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Long-distance telephone companies in the United States pay access fees to local telephone companies to
transport calls that originate and terminate on their networks. These charges form the largest portion of the

cost of providing long-distance service. Recent changes in the structure of access rates, which were mandated
by the Federal Communications Commission (FCC), have created opportunities for long-distance companies to
better manage access costs. In this paper, we develop an optimization-based approach to the economic design
of access networks. Our novel solution approach combines stochastic aspects of the problem with a challenging
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savings of hundreds of millions of dollars annually for long-distance companies.
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1. Introduction
As is evident from the fierce price wars of the
1990s and the continued attempts by the Baby Bells
to obtain regulatory approval to offer service, the
long-distance communications industry in the United
States is competitive. In the two decades since the
breakup of the Bell Telephone System, the price of a
long-distance phone call has fallen from more than
$0.32 per minute in 1984 ($0.52 per minute in 2000
dollars) to an average of $0.12 per minute in 2000
(FCC 2001). And there are more than 700 companies
offering long-distance service, all vying to capture a
larger share of the $109 billion market (Lande and
Lynch 2002), dominated by AT&T, WorldCom, and
Sprint.
To compete effectively in the market, particularly

given the difficult economic climate of the past
few years, both large and small companies must
explore every available avenue for reducing operating
expenses. Access charges, which are the fees long-
distance companies pay to local telephone companies
to originate and terminate calls, comprise the largest
portion of a long-distance company’s network oper-
ating expenses. Traditionally, access rates have been
set higher than the actual cost to the local telephone
company as a means of indirectly subsidizing local
phone service. In recent years, as part of its efforts to
open local markets to competition, the FCC adopted
a market-based approach to drive access charges
toward the cost of providing service (FCC 1999). The

resulting changes in the access rate structure have
had two main impacts on the long-distance industry.
One, the per-minute costs for originating and ter-
minating a call have decreased, as a percentage of
revenue, from 35% in 1996 to 25% in 2000. (At the
time of divestiture in 1984, per-minute access charges
accounted for 54% of revenue (FCC 2001).) Two, the
relative price changes among the cost elements for
the two main alternatives for interconnecting with the
local telephone company have created opportunities
for the long-distance companies to achieve additional
savings by optimizing their access strategy. We call
the problem of designing networks that minimize the
access charges paid by a long-distance company to
the local telephone company the long-distance access
network design (LDAND) problem. In this paper,
we develop and test an optimization-based solution
approach for the LDAND problem.
The LDAND problem arises in each of the 184 local

access and transport areas (LATAs) in the U.S. local
telephone companies handle calls within a LATA,
while long-distance companies handle calls between
LATAs. Figure 1 illustrates the key components of
the LDAND problem. (More detailed descriptions
of access networks are available on the websites
of several telephone companies. See, for example,
www.qwest.com.) The LDAND problem involves two
types of nodes: end offices (EOs), labeled A, B, C, D,
and E in Figure 1, and a point of presence (POP).
An EO is a collection point in the local telephone
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Figure 1 Access Network with TST, DTT, and a Hub

POP

Tandem

B

E

CA

D

company’s network for many (hundreds) individual
customers. A long-distance carrier interconnects its
facilities with the local company’s network at a spe-
cially designated node, the POP. Transmission ser-
vices leased from the local telephone company carry
long-distance traffic between the POP and the EO that
serves an individual customer.
Local telephone companies currently offer two

types of transmission service between an EO and a
POP, and they specify the associated charges in a tariff
document filed with the FCC. Table 1 shows a sample
tariff table. With direct trunked transport (DTT), a long-
distance company leases dedicated facilities from the
local telephone company to carry traffic between an
EO and the POP. The long-distance company pays
the local company a monthly fixed charge based on
the type and the length of the facility leased. In Fig-
ure 1, dedicated DTT facilities leased between EO-A
and the POP are represented by the solid line con-
necting the two nodes. With tandem switched transport
(TST), the local company carries traffic on shared cir-
cuits from an EO through a tandem switch to the
POP. The long-distance company pays fees to the local
company based on usage—a per-minute charge for
each minute of traffic carried. In Figure 1, shared TST
circuits between EO-B and the tandem switch are rep-
resented by the dotted line connecting the two nodes.
Each type of transport service favors a differ-

ent traffic pattern. With DTT, a long-distance com-
pany must pay the cost to lease all of a facility’s
capacity regardless of how much traffic is carried.
Consequently, leasing dedicated facilities is generally
cost effective for EOs generating and receiving large
amounts of traffic at a steady rate throughout the

Table 1 Example Tariff Table

Fixed cost ($) Cost per mile ($)

DS1 85�00 20�00
DS3 362�50 81�50
TST (per minute) 0�001849 0�000032
Multiplexer 623�00 —

day. Conversely, with TST, the long-distance company
only pays for the actual traffic carried, so there is no
penalty associated with low utilization. Compared to
the equivalent per-minute cost on a dedicated facility
with high utilization, however, the per-minute charge
for TST is more expensive; therefore, TST is cost effec-
tive for EOs with small amounts of traffic occurring
infrequently throughout the day.
When permitted, the most economical solution is to

lease a combination of the two service types and to
use a “fixed alternate routing” policy (Freeman 1996),
as illustrated for EO-A in Figure 1. Under this strat-
egy, traffic from (to) EO-A would be offered first to the
group of dedicated DTT circuits connecting EO-A and
the POP. Any traffic blocked by the dedicated circuits
would overflow to the shared circuits (dotted line
from EO-A to the tandem switch) and be transported
to (from) the POP via the tandem switch. Determin-
ing the number of dedicated circuits to lease between
each EO and the POP is a dimensioning problem, and
the solution depends on the distribution of the traffic
throughout the day and the costs for DTT and TST.
For access networks, dedicated transmission facil-

ities are available at two standard rates: 1.544 Mbps
and 44.736 Mbps, labeled DS1 and DS3, respectively.
In general, a long-distance company will lease
DS1 facilities for DTT. However, because of strong
economies of scale, DTT costs often can be reduced
by creating hubs. Under a hubbing strategy, each EO
in a cluster is connected by DS1s to a hub node
(which may be the POP). At the hub, their multiple
low-speed DS1 signals are consolidated into a high-
speed DS3 signal. The signals are consolidated using
an electronic device called a multiplexer, which has
the capacity to combine 28 DS1 signals into one DS3
signal. The DS3 signal then is transmitted from the
hub to the POP. In Figure 1, a multiplexer is installed
at EO-D to create a hub. The DS1s from EO-C, EO-D,
and EO-E all are consolidated into a DS3 signal that
connects EO-D to the POP. A second hub would
be located at the POP to multiplex the DS1 facili-
ties leased from EO-A. Determining the best hubbing
strategy requires solving a hub location problem, and
the solution specifies which nodes should be desig-
nated as hubs, how many multiplexers are required at
each hub and how the EO demands should be routed,
either directly to the POP (on DS1s) or via a hub.
The two subproblems of the LDAND problem, the

dimensioning problem and the hub location prob-
lem, require different units of demand. The dimen-
sioning problem deals with traffic demand, expressed
in Erlang units, and considers the variation through-
out the day. The hub location problem works with
the number of circuits leased for DTT at each EO,
which is an output of the dimensioning problem. This
linkage between the two problems suggests a natural



Berger and Raghavan: Long-Distance Access Network Design
Management Science 50(3), pp. 309–325, © 2004 INFORMS 311

two-step solution approach: determine the number of
DS1s to lease between each EO and the POP and
then solve the hub location problem. However, this
approach ignores the fact that the two aspects of the
problem are interdependent. As will be evident, the
best hubbing strategy depends, in part, on the num-
ber of DS1s leased for DTT from each EO, so the
solution of the hub location problem depends on the
solution of the dimensioning problem. In addition,
because the cost of leasing facilities for DTT depends
on the distance between an EO and the hub (or POP)
to which it homes, the appropriate number of DS1s
to lease, which is the solution of the dimensioning
problem, depends on the solution of the hub location
problem. Consequently, our model and solution algo-
rithm must consider the interrelationship between
the dimensioning problem and the hub location
problem.
The rest of this paper is organized as follows. We

conclude §1 with a review of the related literature.
We present our model for the LDAND problem in §2.
In §3, we describe an iterative solution algorithm that
combines the queueing aspects of the dimensioning
problem with an integer program for the hub loca-
tion problem. In §4, we present computational results,
which indicate that our solution approach is effective
in designing low-cost access networks. We provide
concluding remarks in §5.

