tree, consisting of two types of nodes—SERIES and PARALLEL—to
compactly represent directed series-parallel graphs. A directed series-parallel graph is con-
structed from its SERIES/PARALLEL tree representation as follows. Start the construction by
introducing a single arc (s, t) representing the root node (the parent node of the tree, i.e., the
node on the tree with no parent) of the SERIES/PARALLEL tree. Next, scan the SERIES/
PARALLEL tree in a breadth first search [6] manner: applying a series operation when a
SERIES node is encountered, by replacing the arc corresponding to the SERIES node, by arcs
in series corresponding to the ordered children of the SERIES node (the order is from the
leftmost child to the rightmost child of the SERIES node); and applying a parallel operation
when a PARALLEL node is encountered, by replacing the arc corresponding to the PARALLEL
node, by arcs in parallel corresponding to the children of the PARALLEL node. By interpreting
an AND node as a SERIES node, and an OR node as a PARALLEL node in the SERIES/
PARALLEL tree data structure, we obtain a directed series-parallel graph corresponding to an
AND/OR tree. Figure 3 illustrates this correspondence.

Observe that by construction the directed series-parallel graph corresponding to the AND/OR
tree has a unique node, denoted by s, with no incoming arc that we refer to as the origin; and
a unique node with no outgoing arc, denoted by t, that we refer to as the destination. We now
show that, by construction, there is a one to one correspondence between the paths from the
origin s to the destination t in the directed series-parallel graph and the feasible choices of leaf

Figure 3. Constructing a Directed Series Parallel Graph from the AND/OR tree in Figure 1. (a) Single
arc, (b) a series operation is applied to arc B, replacing it by arcs C and D, (c) parallel operations are
applied to arcs C and D, and (d) series operations are applied to arcs E and F.
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nodes (or atomic units) in the original AND/OR tree. By a feasible choice, we mean that if the
leaf nodes in the choice set are selected, then the conditions represented by the AND/OR tree
are satisfied. Consider the following two examples. The s–t path A3–A4–A5 corresponds to the
selection of atomic units A3, A4, and A5 on the AND/OR tree. A3 and A4 represent the
selection of subsystem F. Notice that since subsystem C is composed of either subsystem E or
F, this implies subsystem C is represented. The selection of A5 indicates the selection of
subsystem D, which together with the selection of subsystem C, represents that system B can
be feasibly constructed by the choice of atomic units (leaves) A3, A4, and A5. Similarly A1,
A2, and A5 is a feasible choice of leaf nodes on the AND/OR tree represented by the s–t path
A1–A2–A5.

In what follows let � denote the AND/OR tree, and G� denote the directed series-parallel
graph constructed from the AND/OR tree. We call the number of nodes on the (unique) path
from the root of the tree to a particular node the depth of the node. Thus, the root node has depth
1, the children of the root node have depth 2, and so on. We refer to the maximum depth of all
nodes in the AND/OR tree as the depth of the tree. Additionally, for convenience in the rest of
the paper, since we always consider directed series-parallel graphs, we drop the qualifier
directed and refer to a directed series-parallel graph as a series-parallel graph.

LEMMA 1: There is a one to one correspondence between s–t paths on the series-parallel
graph G� and the set of feasible choices of leaf nodes on the AND/OR tree �.

PROOF: To simplify our proof, without loss of generality, we impose the following structure
on the AND/OR tree. Every alternate level of the AND/OR tree, consists solely of OR nodes,
or solely of AND nodes. In other words, until we reach the leaves of the tree, children of AND
nodes are OR nodes, and children of OR nodes are AND nodes.

The proof of equivalence is by induction on the depth of the AND/OR tree. It is trivially true
for a tree of depth 1. Suppose it is true for AND/OR trees of depth k, and consider an AND/OR
tree � of depth k � 1. Observe that the AND/OR tree �d obtained by deleting the leaves at
depth k � 1 from � is a tree of depth k. Consider G�d the series-parallel graph constructed from
the truncated tree �d. By the induction assumption the correspondence holds between �d and
G�d the series-parallel graph constructed from it. Now consider the complete tree �. To obtain
G�, the series-parallel construction process replaces arcs in G�d corresponding to nonleaf nodes
of � with depth k, by arcs corresponding to their children that are leaf nodes with depth k � 1.