Related Literature. Broadly defined, local access
networks connect customers to a switching center
that interconnects with a backbone network. In the
associated design problem, demands from multiple
source nodes (EOs) must be routed to a single sink
node (the POP), and link capacities, selected from a
set of standard types, must be assigned. Models for
local access network planning have grown out of the
work in centralized teleprocessing network design of
the 1970s (for example, see Boorstyn and Frank 1977
and McGregor and Shen 1977). The survey papers
by Gavish (1991) and Balakrishnan et al. (1991) pro-
vide a good introduction to the practical issues and
the modeling aspects of local access network design.
Researchers have studied several variations of the
local access network design problem, with the major
differences arising from assumptions on the topology
of the underlying physical network, the treatment
of existing facilities, and the structure of the facil-
ity costs. Balakrishnan et al. (1991) develop a general
framework based on a layered network representa-
tion that encompasses a broad range of the single-
period planning models that have been discussed in
the literature.
Early work restricted the access network to a

tree structure. Only recently have researchers studied
access networks with no restrictions on the underly-
ing physical network. Sherali et al. (2000) model an

access network hub location problem that includes
multiplexer installation costs with a discrete nonlinear
function. The authors apply the reformulation-
linearization technique to develop two stronger for-
mulations and design a heuristic that combines
an exact solution procedure and a Lagrangian
dual-based heuristic. They conduct computational
experiments on 80 instances generated using simu-
lated and real data. The hybrid solution approach
finds an optimal solution for 70 of the 80 problems
and solutions within 2.6% of the best known for the
remaining 10.
The local access network design problem is a spe-

cial case of the more general network design problem
studied by Salman et al. (2001). The authors propose
a branch-and-bound technique called search by objec-
tive relaxation (SOR) to solve problems where capac-
ity is installed in discrete quantities and the associated
cost function exhibits economies of scale. The algo-
rithm is based on solving relaxations that are obtained
by approximating the noncontinuous function by its
convex envelope. For randomly generated test prob-
lems, the SOR method solves to optimality problems
with 10 nodes and is effective in reducing the inte-
grality gap for problems with 20 and 30 nodes.
Frantzeskakis and Luss (1999) describe a capacity

expansion model with the additional complexity that
the embedded network may be rearranged. That is,
demand may be rerouted and existing facilities may
be disconnected or used differently at a cost. The
authors formulate the problem as a network flow
problem and develop a heuristic to solve it. Compu-
tational results on eight realistic test networks, rang-
ing in size from 38 to 89 locations, indicate that the
heuristic quickly finds solutions within 0% to 7.6% of
optimality. The authors find that there is substantial
benefit in allowing demand rearrangement; network
costs are 7% to 39% higher when no rearrangement is
allowed.
Sherali et al. (2000) and Salman et al. (2001) consid-

ered the design of new networks, while Frantzeskakis
and Luss (1999) studied capacity expansion. For these
three papers, and for the general network design lit-
erature, an underlying assumption is that demand is
expressed in (discrete) units of circuits. In contrast,
our assumption is that demand is expressed in Erlang
units, which is typical for voice traffic and, hence,
our work must consider the interaction between the
queueing problem and the facility location problem.
We believe that including the interaction between the
two components more accurately models the long-
distance access network design problem and provides
the potential to telecommunications planners for even
greater costs savings.
The contributions of this work to the literature are

twofold. First, for a competitive industry where it is
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critical to reduce costs to be profitable, we describe
a methodology to significantly lower the access costs
paid by a long-distance company. And second, we
explicitly consider the interaction between the queue-
ing (or dimensioning) problem and the facility loca-
tion problem, an approach that, to our knowledge, is
novel to the literature.

2. Problem Formulation
In this section, we present the formulation of the
LDAND problem. To begin, we describe how we
model the fixed alternate routing policy as a queue-
ing system and how we simultaneously consider the
dimensioning and the hub location aspects of the
problem in our model.

2.1. Preliminaries
Traffic intensity, a common measure of network
demand expressed in Erlangs, is defined as the prod-
uct of the number of calls during a 1-hour period
and the average duration of a call. Although traffic
intensity varies from hour to hour, networks typically
are analyzed in terms of the average activity (traffic
intensity) during the busiest hour of the day, called
the busy hour. However, because using only the busy
hour can result in overdimensioning of the network
resources, we incorporate the hour to hour variability
in the LDAND problem. To do so, we assume that,
for each EO i ∈ N (where N denotes the set of EOs),
we are given ait , the traffic intensity in Erlangs during
time t, where t = 1��T .1
For the dimensioning aspect of the LDAND prob-

lem, we can use a simple overflow model to describe
the relationship between the number of DS1s leased
at an EO and the number of minutes that are trans-
ported through the tandem under a fixed alternate
routing policy. We assume that customer arrivals (i.e.,
call arrivals) to an EO i follow a Poisson process and
are offered first to a primary server group of size s,
which is the group of s DTT circuits leased for EO i.
Customers who find all servers busy in the primary
group overflow to an infinite server overflow group,
which is the group of shared TST circuits. The prob-
ability that all s primary servers are busy, or equiva-
lently the proportion of arriving customers who find
all s primary servers busy, is given by the Erlang B
formula

B	s
 a�= as/s!∑s
k=0	ak/k!�




where a is the offered load in Erlangs.

1 The day can be broken up into any number of time periods. It is
common in the industry to break it up into hours. Equation (1) can
be modified easily if the lengths of the time periods are unequal.

For conventional voice traffic, the size of the server
group is measured in terms of 64 kbps voice circuits
called DS0. In our model, the DTT circuits will be
DS1 facilities, so we must adjust the formula. Then,
B	24si
 ait� gives the proportion of the offered load ait
that overflows the group of si DS1s at EO i (i ∈ N )
during time period t = 1��T . Multiplying B	24si
 ait�
by the offered load ait gives the portion of the offered
load in Erlangs that overflows to the shared TST cir-
cuits. To convert this value to minutes, we multiply by
the length (in minutes) of period t, denoted lt . Here,
lt = 60.
To compute the total number of minutes during the

day that are transported using TST, we compute and
sum the number of minutes that overflow during each
hour of the day. Finally, to get the total number of
minutes that overflows for the month, we multiply by
the number of days in a month, D. Therefore, for EO
i ∈ N , the total number of minutes in a month that
overflows the DTT group of si circuits, denoted mi, is
given by the following equation:

mi =D
T∑
t=1
ltaitB	24si
 ait�� (1)

Equation (1) describes the nonlinear relationship
between the number of DS1s leased for DTT and
the number of minutes of traffic that are transported
through the tandem switch under a fixed alternate
routing scheme. Next, we incorporate this nonlinear
relationship characterizing the dimensioning problem
into the formulation of the hub location problem.

2.2. Formulation
Given the offered load in Erlangs during each time
interval of the day for each EO and all of the com-
ponent costs for DTT and TST, the objective of the
LDAND problem is to determine the number of DS1s
to lease for DTT at each EO, which EOs should be des-
ignated as hubs, how many multiplexers are required
at each hub and how the EO demands should be
routed in such a way as to minimize the total cost of
access. To manage the complexity of their networks,
long-distance companies often limit the number of
hubs to which an EO can home (send traffic to). Let G
be a graph with node set �N = N ∪ POP. Let H ⊆ �N
denote the set of candidate hub locations. Next, we
define the parameters and decision variables.

Parameters
cij = monthly cost of leasing 1 DS1 between EO i

and hub j , ∀i ∈N , ∀j ∈H
bj =monthly cost of leasing 1 DS3 between hub j

and the POP, ∀j ∈H
ki = cost per minute of TST from EO i to the POP

via the tandem, ∀i ∈N
T = number of time intervals per day



Berger and Raghavan: Long-Distance Access Network Design
Management Science 50(3), pp. 309–325, © 2004 INFORMS 313

D= number of days per month
ait = offered load in Erlangs at EO i during time

interval t, ∀i ∈N , ∀t = 1��T
lt = length (in minutes) of time period t, ∀t = 1��T
e = limit on the number of hubs to which an EO

can home.

Decision Variables
si = total number of DS1s leased for DTT at EO i,

∀i ∈N
mi =monthly minutes of TST from EO i, ∀i ∈N
xij = number of DS1s leased between EO i and

hub j , ∀i ∈N , j ∈H
yij = 1 if EO i homes to hub j and 0 otherwise,

∀i ∈N , ∀j ∈H
uj = number of DS3s required between hub j and

the POP, ∀j ∈H .
Minimize

∑
j∈H
bjuj +

∑
i∈N

∑
j∈H
cijxij +

∑
i∈N
kimi (2)

subject to D
T∑
t=1
ltaitB	24si
 ait�=mi ∀i ∈N (3)

∑
j∈H
xij = si ∀i ∈N (4)

∑
i∈N
xij − 28uj ≤ 0 ∀j ∈H (5)

∑
j∈H
yij ≤ e ∀i ∈N (6)

xij − siyij ≤ 0 ∀i ∈N
 ∀j ∈H (7)

xij ∈Z+ ∀i ∈N
 j ∈H (8)

yij ∈ �0
1� ∀i ∈N
 j ∈H (9)

uj ∈Z+ ∀j ∈H (10)

si ∈Z+ ∀i ∈N� (11)

In this formulation, the objective function (2) seeks
to minimize the sum of the DS3 facility costs (includ-
ing the multiplexer costs), the DS1 facility costs, and
the TST usage costs. This represents the amount paid
monthly by the long-distance company to the local
telephone company for access. Constraints (3), devel-
oped in §2.1, model the fixed alternate routing policy
and express the relationship between the number of
DTT circuits at an EO and the resulting traffic over-
flow to the tandem switch. Constraints (4) specify that
all DS1s leased for DTT must home to a hub loca-
tion (which may be the POP). Constraints (5) express
the multiplexer capacity constraints; each DS3 facility
can carry at most 28 DS1 facilities. (Note that the
formulation is easily modified to accommodate other
multiplexing relationships and technologies.) Cons-
traints (6) limit the number of hubs to which an
EO can home to the maximum value e, which typ-
ically is set to 2 or 3 by a long-distance company.

Constraints (7) link each xij variable to a yij variable;
for EO i, the number of DS1s homed to hub j must
be no more than the total number of DS1s for EO i if
hub j is selected and 0 if hub j is not selected. Cons-
traints (8)–(11) restrict the decision variables xij , uj ,
and si to nonnegative integer values and yij to binary
values.

2.3. Solving the LDAND Problem
As presented, the formulation of the LDAND prob-
lem is a mixed integer program with a set of nonlinear
constraints (3). (Constraint (7) also is nonlinear but is
easily made linear by replacing si by a suitably large
constant.) Replacing the mi variables in the objec-
tive function with the left-hand side of constraints (3)
yields an equivalent formulation, an integer program
with linear constraints and a nonlinear objective func-
tion. In this section, we describe how to linearize the
objective function, thereby obtaining an integer lin-
ear program, which can be solved using standard
techniques.
Let sMAXi be an upper bound on the number of DS1s

leased at EO i. Let Li be the TST cost for EO i when
there are no DS1s at EO i. Define sji as a binary vari-
able that is 1 if j or more DS1s are leased at EO i and 0
otherwise. Thus, sji represents the jth DS1 leased at
EO i. Let kji represent the decrease in the TST costs
due to the addition of the jth DTT DS1 at EO i.
In other words, kji = kiD

∑T
t=1 ltait�B	24	j − 1�
 ait� −

B	24j
 ait��. Then, the term Li −
∑sMAXi
j=1 kjisji replaces

the kimi term. Adding two sets of constraints, (12)
and (13), and slightly modifying constraints (7),
gives the following integer linear programming
formulation.

Minimize
∑
j∈H
bjuj +

∑
i∈N

∑
j∈H
cijxij +

∑
i∈N

(
Li−

sMAXi∑
j=1
kjisji

)

subject to (4), (5), (6), (8), (9), (10), and (11)

sji ≤ sj−1
 i for j = 2��sMAXi 
 ∀i ∈N (12)
sMAXi∑
j=1
sji = si ∀i ∈N (13)

xij − sMAXi yij ≤ 0 ∀i ∈N
 ∀j ∈H
sji ∈ �0
1� for j = 1��sMAXi 
 ∀i ∈N�

To apply standard integer programming solution
techniques, we need to precompute the kji values for
every feasible number j of DTT DS1s at each EO i.
Further, we must introduce sMAXi additional binary
variables for each EO i. An upper bound on sMAXi can
be obtained by determining the cost of a DS1 from
EO i to its closest permissible hub (including EO i)
and calculating the smallest j for which kji is less
than or equal to this cost (see the appendix). Con-
sequently, the size of the formulation grows quite
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rapidly with the number of EOs and traffic (as sMAXi
increases with traffic); specifically, the integer linear
program has an additional

∑
i∈N sMAXi binary variables

and constraints. As a result, solving the problem is
extremely difficult. For all but the smallest problems,
a state of the art mixed integer programming solver
like CPLEX runs out of memory or requires more than
24 hours of CPU time. Given that this problem needs
to be solved for each of the 184 LATAs, typically on a
quarterly basis, this approach is not computationally
viable for long-distance companies. In the next sec-
tion, we present a computationally viable approach
for solving the LDAND problem—a three-phase iter-
ative solution algorithm that provides high-quality
solutions.

3. Algorithm
The nonlinear term in the objective function makes
solving the LDAND problem difficult, even with the
linearization technique. Suppose, however, that we
knew the optimal values of the si variables for all EOs
i ∈N ; then, the nonlinear term would reduce to a con-
stant value, leaving an integer linear programming
problem. This observation motivates the development
of our iterative solution algorithm.
To begin, we use a greedy algorithm to compute an

initial number of DTT DS1s for each EO. The greedy
algorithm assumes that each EO homes to the POP
and evaluates the tradeoff between the cost of DS1s
and the cost of TST. Next, with the DS1 values fixed,
we solve an integer programming problem to deter-
mine an optimal hubbing strategy. Once we know the
hub locations, it may be possible to decrease the total
cost by adjusting the number of DS1s at an EO. This
is true because (1) the initial value of DS1s was deter-
mined assuming the POP as the hub and now the
hub(s) to which an EO can be assigned may be closer
than the POP and (2) there may be some DS3s that
are carrying fewer than 28 DS1s and, hence, could
transport additional DS1s for “free.” To determine the
set of adjustments that will maximize the decrease in
the total cost, we formulate and solve a network flow
problem. If the network flow problem adjusts any of
the DS1 values, we re-solve the hub location problem.
The algorithm iterates between solving the hub loca-
tion problem and the network flow problem until no
changes are made. The iteration between the two opti-
mization problems is the key feature of the algorithm
that captures the interrelationship between the dimen-
sioning and the hub location aspects of the LDAND
problem. In the following sections, we discuss each
step in detail.

3.1. Greedy Algorithm to Determine Initial
DS1 Values

The first step of the algorithm, which considers each
EO individually, determines an initial number of DS1s

to lease for DTT at each location. The essential idea of
this step is, starting from zero, to increase the num-
ber of DS1s connecting an EO and the POP until the
cost of adding a DS1 is greater than the corresponding
decrease in TST costs.
As in §2, for each EO i ∈ N , we let si denote the

number of DS1s leased for DTT. (Recall these DS1s
form the primary server group). Let ciPOP denote the
cost of leasing one DS1 between EO i and the POP,
mi	si� denote the total monthly minutes that overflow
the primary server group of size si DS1s at EO i (and
that are carried as TST) and ki denote the cost per
minute of TST from EO i. Then, the algorithm for
determining an initial value for the number of DTT
DS1s is as follows.

ALGORITHM Initial Values.
For each EO i ∈N ,
0. Set si to 0 and compute ciPOP and mi	si�.
1. Compute mi	si+ 1�.
2. If ciPOP < ki�mi	si� − mi	si + 1��, then increment si
and go to 1. Otherwise, stop with a primary server
group size of si.

END OF Initial Values.

At each iteration, the greedy algorithm examines
whether increasing the number of DS1s by one results
in a decrease in the TST costs that is larger in value
than the cost of a DS1. Initially, the TST costs for EO i
are kimi	0�. After adding one DS1, the TST costs for
EO i are kimi	1�, so the decrease is ki�mi	0�−mi	1��.
If the cost of a DS1, ciPOP, is less than the decrease
in the TST costs, the algorithm adds one DS1. The
algorithm continues adding DS1s until the decrease
in TST costs is smaller than the cost of a DS1. Notice
that ciPOP is constant, while ki�mi	si�−mi	si + 1�� may
change during the course of the algorithm.
To establish the correctness of the greedy algorithm,

we must show that the change in TST costs is mono-
tonically decreasing. In showing this result, we use
the convexity property of the Erlang B formula (see
Messerli 1972). The property, which is a commonly
accepted fact that is basic to the process of economic
alternate routing in traffic engineering, states that, for
a server group with sequential assignment of offered
calls, the load carried on the last server is monotoni-
cally decreasing with the number of trunks.

Theorem 1 (Messerli 1972). The sequence a1, a2
 � � � ,
where ai = a�B	i − 1
 a�− B	i
 a�� satisfies a1 > a2 > · · ·
for any positive load a.

Because we are working with DS1s, we need a mod-
ified version of this result. From Theorem 1, it follows
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that B	t− 1
 a�− B	t
 a� > B	u− 1
 a�− B	u
a� for any
t < u. Therefore, for any k,

t+k∑
j=t
	B	 j − 1
 a�−B	 j
 a�� >

u+k∑
j=u
	B	 j − 1
 a�−B	 j
 a��

for t < u�

Cancelling terms and substituting t = "	i−1�+1, u=
"i+ 1, and k= "− 1, we obtain

B	"	i− 1�
 a�−B	"i
 a� > B	"i
 a�−B	"	i+ 1�
 a�
for "> 0 and integer� (14)

For " = 24, Equation (14) shows that, when traffic
is offered sequentially to the server group, the load
carried on the ith DS1 is monotonically decreasing.
From Equations (1) and (14), it follows that mi	si�−
mi	si + 1� is monotonically decreasing, which is the
desired result.
Since the cost of leasing a DS1 is a function of dis-

tance (see Table 1), the value of ciPOP is a function of
the distance between EO i and the POP. Hence, from
Step 2 of Initial Values, the number of DS1s to lease
at EO i depends on the distance from EO i to the
POP. It follows that, for two EOs with identical traffic
patterns, the algorithm will assign a greater or equal
number of DS1s to the EO that is closer to the POP
than to the EO that is further away.

Running Time of Initial Values. Each pass of the
algorithm requires O	1� time. For each EO i ∈ N ,
the algorithm performs si + 1 passes through the
algorithm, where si is the number of DTT DS1s that
prove in. Therefore, the total number of steps is
O	

∑
i∈N si + �N ��. The running time is linear in the

number of DS1s that are added, so the algorithm is
pseudopolynomial.