If the nonleaf nodes at depth k are AND nodes, then an arc corresponding to one of these
nodes in G�d is replaced by a set of arcs, corresponding to the AND node’s children, in a linear
chain to obtain G�. Thus any path between nodes s and t in G�d that includes an arc
corresponding to an AND node of depth k now includes in G� all of its children. Similarly, any
feasible choice in �d that contains an AND node of depth k, is now feasible in � if it includes
(instead of the AND node) all of its children. Consequently, if the correspondence holds for
AND/OR trees of depth k, it must hold for AND/OR trees of depth k � 1, where the nonleaf
nodes with depth k are AND nodes.

Now suppose that the nonleaf nodes at depth k are OR nodes. Then the series-parallel
construction process replaces the arcs in G�d corresponding to nonleaf nodes with depth k by
parallel arcs corresponding to their children, that have depth k � 1, to obtain G�. Any path
from s to t in G�d that includes an arc corresponding to an OR node of depth k now includes
exactly one of the arcs corresponding to the OR node’s children. Similarly, any feasible choice
in �d that contains an OR node of depth k is now feasible if it includes in � exactly one of its
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children. As a result, if the equivalence holds for trees of depth k, it holds for trees of depth
k � 1, where the nonleaf nodes of depth k are OR nodes. �

As a consequence of Lemma 1, we note that the problem of choosing a feasible set of nodes
on an AND/OR tree may be modeled as a problem of finding a path from s to t on the
corresponding series-parallel graph. Depending on the costs associated with the choices, and
their interactions, the problem may be modeled either as a shortest path problem, or as a more
complex network design problem of finding a feasible s-t path with minimum cost.

Before we conclude this section, we make an observation that will prove useful in the
development of our solution procedure to the parametric shortest path problem in Section 4. An
alternate bottom-up view of the construction process of a series-parallel graph is as follows. The
leaves of the AND/OR tree, which we denote by �(�), represent arcs that are building blocks
of the series-parallel graph. Each node i of the AND/OR tree represents a series-parallel graph
obtained in a bottom-up construction process. For any i � �, let �(i) denote its children on the
AND/OR tree, and let Gi

� denote the series-parallel graph it represents. Let s(Gi) denote the
origin of series-parallel graph Gi and t(Gi) denote the destination. A parallel composition of two
or more series-parallel graphs G1, G2, . . . , Gk is obtained by coalescing the origins s(G1),
s(G2), . . . , s(Gk) together and coalescing the destinations t(G1), t(G2), . . . , t(Gk) together.
A series composition of two or more series-parallel graphs G1, G2, . . . , Gk is obtained by
coalescing in order t(G1) with s(G2), t(G2) with s(G3), . . . , t(Gk�1) with s(Gk).

The bottom-up construction process starts at the leaves �(�) of the AND/OR tree and works
its way up the tree until it reaches the root. At a leaf node i � �(�), Gi

� is simply an arc.
Elsewhere on the tree if i is an AND node, Gi

� is obtained by a series composition of its children
Gj

� for j � �(i), and if i is an OR node, Gi
� is obtained by a parallel composition of its children

Gj
� for j � �(i). Observe that if r denotes the root of �, Gr

� � G�. As an example,
Figure 4 shows the series parallel graphs represented by the nodes on the AND/OR tree under
this viewpoint.

3. AN APPLICATION: THE T/R MODULE DESIGN PROBLEM

We now review the application [1, 16] of the above framework to the design of transmitter/
receiver (T/R) modules—printed circuit board assemblies that are a component of radar systems.
The specific metrics that we seek to optimize are a cost metric and a manufacturing yield metric.
The basic input to the problem consists of an AND/OR tree description of the T/R module,
similar to Figure 2. Given this description, the design problem is to choose among the alternative
function blocks, assembly blocks, components, and processes for each component, such that the
resulting design is efficient with respect to the cost and manufacturing yield metrics.

In our model, we make a few assumptions that allow us to decompose the product design
problem by its constituent subassemblies [the leaves of the AND/OR tree in Fig. 2(A)]. First,
for ease of exposition, we assume that the subassemblies are manufactured independently.
Second, we do not consider the impact of component commonality between subassemblies.
Third, given the first two assumptions, we may now assume that the two metrics, cost and yield,
are decomposable by assembly block. That is, the cost/yield contribution of an assembly block
is assumed to depend only upon the decisions made within that assembly block. Later in this
section we discuss the consequences of relaxing the first assumption.