3.2. Integer Programming Model for the Hub
Location Problem

Given a value for the number of DS1s leased at each
EO, the second step of the algorithm determines a
hubbing strategy by solving a hub location prob-
lem. The objective is to determine which EOs should
be designated as hubs, how many multiplexers are
required at each hub, and how the DS1s connecting
each EO and the POP should be routed in such a way
as to minimize the total cost of DS1 facilities and DS3
facilities (including multiplexers).

3.2.1. Initial Formulation. In the hub location
problem, the si values are known, so the correspond-
ing mi values can be computed. Therefore, the non-
linear term of the objective function (

∑
i∈N kimi) of the

integer program presented in §2.2 becomes a constant
and can be removed from the formulation. Hence, we

can write the formulation of the hub location problem
as follows:

(HLP) Minimize
∑
j∈H
bjuj +

∑
i∈N

∑
j∈H
cijxij

subject to (4), (5), (6), (7), (8), (9), and (10)�

Our formulation HLP bears some resemblance to
the LAN formulation of Sherali et al. (2000) for the
LATA network design problem. There are a num-
ber of differences, however. First, Sherali et al. (2000)
view the POP node as a facility with unlimited capac-
ity, whereas we view the POP node as a candidate
hub and as such require the model to determine its
multiplexer requirements. (The cost of the multiplex-
ers required at the POP is included in the objec-
tive function.) Second, the two formulations handle
the hubbing restrictions entirely differently. Sherali
et al. (2000) do not limit the number of hubs to
which an EO can home but do impose a lower and
an upper bound on the total number of multiplex-
ers allowed. Their objective function then includes a
cost for installing the facilities, which is a function
of the total number of facilities. In the HLP formula-
tion, motivated by our industry experience, we limit
the number of hubs to which an EO can home. An
additional restriction on the total number of facilities
allowed and a corresponding term in the objective
function easily can be included but are not necessary
in our application.

3.2.2. Analysis of HLP. In this section, we study
the underlying structure of the HLP formulation
and identify several characteristics of the model that
impact the solution algorithm.

Strengthening the LP Relaxation. As formulated,
the objective function value of the LP relaxation pro-
vides a weak bound on the optimal (integer) objective
function value of HLP. For the set of 70 test problems
(which will be described in §4), the value of the LP
relaxation is in the range of 34.9% to 75% of the opti-
mal integer value and averages 57.4%. To strengthen
the LP relaxation of HLP, we add the following set of
constraints:

yij −uj ≤ 0
 ∀i ∈N
 ∀j ∈H� (15)

These constraints specify that if DS1s from EO i
home to hub j , then there must be at least one DS3
connecting hub j and the POP. Adding these con-
straints dramatically improves the bound provided by
the LP relaxation. For the same set of test problems,
the value of the LP relaxation is in the range of 98.4%
to 100% of the optimal integer value and averages
99.7%.
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Relaxing the Integrality on the xij Variables. Since
xij represents the number of DS1s from EO i that
home to hub j , we restrict the xij variables to non-
negative integer values in HLP. Although we allow a
group of DS1s to be split among multiple hubs, each
individual DS1 must be considered as a discrete indi-
visible unit. Due to the structure of HLP, however, we
can relax the integrality restriction on the xij variables
and still obtain integer-valued solutions. To prove the
claim, we show that the xij constraint matrix is totally
unimodular.
Consider HLP. If yij ∈ �0
1� and uj ∈ Z+, then let

A denote the xij constraint matrix comprised of the
following rows:

∑
j∈H
xij = si ∀i ∈N 	4�

∑
i∈N
xij ≤ 28uj ∀j ∈H 	5�

xij ≤ siyij ∀i ∈N
 ∀j ∈H� 	7�

By Proposition 2.1 of Nemhauser and Wolsey (1999,
p. 540), we can ignore the unit rows of the matrix, i.e.,
constraints (7). Observe that, in the remaining matrix,
each column has exactly two nonzero elements. Let
Q1 and Q2 denote a partition of A in which Q1 con-
tains the rows corresponding to constraints (4) and Q2
contains the rows corresponding to the constraints (5).
Then, by Corollary 2.8 (Nemhauser and Wolsey 1999,
p. 544), the matrix is totally unimodular. Since the xij
constraint matrix is totally unimodular, the extreme
points of the linear program Ax ≤ b are integral for
all integral right-hand side (RHS) vectors b. The RHS
of (4), (5), and (7) are integer when yij ∈ �0
1� and
uj ∈Z+, which gives the desired result.
An interesting consequence of the total unimod-

ularity of the xij constraint matrix is that we can
develop an equivalent formulation (as in Sherali et al.
2000) in which we let Xij denote the fraction of the
DS1s from EO i that home to hub j . Then, we can
write the following formulation:

	HLP� Minimize
∑
j∈H
bjuj +

∑
i∈N

∑
j∈H
cij siXij

subject to (6), (9), and (10)∑
j∈H
Xij = 1 ∀i ∈N

∑
i∈N
siXij − 28uj ≤ 0 ∀j ∈H

Xij − yij ≤ 0 ∀i ∈N
 ∀j ∈H
Xij ≥ 0 ∀i ∈N
 j ∈H�

Notice that we can obtain this formulation by
setting Xij = xij/si and substituting for xij in HLP.
In terms of the continuous variables, xij , these two

formulations are equivalent, because we have shown
that the xij variables in HLP do not need to be
restricted to integers.

Comparison to Capacitated Facility Location Prob-
lem (CFLP). In its equivalent form shown above, the
resemblance between our facility location problem
and the well-known CFLP is more noticeable. There
are two major differences, however. First, there are no
hubbing restrictions in the CFLP; demand can be split
among any number of locations. In HLP, demand can
be split, but there are restrictions on the number of
hubs. (The hubbing restrictions require the introduc-
tion of the yij variables, which are not necessary in
CFLP.) Second, in CFLP, the facility location variable
(uj ) is binary; at any location, at most, one “bundle”
of capacity is available. In HLP, the variable uj is inte-
ger; at any location, multiple bundles of capacity may
be available.
These two differences affect the form of the con-

straints used to strengthen the LP relaxation. The
strong formulation of CFLP includes the set of facet
defining constraints Xij ≤ uj , ∀i ∈ N , ∀j ∈H , whereas
HLP (or HLP) includes the set of constraints yij ≤ uj ,
∀i ∈N , ∀j ∈H . Both specify that there must be at least
one “facility” at location j when demand from loca-
tion i is assigned to j . For HLP (or HLP), yij ≤ uj is
preferred since that automatically specifies the con-
dition xij ≤ siuj (Xij ≤ uj in HLP) and adds an addi-
tional restriction. The running times of HLP and HLP
are comparable, so either formulation can be used. In
our computational experiments, we use HLP because
specifying the number of DS1s that home to a partic-
ular hub is more natural in the context of our appli-
cation than specifying the fraction of DS1s.

3.3. Modifying the DS1 Values: Packing
Algorithm

At the completion of the first two steps, the algorithm
has determined initial values for the number of DS1s
to lease at each EO and has specified a hubbing strat-
egy. In the solution of the hub location problem, there
may be a DS3 leased between a hub and the POP that
is not fully utilized (i.e., packed with fewer than 28
DS1s). If so, it may be possible to decrease the overall
cost by increasing the number of DTT DS1s from one
or more of the EOs that can send traffic to that hub,
because, in effect, we already have paid for the DS3.
To determine the best adjustments to the DS1 val-

ues that reduce the overall access costs, we would like
to solve the following problem. Given the hub loca-
tions, the number of DS3 facilities at each hub location
and any restrictions on hubbing requirements for each
EO, determine the number and assignment of DS1s
for each EO to minimize the sum of the DTT and TST
costs. We now describe how to model this problem
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Figure 2 Modeling the Packing Problem as a Convex Cost Flow Problem on a Bipartite Graph
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as a convex cost network flow problem on a bipartite
graph. First, we ignore the constraint limiting an EO
to be assigned to e or fewer hub nodes.

3.3.1. Network Flow Problem. To construct the
bipartite graph as shown in Figure 2, we begin by cre-
ating two sets of nodes. Set N = �1
2
 � � � 
n� contains
one node for each EO, and set H = �1
2
 � � � 
 h� con-
tains one node for each EO at which we have located
a hub. We create a set of arcs from the EOs (N ) to
hubs (H ), creating an arc from EO i to hub location j
if connecting EO i to hub location j is permitted. The
cost of this arc is denoted by cij and is set equal to
the cost of leasing a DS1 between EO i and hub loca-
tion j . The capacity of this arc is �. Next, we create a
sink node and connect each hub location node to the
sink node with a directed arc from the hub location
to the sink node. For each arc from a hub location j to
the sink node, the cost of the arc is 0, and the capac-
ity of the arc is equal to the capacity of the hub (i.e.,
the number of DS1s of traffic it can accommodate).
Finally, we create a source node and connect it to each
EO location i. For each arc from the source node to an
EO i, the cost of the arc is denoted by c0i	f0i� and is
equal to the change in the TST costs that results when
f0i DS1s are leased for DTT at EO i. In other words,
c0i	f0i�= ki�mi	f0i�−mi	0��. (The flow requirements for
this cost function are integer.)
Observe that the cost function c0i	f0i� takes on neg-

ative values and is a (piecewise linear) convex cost
function if we apply linear interpolation between two
points within the integer flow bounds. Therefore,
finding an optimal solution to the packing problem
is equivalent to solving a convex cost flow problem
with a piecewise linear convex cost function.
As described in Ahuja et al. (1993, pp. 551–556), we

can transform this problem into a minimum cost flow

problem and solve it using a successive shortest path
algorithm in the absence of negative cost cycles. The
bipartite network in Figure 2 is acyclic (and, thus, con-
tains no negative cost cycle), so the successive shortest
paths algorithm may be applied.
The successive shortest path algorithm for mini-

mum cost flows (see Ahuja et al. 1993, p. 320) finds a
minimum cost path from a source node (supply node)
to a sink node (demand node) and sends as much
flow as possible along the path. After augmenting the
flow, the algorithm updates the residual network.2 This
process of finding a shortest path, augmenting flow,
and updating the residual network continues until all
of the flow has been sent from the source nodes to the
sink nodes.
Next, we describe how the successive shortest path

algorithm can be applied in the context of solving
the packing problem. To transform the convex cost
flow problem into a minimum cost flow problem,
we expand the underlying network by replacing each
single arc connecting the source node to EO i, denoted
	0
 i�, with multiple copies of the arc, 	0
 i�1
 	0
 i�2,
	0
 i�3
 � � � � Each arc 	0
 i�l has a capacity of one unit
and a cost equal to ki�mi	l� − mi	l − 1��. Since the
capacity of each arc 	0
 i�l is one, the successive
shortest path algorithm will send one unit of flow on
the minimum cost path from the source to the sink.
This observation permits us to maintain a single copy
of the arc 	0
 i� in the network instead of multiple
copies. As the algorithm progresses, the cost of the arc
is changed to reflect the cost of the appropriate copy

2 Recall the residual network is created by replacing an arc 	i
 j�
carrying fij units of flow with capacity uij and cost cij by two arcs—
a forward arc 	i
 j� with capacity uij − fij and cost cij and a reverse
arc 	j
 i� with capacity fij and cost −cij .
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of arc 	0
 i� that should be used in any flow augmen-
tation step.
Because there are no negative cost cycles in the net-

work, the shortest path from the source to the sink
in the residual network will not include reverse arcs
into the source node or reverse arcs out of the sink
node. Consequently, we need not construct these arcs
in the residual network. Additionally, because each
flow augmentation is one unit, we do not need to
keep track of the capacity of the reverse arcs from the
hub location nodes to the EO nodes in the residual
network; if the reverse arc is in the residual network,
it will have a capacity of at least one. Finally, when
the algorithm determines that the shortest path from
the source to the sink contains only the arc from the
source to the sink with a cost of zero, the implica-
tion is that no additional savings can be obtained by
increasing the number of DS1s at an EO. Therefore,
we can stop the algorithm and conclude that we have
solved the packing problem for the DS1 values and
the hub assignments.
The following algorithm more formally describes

how to solve the packing problem.

ALGORITHM Packing.
0. Set all flow variables to 0.
1. Set costs of arcs from source node to EO i equal to
c0i	f0i+1� − c0i	f0i�. (This represents the change in
TST cost for additional DS1s, which is negative.)

2. Find shortest path from source node to sink node
in the residual graph (use cost defined in step 1 for
cost on arcs 	0
 i�).

3. If cost of shortest path is negative, augment one
unit of flow on shortest path.

4. Update residual network and costs of arcs defined
in step 1. The residual graph is obtained by creating
a reverse arc 	j
 i� for every forward arc 	i
 j� with
positive flow. The cost of the reverse arc 	j
 i� is −cij
and its capacity is equal to the flow on arc 	i
 j�.

5. Repeat Steps 1–4 until we find a shortest path from
source to sink with nonnegative cost (indicates no
more savings associated with moving TST to DTT
with current hubbing arrangement).

END OF Packing.

At the conclusion of Packing, the flow variables f0i
specify the total number of DS1s to lease at EO i,
while flow variables fij specify the number of DS1s
from EO i assigned to hub location j .

Running Time of Packing. The number of aug-
mentations is bounded by the total hub capacity,
which we denote by TOTHUBCAP. Each augmenta-
tion requires finding a shortest path on a bipartite
graph, which takes O	nh + 	n + h� log	n + h�� time.
Therefore, the total running time is O	TOTHUBCAP ·
	nh+ 	n+h� log	n+h���, which is pseudopolynomial.

Before we discuss how to deal with the hubbing
restrictions, we observe that Step 1, Initial Values, also
may be interpreted as a special case of Packing. In this
case, the POP is the only hub with unlimited capacity.

3.4. Hubbing Restrictions and Iterative
Algorithm for LDAND Problem

In this section, we describe how the packing algo-
rithm incorporates the constraint that an EO be
assigned to at most e hubs. In the network flow prob-
lem, this constraint corresponds to ensuring that there
are no more than e arcs out of an EO with positive
flow. This may be viewed as a “degree” constraint on
the EO nodes N in the bipartite graph. In the case
that e = 1 or e = 3, we can show that the minimum
cost flow problem with degree constraints on nodes
is ��-hard (see appendix). We strongly suspect the
problem is ��-hard when e is fixed; consequently, we
develop two heuristics to deal with this constraint. We
describe these heuristics, H1 and H2, in conjunction
with the iterative algorithm for LDAND problem.

Heuristic 1 (H1). Our first heuristic, called H1,
combines the procedures described in the three pre-
vious sections in an iterative algorithm as follows. It
begins with Step 1 the greedy algorithm Initial Values,
to determine an initial value for the number of DS1s
at each EO. Next, the algorithm solves Step 2, the hub
location problem, to find an optimal hubbing strategy.
Note, the hub location problem includes only EOs
with DS1 values strictly greater than zero. For Step 3,
Packing, the bipartite graph is constructed according
to the solution of Step 2: an arc is created from EO i
to hub location j only if yij = 1, which automatically
ensures that the degree constraints are satisfied. If
packing the DS3 facilities reduces the cost of the solu-
tion, the algorithm returns to Step 2, re-solves the hub
location problem with the new demands and follows
to Step 3 as described above. Otherwise, the algorithm
stops with a solution for the LDAND problem.

Heuristic 2 (H2). Our second heuristic, called H2,
applies Steps 1 and 2 as described above and iter-
ates between the hub location problem and network
flow problem just as H1. However, Step 3 is modified
to consider sequentially three variants of the network
flow problem.

Step 3a (Unconstrained Packing). Create the bipar-
tite network without restricting the connections
between EOs and hubs—the network includes an arc
from each EO to each hub. Apply Packing. If the
solution satisfies the degree constraints, it is optimal
for the network flow problem with the degree restric-
tions. Report the solution and exit. Otherwise, go to
Step 3b.
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Step 3b (Heuristic Packing). Create the bipartite
network as in Step 3a, but apply a modified packing
algorithm, as a heuristic, to obtain solutions that sat-
isfy the degree requirements. If the solution does not
increase the access costs, report it and exit. Otherwise,
go to Step 3c. The modified packing algorithm attempts
to find the shortest path from source to sink that does
not cause a violation of the degree constraints when
flow is augmented along the path. If an EO node
has exactly e arcs with positive flow out of it, we do
not consider any of the (forward) arcs with zero flow
out of that node while searching for the shortest path
from the source to the sink. With this change, it is pos-
sible for the residual network to have a negative cost
cycle (indicating that the cost of the solution can be
improved by sending a unit of flow around the cycle,
i.e., reassigning some of the DS1s). Consequently, we
use a label correcting algorithm for the shortest path
problem (modified as discussed above) to find a path
whose augmentation does not cause a violation of the
degree constraint or to detect and identify a negative
cost cycle if present. If a negative cost cycle is found,
we augment one unit of flow around it, and if a neg-
ative cost path is found, we augment flow on it.

Step 3c (Restricted Packing). Create the bipartite
network according to the solution of Step 2 as in H1.
Apply Packing and report the solution.
In H1, observe that any EO with no DTT DS1s

after Initial Values will have no DTT DS1s for the
entire algorithm. Therefore, H1 cannot accommodate
the possibility that once hubs are located at nodes
other than the POP, DS1s may become economical for
EOs that had no DTT in Step 1. H2 accommodates
this possibility and considers all EOs as candidates for
DTT in Step 3. Consequently, we expect the quality of
solutions produced by H2 to be better than H1. Both
algorithms H1 and H2 converge finitely, as the total
cost of the solution (DTT costs+TST costs) monoton-
ically decreases in each iteration.

4. Computational Results
In this section, we report on the computational exper-
iments conducted to test the effectiveness of our
algorithms. The implementation uses the CPLEX 7.1
Callable Library to solve the hub location problem
in Step 2. All experiments were conducted on a Sun
Blade 1
000 workstation with two 750-MHz Ultra
SPARC III processors and 1 GB RAM.
In presenting our results, we compare the cost of

the solution produced by our algorithm with the
costs of solutions representative of industry practice.
According to our industry contacts, the complexity
of an access network design varies from company
to company. Smaller long-distance companies tend
to rely only on TST, whereas larger long-distance

companies tend to use a combination of DTT and
TST. Typically, they might determine the number of
facilities to lease for DTT with a procedure similar to
Step 1 of our algorithm. A company with an opera-
tions research group might recognize that DTT costs
can be reduced by hubbing and thereby use an exist-
ing facility location model to solve for hub locations
and EO assignments. As far as we know, however, our
iterative method, which considers the interrelation-
ship between the queueing problem and the facility
location problem, represents a new approach both in
the literature and in practice. Therefore, we will com-
pare our solution with the following alternate solu-
tions: (1) all TST, (2) a combination of DTT and TST
but no hubs (Step 1 only), and (3) a combination of
DTT and TST with hubs (Step 1 followed by Step 2).