For any subassembly, Table 1 describes the input data for the problem. Key attributes such
as material costs, run times, setup times, process yields, and material defect rates are assumed
to be known for components, processes, and component-process combinations.
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We now describe the mathematical formulation of the problem and then show the equivalent
network representation. First we define the following decision variables:

xj � � 1 if component j is selected, j � �k, k � �,
0 otherwise,

yp � � 1 if process p is used in the assembly, p � �,
0 otherwise,

xpj � � 1 if process p is selected for component j,
0 otherwise � j � �k, k � �, p � �ji, i � �j�.

Figure 4. Bottom-up view of AND/OR tree. The series-parallel graph corresponding to each node on the
AND/OR tree is located above each node.

Table 1. Notation.

� � set of generic components
�j � set of alternatives for the jth generic component
� � set of all processes (including alternate processes)

�j � set of set of ‘generic’ processes related to the jth component
�ji � set of alternatives for the ith generic process related to the jth component: i � �j

cj � unit cost of jth component: j � �k, k � �
tp � setup time of pth process: p � �
tpj � runtime when pth process is used for jth component: j � �k, k � �, p � �ji, i � �j

�j � defect rate of jth component: j � �k, k � �
�p � yield rate of the pth process: p � �

l � labor cost per unit time
b � batch size

582 Naval Research Logistics, Vol. 49 (2002)



The expressions for design cost, which we seek to minimize, and manufacturing yield, which we
seek to maximize, are as follows:

C � unit cost � runtime cost � setup cost � �
j

cjxj � l �
p,j

tpjxpj �
l

b �
p

tpyp, (1)

Y � �
p

��p�
yp�

j

�1 � �j�
xj. (2)

The cost expression (1) is computed as the cost per unit in the batch. Thus, the unit cost and
runtime cost do not include the batch size, while the setup cost is spread over the batch. Observe
that in the manufacture of an assembly, a process is simultaneously applied to all components
requiring that process. Thus, the setup cost for each process is incurred only once per assembly.
The yield expression (2) consists of the product of the component defect rates and process
yields. We can linearize (2) to get

Y� � log Y � �
p

yplog �p � �
j

xjlog�1 � �j�. (3)

The problem we wish to solve is the following bicriteria integer program (P):

minimize � C
� Y� �

subject to �
j��k

xj � 1 k � �, (4)

�
p��ji

xpj � xj 	j, 	i � �j, (5)

yp � xpj 	p, j, (6)

xj, yp, xpj � �0, 1	 	j, p. (7)

Constraints (4) and (5) capture the AND/OR tree structure of the problem. Constraint (4) tells
us that we should choose exactly one component among all the components representing generic
component k. Similarly constraint (5) tells us that if component j is selected, then, for each
generic process that acts on it, exactly one of the alternatives for this generic process should be
selected. Constraint (6) tells us that a process may be used on a component ( xpj) only if the
process has been selected for use in the manufacture of the assembly ( yp). We note that even
the single criteria version of this integer program is known to be ��-hard via a reduction from
the uncapacitated facility location problem [25].

To obtain Pareto optimal solutions to the bicriteria problem, we solve the parametric problem P�:
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minimize Z��� � �C � �1 � ��Y� (8)

subject to constraints �4�–�7�,

where the parameter � ranges over the interval [0, 1]. As discussed earlier, this gives all the
Pareto optimal solutions when the decision makers’ utility function is linear. Otherwise we have
a subset of the Pareto optimal solutions.

We now develop the network representation for problem P� that we wish to solve. In order
to do so, we first transform the AND/OR tree corresponding to P� into an equivalent series
parallel graph, using the procedure described in Section 2. This would lead to a graph similar
to the one in Figure 3(d). Since the arcs in the series parallel graph correspond to the leaf nodes
(i.e., the process nodes) in the AND/OR tree, each arc in the graph represents a specific
component-process combination. Thus, the series-parallel graph lists all the possible compo-
nent-process combinations, and each s–t path in this graph corresponds to a feasible solution to
P�. Each arc will have associated with it an arc weight given by the following expression:

Wa��� � �� cj

��j�
� ltpj� � �1 � ��

log�1 � �j�

��j�
, (9)

where j and p are the component and process corresponding to arc a. In other words, the arc
weight captures the costs specific to the particular component-process combination. Since
component j requires ��j� generic processes, and, since for each generic process exactly one
specific process alternative is selected (recall that process alternatives are represented by arcs in
parallel), we can spread out the cost of component j, cj, across the component-process arcs
corresponding to j in the manner described in Eq. (9); it is necessary to do so in order to avoid
incurring the cost cj multiple times (otherwise we will incur this cost for each component-
process arc corresponding to j).

We now turn to the fixed costs associated with each process p, given by FC( p) � �ltp/b �
(1 � �)log �p. Since the arcs in the series parallel graph represent component-process
combinations, it is clear that each process can be viewed as a set of arcs in the graph. For
instance, in Figure 3(d), arcs A1 and A4 might represent the same process, and so forth.
Consequently, FC( p) can be viewed as a fixed charge that is incurred (exactly once) should any
of the arcs corresponding to process p be selected (irrespective of the number of such arcs
selected). The problem of finding efficient solutions to problem P, i.e., that of solving P� for
different values of �, can thus be viewed as that of finding shortest s–t paths through the
corresponding series parallel graph for different values of �, where the cost of a path includes
the fixed charges associated with the processes selected by the path.

3.1. Outline of Solution Algorithm to Parametric Problem P�

The solution procedure that we propose begins with the observation that the number of
processes involved in T/R module design is quite small. Further, selecting a set of processes ��
corresponds to fixing yp � 1 for p � �� in the integer program, or may be correspondingly
viewed as deleting the arcs corresponding to processes not in �� from the series-parallel graph.
We denote by P�(��) the reduced problem associated with a given set of selected processes ��.
Notice that, to solve P�(��), since the set of processes are fixed and all other costs are
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decomposable by the arcs selected on a path, we need to solve a parametric shortest path
problem on the reduced graph.

Our solution procedure, enumerates all process combinations: This is computationally viable
since there are a small number of process alternatives. Observe that some process combinations
may be infeasible, i.e., there is no path from node s to node t in the series-parallel graph (in
practice only a small set of process combinations are feasible). For each feasible process
combination ��, it then solves the parametric problem P�(��), corresponding to the selection of
processes �� for the assembly. It then combines these parametric solutions for all process
combinations to obtain the overall parametric solution. (Note, as observed earlier, that the
solution procedure to the overall product design problem is exponential.)

3.2. Relaxing the Independent Manufacture Assumption

Earlier in this section we assumed that subassemblies are manufactured independently. This
was one of the assumptions that allowed us to decompose the product design problem by
subassembly. Suppose different subassemblies could be acted upon simultaneously during a
single setup of a process. Then, to model the problem, rather than consider each subassembly
independently we could consider the AND/OR tree for the entire product. In our model this
simply means working on a larger series-parallel graph.

4. POLYNOMIAL TIME ALGORITHM FOR
PARAMETRIC SHORTEST PATH PROBLEM

In order to make our solution procedure for bicriteria product design optimization problems
work, we need an algorithm to solve the parametric shortest path problem. As we have indicated
earlier, the parametric shortest path problem is hard on general graphs. We now describe a
polynomial time algorithm for the parametric shortest path algorithm on series-parallel graphs.
Our description follows in three parts. First we consider the nonparametric problem (i.e., � is
fixed), and describe an �(�A�) dynamic programming algorithm. Next, we develop some
intuition concerning the parametric analysis, by describing how to combine the parametric
analysis of two subproblems. We then modify the dynamic programming algorithm, and solve
the parametric problem in �(�A�2) time.

4.1. Dynamic Programming Algorithm for Nonparametric Problem

While the shortest path problem is polynomially solvable by Dijkstra, or other alternatives,
we describe a linear-time dynamic programming approach that utilizes the AND/OR tree
representation. This algorithm is identical to those presented in [2, 28], as applied to the shortest
path problem, using the SERIES/PARALLEL tree representation. This approach enables an
easy extension to the parametric case.

To simplify the analysis of the running time of the algorithm, we use a binary AND/OR tree
representation (the running time results hold even if we use the original AND/OR tree
representation of the problem). In a binary AND/OR tree each node in the AND/OR tree, except
for the leaf nodes, has two children (see Fig. 5). A transformation to a binary AND/OR tree
structure may be easily obtained in linear time as follows. Whenever an OR node or an AND
node has more than two children, the transformation procedure replaces the poly-ary tree
structure by a binary tree structure as shown in Figure 5. The number of operations required to
perform this transformation is proportional to the number of nodes in the binary AND/OR tree.
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Since the number of leaves in the binary AND/OR tree is identical to the number of leaves in
the original AND/OR tree, and a binary tree with ��(�)� leaves has 2��(�)� � 1 nodes (see [4,
13]), the transformation takes �(��(�)�) time.