4.1. Data
Recall from the description of the LDAND problem
in §2.2, the following data elements within a LATA
are required: the locations of all of the EOs, the POP
and the tandem switch, the offered load in Erlangs
during each time interval for each EO, and all of the
component costs for DTT and TST. In this section, we
describe the details of each data element in turn.

Network Data. For our study, we selected LATAs
encompassing 10 medium and large cities in the
United States. For each LATA, we obtained the loca-
tions of the EOs and the tandem switch from the Local
Exchange Routing Guide, which is a database of local
exchange network configuration information main-
tained by Telcordia Technologies. And, as is common
in the industry, we assumed that the POP and the
tandem switch are colocated.

Offered Load. The values for the offered load dur-
ing each time interval of the day for each EO in a
LATA are computed from the total volume of long-
distance traffic for the LATA, a LATA-to-EO distribu-
tion and an EO traffic distribution profile.
For each LATA, the total number of long-distance

calling minutes is computed as the product of the
population of the LATA (obtained from 1990 U.S.
Census data) and an average value of 165 minutes
of long-distance calls per person per month. Then,
to determine the number of minutes carried by our
hypothetical long-distance company, we multiply the
total minutes for the LATA by the company’s market
share. To distribute our company’s share of the total
minutes for the LATA to the individual EOs, we use
a LATA-to-EO distribution provided by a telecommu-
nications company. Such a distribution also could be
obtained by mapping the Census data to the EOs.
A traffic distribution profile, which describes how

the traffic intensity varies throughout the day, speci-
fies the fraction of the total daily traffic to assign to
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each time interval of the day. Because business traffic
and residential traffic produce different network load-
ing patterns, we need a separate profile for each. To
obtain representative profiles, we analyzed the long-
distance traffic on the University of Maryland tele-
phone network during the month of September 1999.
At the university, one switch handles business traffic
generated by faculty, staff, and administrative offices,
whereas a second switch handles residential traffic
generated by student residences. Therefore, for each
traffic type, we were able to create a separate distri-
bution of average traffic intensity by hour of the day
and by day of the week. Then, using a weighted aver-
age, we created one distribution for each hour of the
day for each traffic type. Finally, we normalized the
values to obtain the desired fraction of the total traffic
assigned to each time interval for each traffic type.
Although here we assume that each EO has the same
traffic profile, the algorithm can handle individual EO
profiles.

Costs. The lease costs for the DTT facilities and the
usage charges for TST are available in the tariff docu-
ments filed with the FCC. Each local exchange carrier
has different charges, so in practice, we would use
the appropriate costs for each LATA. For the compu-
tational results reported here, however, we use the
same costs for all of the test problems. For each of the
cost components listed in Table 1, the value represents
an average of the costs of four regional bell operat-
ing companies, as reported in November 1999 tariffs.
All of the costs are expressed as monthly recurring
charges.

4.2. Test Problems
A number of factors are likely to affect the perfor-
mance of our algorithm. In particular, we expect the
effectiveness of the algorithm will vary with the vol-
ume of demand (or market share), the mix of resi-
dential and business traffic, and the relative costs of
DS1s, DS3s, and TST charges. We have designed our
experiments to evaluate the impact of these factors.
To begin, we define a base test problem for each

LATA in which we assume that the market share is
20%, the traffic mix is 50% residential and 50% busi-
ness, and the costs are as they appear in Table 1. The
number of EOs and the total monthly minutes of use
(MOU) for each base instance are shown in Table 2.
For each LATA, we create six additional instances by
testing two alternate values for each of the three fac-
tors individually. Table 3 shows the factor values for
each instance. In the table, “Base” refers to the origi-
nal costs shown in Table 1.

4.3. Results
Tables 4, 5, and 6 summarize the performance of H1
and H2 on the 70 test problems. The costs reported

Table 2 Number of EOs and Total MOU for Base Problems

ID # EO Total MOU

1 75 59�438�808
2 67 71�028�012
3 99 84�977�211
4 87 88�722�315
5 86 92�430�228
6 90 137�505�390
7 132 151�611�966
8 110 171�723�915
9 149 214�492�080
10 163 248�803�830

represent the network expense costs paid by the
long-distance company to the local exchange car-
rier each month for access. The results indicate that
our algorithms produce cost effective access network
designs and, as expected, H2 produces lower cost
designs than H1. The H2 (H1) solutions are on aver-
age 40.4% (41.9%) and 73.3% (76.1%) of the corre-
sponding costs for a network of TST only (denoted
TST) and a network without hubs (denoted NH).
As compared to the solution obtained by completing
Step 1 followed by Step 2 (denoted Iter 1), H2 (H1)
results in savings of 0.5% (0.3%) to 21.4% (20.4%) with
an average of 8.0% (4.2%).
H2 produces lower cost designs than H1 because,

throughout the algorithm, it considers adding DS1s
to EOs for which DS1s were not economical in Initial
Values. The impacts of increasing the number of EOs
with strictly positive DS1 values are (1) that the pos-
sible number of DS1 adjustments increases, which
sometimes increases the number of iterations, and
(2) that the size of the integer program (hub location
problem) increases, which typically increases the run-
ning time. For most instances, H2 requires more iter-
ations than H1, but the number remains reasonable.
Fifty-one completed in four or fewer iterations, and
18 completed in five or six. Just one instance, the
largest, required eight. For 56 of the 70 instances,
H2 requires more CPU time than H1, but the increase
is unpredictable. Overall, the CPU times for H2 are
quite reasonable. Fifty-six (80%) instances solved in
less than one hour with another 10 solving in one
to eight hours and two in 11 to 13 hours. The two

Table 3 Parameter Values for Test Problem Instances

Mkt share (%) Mix (R/B) (%) Costs

20 50/50 Base
20 80/20 Base
20 20/80 Base
10 50/50 Base
40 50/50 Base
20 50/50 DS3= 7 ∗DS1
20 50/50 1.2 ∗ TST
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Table 4 Summary of Computational Results: Market Share

H1 H2

ID Mkt (%) TST ($) NH ($) Iter 1 ($) Cost ($) Time(s) Iter Cost ($) Time(s) Iter H2/TST H2/NH H2/I1 H2/H1 ¢/min

1 10 89�253 59�966 59�757 59�506 1 2 59�432 1 2 0.666 0.991 0.995 0.999 0.200
20 178�506 115�789 106�594 88�948 1 2 88�634 2 3 0.497 0.765 0.832 0.996 0.149
40 357�012 221�921 181�134 150�581 5 2 149�798 9 2 0.420 0.675 0.827 0.995 0.126

2 10 75�763 36�295 33�046 32�099 62 2 31�832 47 2 0.420 0.877 0.963 0.992 0.090
20 151�527 65�377 55�831 54�295 61 2 52�969 65 3 0.350 0.810 0.949 0.976 0.075
40 303�053 123�450 90�507 87�009 179 3 84�052 229 3 0.277 0.681 0.929 0.966 0.059

3 10 95�177 50�959 45�582 45�398 1 2 45�119 22 2 0.474 0.885 0.990 0.994 0.106
20 190�353 93�068 77�731 76�625 177 2 75�736 233 2 0.398 0.814 0.974 0.988 0.089
40 380�707 174�407 128�832 126�596 803 3 123�732 694 3 0.325 0.709 0.960 0.977 0.073

4 10 122�256 79�132 69�486 68�068 1 2 67�415 31 2 0.551 0.852 0.970 0.990 0.152
20 244�513 149�074 123�502 118�516 84 3 115�879 49 4 0.474 0.777 0.938 0.978 0.131
40 489�025 286�809 210�010 174�402 42 3 166�714 120 4 0.341 0.581 0.794 0.956 0.094

5 10 117�691 74�767 58�989 55�428 2 2 53�268 2 2 0.453 0.712 0.903 0.961 0.115
20 235�383 136�126 93�280 89�330 327 2 85�467 870 3 0.363 0.628 0.916 0.957 0.092
40 470�765 259�245 155�157 141�634 3�214 2 133�542 1�938 3 0.284 0.515 0.861 0.943 0.072

6 10 158�688 80�674 72�960 71�238 91 3 70�885 84 3 0.447 0.879 0.972 0.995 0.103
20 317�376 153�590 125�934 121�193 29 3 118�397 147 3 0.373 0.771 0.940 0.977 0.086
40 634�752 293�582 209�519 193�457 31 3 185�389 236 5 0.292 0.631 0.885 0.958 0.067

7 10 175�319 94�798 78�577 78�040 321 2 76�554 543 3 0.437 0.808 0.974 0.981 0.101
20 350�638 173�805 134�120 131�458 291 2 127�249 2�585 3 0.363 0.732 0.949 0.968 0.084
40 701�276 331�648 228�537 221�473 289 2 210�373 2�231 5 0.300 0.634 0.921 0.950 0.069

8 10 200�754 107�377 87�404 82�064 243 3 77�232 257 2 0.385 0.719 0.884 0.941 0.090
20 401�508 197�789 139�715 129�986 3�026 3 123�663 4�894 4 0.308 0.625 0.885 0.951 0.072
40 803�016 377�939 238�932 231�807 1�156 3 209�911 5�302 6 0.261 0.555 0.879 0.906 0.061

9 10 277�383 163�804 125�583 120�939 661 3 114�046 1�570 5 0.411 0.696 0.908 0.943 0.106
20 554�765 310�294 212�256 197�377 1�086 2 189�623 3�021 3 0.342 0.611 0.893 0.961 0.088
40 1�109�530 603�191 367�705 329�331 49�164 3 305�187 129�309 5 0.275 0.506 0.830 0.927 0.071

10 10 299�905 165�947 119�746 118�570 693 2 107�690 1�146 5 0.359 0.649 0.899 0.908 0.087
20 599�810 312�670 197�448 192�731 2�685 2 180�394 28�936 5 0.301 0.577 0.914 0.936 0.073
40 1�199�621 602�336 341�499 333�799 40�774 4 310�642 143�756 3 0.259 0.516 0.910 0.931 0.062

largest instances, Problems 9 and 10 with a 40% mar-
ket share, took more than 35 hours to solve. It is
important to note that the CPU times are dominated
by the time spent to solve Step 2—the hub location
problem. (Steps 1 and 3 are almost instantaneous.)
And, often, within Step 2, good solutions are found
early with the majority of the time spent proving opti-
mality. As a result, should the longer running times
be impractical in an industrial setting, the solution of
the hub location problem could be terminated early
instead of being solved to optimality and/or the algo-
rithm could be terminated early by truncating the
number of iterations. Throughout the remainder of
this section, we will restrict our comments to the per-
formance of H2, since it outperforms H1. H2 pro-
duces cost effective access network designs and sub-
stantially improves upon techniques representative of
industry practice.

Market Share. In the base test problems, we as-
sume that our long-distance company captures 20%
of the total calling minutes for the LATA. To eval-
uate the impact of traffic volume on the results, we

also consider market shares of 10% and 40%, which
are equivalent to multiplying the total minutes for
the LATA by 0.5 and by 2.0, respectively (see Table 4
for the results). As expected, the cost per minute
(¢/min) decreases with increasing volume, because
DTT proves to be economical for more EOs. As the
volume increases and, hence, the number of DS1s
increases, the savings achieved by implementing a
hubbing strategy increase. For each base problem, the
cost of H2 relative to the cost of NH (H2/NH) sub-
stantially decreases as volume increases. The gains
achieved by H2 relative to Iter 1 (H2/I1) also increase
with volume. The solution times increase with vol-
ume; increasing the volume tends to increase the
number of EOs with DS1s, which increases the size of
the hub location problem. The number of hub loca-
tions selected increases with volume as well. In fact,
the number of hub locations increases almost in direct
proportion to the volume increase (see Table 7).

Traffic Mix. Because residential and business traffic
are distributed differently throughout the day, we
expect the mix of traffic to affect the results. Business



Berger and Raghavan: Long-Distance Access Network Design
322 Management Science 50(3), pp. 309–325, © 2004 INFORMS

Table 5 Summary of Computational Results: Traffic Mix

H1 H2

ID Mix TST ($) NH ($) Iter 1 ($) Cost ($) Time(s) Iter Cost ($) Time(s) Iter H2/TST H2/NH H2/I1 H2/H1 ¢/min

1 80/20 168�944 123�710 120�339 101�744 3 3 101�269 6 3 0.599 0.819 0.842 0.995 0.170
50/50 178�506 115�789 106�594 88�948 1 2 88�634 2 3 0.497 0.765 0.832 0.996 0.149
20/80 188�068 129�243 122�909 97�854 1 2 96�616 5 4 0.514 0.748 0.786 0.987 0.163

2 80/20 143�410 83�853 76�534 72�723 142 3 71�900 65 3 0.501 0.857 0.939 0.989 0.101
50/50 151�527 65�377 55�831 54�295 61 2 52�969 65 3 0.350 0.810 0.949 0.976 0.075
20/80 159�643 75�760 61�410 60�441 115 2 60�135 266 3 0.377 0.794 0.979 0.995 0.085

3 80/20 180�157 114�177 104�762 101�320 251 2 99�373 122 3 0.552 0.870 0.949 0.981 0.117
50/50 190�353 93�068 77�731 76�625 177 2 75�736 233 2 0.398 0.814 0.974 0.988 0.089
20/80 200�550 107�291 86�017 84�326 74 2 82�711 237 3 0.412 0.771 0.962 0.981 0.097

4 80/20 231�415 166�634 150�956 148�620 53 2 140�828 102 4 0.609 0.845 0.933 0.948 0.159
50/50 244�513 149�074 123�502 118�516 84 3 115�879 49 4 0.474 0.777 0.938 0.978 0.131
20/80 257�610 170�765 137�278 133�319 5 3 124�582 153 5 0.484 0.730 0.908 0.934 0.140

5 80/20 222�774 156�156 133�738 127�187 196 3 121�913 523 5 0.547 0.781 0.912 0.959 0.132
50/50 235�383 136�126 93�280 89�330 327 2 85�467 870 3 0.363 0.628 0.916 0.957 0.092
20/80 247�991 160�306 110�432 103�410 259 3 91�326 941 5 0.368 0.570 0.827 0.883 0.099

6 80/20 300�376 186�260 172�251 166�824 178 3 162�615 96 3 0.541 0.873 0.944 0.975 0.118
50/50 317�376 153�590 125�934 121�193 29 3 118�397 147 3 0.373 0.771 0.940 0.977 0.086
20/80 334�376 178�269 143�571 138�510 67 3 131�170 244 4 0.392 0.736 0.914 0.947 0.095

7 80/20 331�856 209�664 186�917 183�135 161 2 176�015 3�139 6 0.530 0.840 0.942 0.961 0.116
50/50 350�638 173�805 134�120 131�458 291 2 127�249 2�585 3 0.363 0.732 0.949 0.968 0.084
20/80 369�420 201�662 151�034 149�321 599 2 139�853 2�091 5 0.379 0.694 0.926 0.937 0.092

8 80/20 380�001 233�945 202�741 193�675 130 3 186�220 7�469 4 0.490 0.796 0.919 0.962 0.108
50/50 401�508 197�789 139�715 129�986 3�026 3 123�663 4�894 4 0.308 0.625 0.885 0.951 0.072
20/80 423�015 230�177 165�920 162�919 455 2 139�269 14�200 5 0.329 0.605 0.839 0.855 0.081

9 80/20 525�049 355�762 301�195 292�509 477 4 277�954 3�019 6 0.529 0.781 0.923 0.950 0.130
50/50 554�765 310�294 212�256 197�377 1�086 2 189�623 3�021 3 0.342 0.611 0.893 0.961 0.088
20/80 584�481 364�630 249�528 239�229 1�078 3 209�659 24�633 5 0.359 0.575 0.840 0.876 0.098

10 80/20 567�681 374�407 309�032 305�332 620 2 294�092 1�704 4 0.518 0.785 0.952 0.963 0.118
50/50 599�810 312�670 197�448 192�731 2�685 2 180�394 28�936 5 0.301 0.577 0.914 0.936 0.073
20/80 631�939 371�614 227�774 222�674 1�059 2 197�740 42�652 5 0.313 0.532 0.868 0.888 0.079

traffic is concentrated between the hours of 8:00 a.m.
and 5:00 p.m., whereas residential traffic has some
activity throughout the day but peaks during the
evening hours. In the base problems, the traffic mix
is 50% residential and 50% business (denoted 50/50).
We also test a mix of 80% residential and 20% busi-
ness (denoted 80/20) and a mix of 20% residential
and 80% business (denoted 20/80) (see Table 5 for the
results).
As expected, a 50/50 traffic mix results in the low-

est cost per minute, because it has the least variability
throughout the day, followed by the 20/80 mix. The
cost of the 80/20 mix, dominated by residential traffic,
is the most expensive because of the significant vari-
ability. The residential busy hour accounts for almost
23% of the traffic, whereas the business busy hour
accounts for only 13%. The variability also impacts
the savings achieved by a hubbing strategy. For each
of the 10 base problems, the cost of H2 relative to NH
(H2/NH) increases as the fraction of residential traffic
increases. The savings associated with implementing
a hubbing strategy are dampened by the variability.
Relative to Iter 1, no clear pattern emerges for the

smaller problems, but for the larger problems, the
H2/I1 ratio also tends to increase as the fraction of
residential traffic increases.
The impact of the traffic mix on CPU time is unpre-

dictable, but for most problems, the 20/80 mix is
the most difficult. Overall, the 50/50 mix tends to
require the fewest iterations. The number of hubs in
the H2 solution varies with the traffic mix, although
the differences are most pronounced for the larger
problems (see Table 7). For these, the fewest number
of hubs is used in the 80/20 traffic mix; the increased
variability of this mix lowers the number of DS1s that
are economical, which, in turn, reduces the opportu-
nity for hubbing savings and results in a higher cost
per minute.