For a series-parallel graph Gi, let R(Gi) denote the cost of the shortest path from s(Gi) to
t(Gi). For convenience, when obvious, we will drop the superscript � in the notation Gi

� for
i � �.

The following two simple observations provide the necessary ingredients for the dynamic
programming recursion.

OBSERVATION 1: If i is an AND node on �, then the shortest path from s(Gi) to t(Gi) is
obtained by taking the union of the shortest paths of the children of i. In particular R(Gi) the
cost of the shortest path is obtained as the sum of the costs of the shortest paths of the children
of i (i.e., R(Gi) � ¥j��(i) R(Gj)).

OBSERVATION 2: If i is an OR node, the shortest path from s(Gi) to t(Gi), is obtained by
finding the lowest cost path among the children of i. In particular the minimum cost path is
obtained by finding the least cost path among the shortest paths from s(Gj) to t(Gj) for j �
�(i).

The dynamic programming algorithm starts from the leaves of the AND/OR tree setting
R(Gi) equal to the cost of the arc for i � �(�) and works its way up to the root using the
following equations.

R�Gi� � �
j���i�

R�Gj� if i is an AND node, (10)

R�Gj� � min
j���i�

R�Gj� if i is an OR node. (11)

To keep track of the shortest path, we observe that choices among competing alternatives are
made solely at OR nodes. Thus to keep track of the shortest path, at OR nodes, we keep track

Figure 5. Transformation to a binary AND/OR tree: (a) an OR node with four children and (b) its binary
counterpart.
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of the child (or children, if there is more than one child that gives the minimum) that gives the
minimum in Eq. (11).

At each node on the tree the algorithm either finds the minimum of the objective values of the
two children or sums the objective values of the two children (since we are using a binary tree
representation). Both of these operations take �(1) time. Thus the total running time, as well as
the space required, is bounded by the number of nodes in the tree, and so the algorithm runs in
�(�A�) time, and requires �(�A�) space (since ��(�)� � �A�).

4.2. Parametric Analysis Preliminaries

In this section we develop some lemmas regarding parametric analysis that are essential to our
dynamic programming algorithm. Since some of these results are well developed in the
computational geometry literature [19], we provide an informal analysis to motivate the
dynamic programming algorithm for the parametric problem.

In the parametric problem, let Ca and Ya denote the cost and yield terms respectively of arc
a in Eq. (9). Thus Wa(�) � �Ca � (1 � �)Ya. Let � denote the set of paths from s(G�) to
t(G�). For a particular path Q � �, let C(Q) � ¥a�Q Ca and let Y(Q) � ¥a�Q Ya. Observe
that, for a path Q � � and a fixed �, its cost is given by (C(Q) � Y(Q))� � Y(Q). The
objective function of the parametric problem is obtained by finding the lower envelope of the
set of lines (C(Q) � Y(Q))� � Y(Q) (where � � [0, 1]) for all Q � �.

LEMMA 2: The lower envelope of a (finite) set of straight lines is a piecewise linear and
concave function. Furthermore, it contains no more segments (pieces) than the number of lines.

The above observation follows immediately from the definition of a lower envelope, and is
illustrated in Figure 6(a). From this lemma we may infer that the objective function correspond-
ing to the bicriteria shortest path problem is a continuous, piecewise linear and concave function
(note that concavity implies the function is continuous). Further we may observe, by concavity,
that if a path Q is optimal for � � �1 and � � �2, then it is optimal for all � � [�1, �2].

The breakpoints, and slopes and intercepts between breakpoints, completely specify a
piecewise linear function. Let Bi � {bi

1, bi
2, bi

3, . . . , bi
�Bi�} denote the ordered breakpoints of

a piecewise linear function fi (i.e., bi
1 
 bi

2 
 . . . 
 bi
�Bi�). Let mi

r denote the slope, and di
r

denote the intercept, between breakpoints bi
r and bi

r�1. In our analysis, � varies from 0 to 1, and
thus the leftmost breakpoint � � 0 and the rightmost breakpoint � � 1 are common to all
functions. Notice that the number of segments in a piecewise linear function fi is equal to �Bi� � 1.

Figure 6. Parametric analysis with linear functions. The (a) minimum of a set of linear functions, (b) sum
of two piecewise linear and concave functions, and (c) minimum of two piecewise linear and concave
functions are all piecewise linear and concave functions.
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The following two lemmas provide the necessary ingredients for the parametric analysis at
OR and AND nodes in the dynamic programming algorithm.

LEMMA 3: The sum of two piecewise linear and concave functions, say fi with breakpoints
Bi, and fj with breakpoints Bj, is also a piecewise linear and concave function. Furthermore, the
number of breakpoints in the resulting function is at most �Bi� � �Bj� � 2, and this summation
can be carried out in �(�Bi� � �Bj�) time.

PROOF: The first part of this lemma follows from observing that a breakpoint of the sum
must be a breakpoint of one of the original functions [this is illustrated in Fig. 6(b)]. Thus, the
number of breakpoints in the resulting function is at most �Bi� � �Bj� � 2 (since the breakpoints
� � 0 and � � 1 are common to both functions). Now, we prove the second part of the lemma.

To obtain the sum fk of two piecewise linear functions fi and fj, we create its ordered set of
breakpoints Bk � Bi � Bj from the ordered lists of breakpoints Bi and Bj. To determine the
slope mk

t and intercept dk
t between breakpoints bk

t and bk
t�1, let bi

r denote the largest breakpoint
in Bi that is less than or equal to bk

t , and bj
s denote the largest breakpoint in Bj that is less than

or equal to bk
t . Then mk

t � mi
r � mj

s, and dk
t � di

r � dj
s.

Since the lists Bi and Bj are sorted, it takes �(�Bi� � �Bj�) time to create the ordered list of
breakpoints Bk. It then takes �(�Bk�) time to determine the slopes and intercepts between these
points, thus the addition of two piecewise linear function takes �(�Bi� � �Bj�) time. �

LEMMA 4: The minimum (lower envelope) of two piecewise linear and concave functions,
say fi with breakpoints Bi, and fj with breakpoints Bj, is also a piecewise linear and concave
function. Furthermore, the number of breakpoints in the lower envelope is at most �Bi� � �Bj�
� 1, and can be determined in �(�Bi� � �Bj�) time.

PROOF: This lemma might not be so readily apparent. However, it follows when one realizes
that a segment in one of the original functions cannot appear at two different locations in the
lower envelope, due to the concavity of the original functions. Figure 6(c) illustrates this
observation. Since the number of segments in the lower envelope is at most the sum of the
number of segments in the two original functions, the total number of breakpoints in the lower
envelope is at most �Bi� � �Bj� � 1.

We now show how the lower envelope of two piecewise linear and concave functions can be
determined in �(�Bi� � �Bj�) time. The algorithm, referred to as a sweep line algorithm, scans
the breakpoints in Bi � Bj in increasing order. In doing so, it stores a left sweeppoint (�ls) and
a right sweeppoint (�rs). Initially, the left sweeppoint is the smallest breakpoint in Bi � Bj and
the right sweeppoint is the second smallest breakpoint in Bi � Bj. Let bi

r denote the largest
breakpoint in Bi that is less than or equal to �ls, and bj

s denote the largest breakpoint in Bj that
is less than or equal to �ls. Let t denote a counter, with t � 1 initially, for the breakpoints Bk

of fk � min{ fi, fj}.
Notice that between the left and right sweeppoints the slope of the piecewise linear functions

fi and fj are unchanged. The algorithm determines at the left sweeppoint, the smaller of the
function values fi(�ls) � mi

r�ls � di
r and fj(�ls) � mj

s�ls � dj
s. For the moment assume that

there is no tie. If the slope of the line with the smaller function value has changed at the left
sweeppoint (i.e., it is different to the left of �ls), then the left sweeppoint is added to Bk by
setting bk

t � �ls and adding it to Bk. It also sets mk
t and dk

t to the slope and intercept of the line
with the smaller function value, and increments t by 1. It then determines the value of � where
the two lines intersect [this is given by �int � (ds

j � dr
i )/(mr

i � ms
j )]. To the left of �int, the
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line with the larger slope is lower, and to the right of �int the line with the smaller slope is lower.
If �int lies strictly between the left sweeppoint and right sweeppoint, then it adds it to the list
of breakpoints Bk by setting bk

t � �int. It also sets mk
t and dk

t to the slope and intercept of the
line with the smaller slope, and increments t by 1. It then makes the right sweeppoint the left
sweeppoint, and makes the next point on the combined list Bi � Bj the right sweeppoint.

If there is a tie between fi(�ls) and fj(�ls), we observe that �ls must be a breakpoint in the
piecewise linear lower envelope. Further, since both lines intersect at the left sweeppoint, the
line with the lower slope must belong to the lower envelope in the interval [�ls, �rs].
Consequently, in the case of a tie, the algorithm sets bk

t � �ls and adds it to Bk. It also sets mk
t

and dk
t to the slope and intercept of the line with the smaller slope, and increments t by 1. It then

makes the right sweeppoint the left sweeppoint, and makes the next point on the combined list
the right sweeppoint.

This procedure continues until the left sweeppoint is 1. Observe that the number of additions,
comparisons, and updates that the algorithm performs between changes in sweeppoints is
bounded by a constant. Since the lists are already sorted it takes �(1) time to find the next
sweeppoint. Therefore, it takes �(�Bi� � �Bj�) time. �

With these results in hand, we are now ready to develop the dynamic programming algorithm
for the parametric shortest path problem.

4.3. Algorithm for Solving the Parametric Shortest Path Problem

The dynamic programming algorithm to solve the parametric problem works using a bot-
tom-up approach on the AND/OR tree. At the leaves of the AND/OR tree the parametric
problem is simple. The cost of the shortest path as a parameter of � is (Ca � Ya)� � Ya for
� � [0, 1], and the path is the arc a corresponding to the leaf node.

From our results in the preceding sections, at an OR node, corresponding to a parallel
composition, we wish to find the minimum of two piecewise linear and concave functions
representing the parametric shortest path for each of the children of the OR node. Lemma 4
shows that this can be done in �(�Bi� � �Bj�) time, where Bi and Bj are the breakpoints of the
two children of the OR node. Similarly, at an AND node we wish to find the sum of two
piecewise linear and concave functions representing the parametric shortest path for each of the
children of the AND node. From Lemma 3 this can be done in �(�Bi� � �Bj�) time. The dynamic
programming equations are identical to Eqs. (10) and (11), except that R(Gi) now represents the
parametric objective function.

We now discuss the running time of the dynamic programming algorithm. Observe that the
number of operations at any node i � � is equal to �(¥j��(i) �Bj�). Therefore, the total number
of operations at nodes at depth k on the AND/OR tree is

�
i�Vk���

�� �
j���i�

�Bj�� � �� �
i�Vk���

�
j���i�

�Bj��
� �� �

j�Vk�1���

�Bj� � �
i�����,i�Vk���

1� ,

where Vk(�) denotes the nodes at depth k on �. Using the recursion between nodes at depth
k and depth k � 1 shown in the above equation, we find
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�
i�Vk���

�� �
j���i�

�Bj�� � ����i : i � ����, i � Vl��� for some l � k	��.

In other words the number of operations at nodes at depth k on the AND/OR tree is bounded
by a constant times the number of leaves at depth k or greater, which is itself bounded by
�(��(�)�). The depth of the tree is bounded by ��(�)�, since the tree has 2��(�)� � 1 nodes, and
each level of the tree, except level 1 which contains the root node, contains at least 2 nodes. This
bounds the running time of the algorithm by �(�A�2). We can now state the result.

THEOREM 1: The parametric shortest path problem on a series-parallel graph with A arcs
can be solved in �(�A�2) time.

So far we have discussed how to obtain the parametric objective function. We now discuss
how to keep track of the parametric shortest paths. It is important to distinguish whether the
product managers are interested in (i) all the parametric solutions or (ii) the set of nondegenerate
parametric solutions (i.e., a minimal set of parametric solutions that contain an optimal solution
for each � � [0, 1]). The distinction is that the latter set does not include any ties. In particular,
in the latter set each solution is the unique optimal solution for some value of � � [0, 1], and
collectively contains a set of solutions such that one of them is optimal for any � � [0, 1].
Usually, in parametric analysis, decision makers are interested in the set of nondegenerate
parametric solutions.

To ascertain the parametric shortest paths, at each OR node i, in the execution of the
algorithm, we keep track of the child (or children in case of ties) that gives the minimum
between the breakpoints Bi of fi. Thus we need �(�Bi�) space at each node i, or �(�A�2) space
over the entire tree, to keep track of the paths. To obtain the shortest path for a particular value
of �, we simply traverse down the tree in a top-down (or breadth first search) fashion, following
the appropriate child indicated by the OR node for the value of � to obtain the shortest path.
Note that this traversal takes �(�A�) time since it is bounded by the number of nodes in the
AND/OR tree.

To obtain the set of all nondegenerate parametric shortest paths, observe that if a path is
optimal for �, such that br

i 
 � 
 br
i�1, where r is the root of the tree, then the path is optimal

for all � � [br
i , br

i�1]. Thus to enumerate a set of nondegenerate parametric solutions we simply
repeat the procedure discussed above for fixed � repeatedly for br

1 
 � 
 br
2, br

2 
 � 

br

3, . . . , br
�Br��1 
 � 
 br

�Br�. In other words, we repeat the procedure �Br� � 1, or, as the
following lemma shows, at most �A� times to find the parametric solutions in �(�A�2) time.

LEMMA 5: The value function for the parametric shortest path problem on a series-parallel
graph has at most �A� � 1 breakpoints.

PROOF: From Lemmas 3 and 4 it follows

�Br� � �
j���r�

�Bj� � 1.

Recursively replacing the expression on the right, we find

�Br� � �
j�����

�Bj� � �
j��
����

1 � 2�A� � ��A� � 1� � �A� � 1. �
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Before we conclude this section we make a few additional observations. In general the set of
all parametric shortest paths (i.e., including ties) on a series-parallel graph may be exponentially
sized [10]. Our arguments have shown that a series-parallel graph contains at most �A�
nondegenerate parametric shortest paths (on general graphs this set may have as many as
�V�log�V� paths). If we are interested in all parametric solutions, then it is possible to modify the
dynamic programming algorithm, by keeping track of all ties, and implicitly store all parametric
shortest paths with �(�A�2) space. Of course, the enumeration of the actual paths may take
exponential time (since the set may be exponentially sized).

Eisner and Severance [5] discuss a technique to find all the nondegenerate parametric
solutions (their technique cannot be applied when we are interested in all parametric solutions).
Their algorithm runs in �(BT) time, where B is the number of breakpoints in the parametric
value function, and T is the running time of algorithm for the nonparametric version of the
problem. As a consequence of Lemma 5, it follows that their approach also takes �(�A�2) for the
parametric optimization problem (using the �(�A�) algorithm for the nonparametric case). We
note, however, that the dynamic programming approach described in this paper explicitly shows
that the number of breakpoints is bounded by �A� � 1.

5. DISCUSSION

This paper has presented a framework for product design that permits the consideration of
multiple objectives at the design stage. The model is general enough to accommodate many
different application settings, and results in network formulations that, in the bicriteria case, can
be efficiently solved via dynamic programming. As part of the solution procedure in this paper,
we also presented a polynomial time algorithm for solving the parametric shortest path problem
on series parallel graphs.

We now discuss some consequences and extensions of our work. In industrial settings cost
sensitivity analysis is quite important. For example, product managers often want to know the
impact of the cost of a component, as this could be used in negotiating contracts with suppliers.
Cost sensitivity analysis involves varying the objective function coefficient of a single variable
in the design problem and observing the change in solution as a function of that parameter. This
is easily modeled as a parametric optimization problem, and thus cost sensitivity analysis is
easily performed under this framework.

While we have considered the bicriteria case in this paper, the AND/OR tree framework can
be used to model multicriteria problems as well. For example, suppose the product manager has
d criteria ( g1(�), g2(�), . . . , gd(�)) under consideration. Then, the problem of finding Pareto
optimal solutions to the multicriteria problem may be modeled (with the usual proviso on linear
utility functions) as a parametric optimization problem with the objective �1g1(�) � �2g2(�)
� . . . � �dgd(�), with the additional constraint ¥i�1

i�d �i � 1. Using the approach of partially
fixing variables outlined in this paper, one obtains a parametric shortest path problem with
multiple parameters (which we refer to as a multiparametric shortest path problem), a signifi-
cantly more complicated problem. By using some more advanced ideas from the field of
computational geometry, specifically, Davenport-Schinzel sequences [22], it is also possible to
solve this multiparametric shortest path problem in polynomial time.

Another extension of our research deals with the economic lot sizing problem, one of the most
fundamental problems in supply chain management, which can be modeled as a network design
problem on a series parallel graph [28]. The dynamic programming procedure described in this
paper can be adapted to derive a polynomial time algorithm to solve parametric network design
problems on series-parallel graphs [20].
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