Costs. Within H2, key decisions are driven by two
cost relationships. First, the number of DS1s leased
for DTT depends on the relative cost of DTT versus
TST. Second, the optimal hubbing strategy depends,
in part, on the relative cost of a DS3 versus a DS1.
In our base test problems, we use the averaged costs
shown in Table 1. We also consider the impact of
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Table 6 Summary of Computational Results: Costs

H1 H2

ID Cost TST ($) NH ($) Iter 1 ($) Cost ($) Time(s) Iter Cost ($) Time(s) Iter H2/TST H2/NH H2/I1 H2/H1 ¢/min

1 Base 178�506 115�789 106�594 88�948 1 2 88�634 2 3 0.497 0.765 0.832 0.996 0.149
7∗DS1 178�506 115�789 114�277 113�880 2 2 113�763 3 2 0.637 0.982 0.995 0.999 0.191
1.2∗TST 213�248 124�932 103�399 93�377 16 2 92�488 14 2 0.434 0.740 0.894 0.990 0.156

2 Base 151�527 65�377 55�831 54�295 61 2 52�969 65 3 0.350 0.810 0.949 0.976 0.075
7∗DS1 151�527 65�377 59�766 58�587 155 2 57�215 140 4 0.378 0.875 0.957 0.977 0.081
1.2∗TST 181�458 68�826 57�324 55�087 90 2 52�552 449 4 0.290 0.764 0.917 0.954 0.074

3 Base 190�353 93�068 77�731 76�625 177 2 75�736 233 2 0.398 0.814 0.974 0.988 0.089
7∗DS1 190�353 93�068 82�917 81�808 380 2 81�052 445 3 0.426 0.871 0.978 0.991 0.095
1.2∗TST 227�863 98�410 80�292 79�454 32 2 77�745 110 2 0.341 0.790 0.968 0.978 0.091

4 Base 244�513 149�074 123�502 118�516 84 3 115�879 49 4 0.474 0.777 0.938 0.978 0.131
7∗DS1 244�513 149�074 130�392 128�976 257 3 125�729 426 3 0.514 0.843 0.964 0.975 0.142
1.2∗TST 292�258 158�908 126�659 117�187 86 4 111�722 72 4 0.382 0.703 0.882 0.953 0.126

5 Base 235�383 136�126 93�280 89�330 327 2 85�467 870 3 0.363 0.628 0.916 0.957 0.092
7∗DS1 235�383 136�126 103�226 102�311 1�611 2 99�773 1�601 4 0.424 0.733 0.967 0.975 0.108
1.2∗TST 281�495 142�088 95�618 92�708 260 2 84�468 554 4 0.300 0.594 0.883 0.911 0.091

6 Base 317�376 153�590 125�934 121�193 29 3 118�397 147 3 0.373 0.771 0.940 0.977 0.086
7∗DS1 317�376 153�590 135�040 134�018 170 2 131�299 226 3 0.414 0.855 0.972 0.980 0.095
1.2∗TST 379�827 160�888 126�944 123�244 119 2 122�786 110 2 0.323 0.763 0.967 0.996 0.089

7 Base 350�638 173�805 134�120 131�458 291 2 127�249 2�585 3 0.363 0.732 0.949 0.968 0.084
7∗DS1 350�638 173�805 144�441 142�837 682 2 140�966 678 3 0.402 0.811 0.976 0.987 0.093
1.2∗TST 419�627 183�556 140�296 138�213 302 3 131�386 2�715 4 0.313 0.716 0.936 0.951 0.087

8 Base 401�508 197�789 139�715 129�986 3�026 3 123�663 4�894 4 0.308 0.625 0.885 0.951 0.072
7∗DS1 401�508 197�789 154�245 151�844 10�910 2 144�130 23�346 5 0.359 0.729 0.934 0.949 0.084
1.2∗TST 480�465 206�385 139�360 134�166 9�768 2 126�945 15�954 6 0.264 0.615 0.911 0.946 0.074

9 Base 554�765 310�294 212�256 197�377 1�086 2 189�623 3�021 3 0.342 0.611 0.893 0.961 0.088
7∗DS1 554�765 310�294 233�190 226�585 4�807 3 220�335 11�015 4 0.397 0.710 0.945 0.972 0.103
1.2∗TST 663�374 326�508 214�611 203�294 747 2 197�118 2�942 3 0.297 0.604 0.918 0.970 0.092

10 Base 599�810 312�670 197�448 192�731 2�685 2 180�394 28�936 5 0.301 0.577 0.914 0.936 0.073
7∗DS1 599�810 312�670 220�337 218�551 11�856 3 214�804 22�019 4 0.358 0.687 0.975 0.983 0.086
1.2∗TST 717�599 325�600 201�061 197�954 10�327 3 183�436 49�279 8 0.256 0.563 0.912 0.927 0.074

increasing the DS3 costs and the TST costs (see Table 6
for the results).
First, we consider the impact of increasing both

components of the DS3 cost by setting them equal to
seven times the DS1 cost. In this case, the DS3 exhibits
weaker economies of scale relative to the base costs;
as expected, the costs per minute are higher. The DS3
cost has a noticeable effect on the savings achieved

Table 7 Number of Hubs vs. Market Share, Traffic Mix, and Costs

Market share (%) Traffic mix (R/B) Costs

Problem 10 20 40 80/20 50/50 20/80 7∗DS1 Base 1.2∗TST

1 2 5 9 6 5 6 4 5 6
2 3 5 11 6 5 6 5 5 6
3 3 6 13 6 6 8 7 6 7
4 3 7 16 8 7 9 6 7 9
5 5 7 14 6 7 9 6 7 9
6 6 11 22 10 11 13 9 11 11
7 6 12 24 11 12 15 10 12 13
8 7 14 26 14 14 16 12 14 14
9 10 16 29 14 16 19 14 16 17
10 11 19 33 13 19 24 16 19 21

by a hubbing strategy. Both ratios H2/NH and H2/I1
increase as the DS3 cost increases, suggesting that H2
is better able to exploit the cost structure under strong
economies of scale. Except for Problems 7 and 10, the
running times increase with the DS3 costs. The num-
ber of iterations varies by one (either way) for most
problems. For the smaller problems, increasing the
DS3 costs results in a similar number of hubs; for the
larger problems, the number of hubs decreases as we
increase the DS3 cost.
Second, we consider the impact of increasing both

components of the TST cost by 20%. The costs per
minute are not always higher relative to the base
problems. As TST becomes more expensive, DS1s
become economical for more EOs. As a result, we
expect the benefits of hubbing to increase. Relative
to NH, H2 produces lower cost designs; H2/NH
decreases for all problems. The results relative to Iter 1
are mixed. There does not seem to be a clear relation-
ship between CPU time and TST cost nor number of
iterations. The number of hubs selected is the same
or slightly larger relative to the base solutions, which
makes sense. As we increase the TST cost, more EOs
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Table 8 Comparison of H2 and Linearized Formulation Results

H2 Linearized formulation

ID Mkt (%) Mix Cost Cost ($) Time(s) Cost ($) Time(s) H2/Linear

1 20 50/50 Base 88�634 2 88�430 131 1.002
20 80/20 Base 101�269 6 99�149 94 1.021
20 20/80 Base 96�616 5 96�616 124 1.000
10 50/50 Base 59�432 1 55�177 101 1.077
40 50/50 Base 149�798 9 132�763 177 1.128
20 50/50 7∗DS1 113�763 3 100�921 284 1.127
20 50/50 1.2∗TST 92�488 14 92�481 146 1.000

2 20 50/50 Base 52�969 65 51�263 15�536 1.033
20 80/20 Base 71�900 65 69�088 32�161 1.041
20 20/80 Base 60�135 266 56�353 14�052 1.067
10 50/50 Base 31�832 47 31�832 7�369 1.000
40 50/50 Base 84�052 229 83�211 9�109 1.010
20 50/50 7∗DS1 57�215 140 56�875a 86�400 1.006
20 50/50 1.2∗TST 52�552 449 52�449 27�619 1.002

4 20 50/50 Base 115�879 49 107�767 870 1.075
20 80/20 Base 140�828 102 131�235 1�198 1.073
20 20/80 Base 124�582 153 117�239 1�743 1.063
10 50/50 Base 67�415 31 66�950 2�926 1.007
40 50/50 Base 166�714 120 166�662 2�738 1.000
20 50/50 7∗DS1 125�729 426 125�573 6�914 1.001
20 50/50 1.2∗TST 111�722 72 111�722 2�099 1.000

Note. aThe linearized formulation was not solved to optimality in 24 hours. The value reported is the best lower bound.

will have DS1s, which will increase the opportunities
for hubbing.

Comparison to Linearized Formulation. As we
noted in §2, solving the linearized formulation is very
difficult. In fact, only the smaller instances can be
solved. Table 8 compares the solutions of H2 and the
linearized formulation for instances of Problems 1, 2,
and 4. For instances of the other problems, the mem-
ory requirements were too large. The empirical results
indicate that H2 provides high-quality solutions rela-
tive to the optimal solution of the linearized version
of LDAND. Notice that H2 finds the optimal solu-
tion for five of the instances. Overall, the average gap
is 3.5% with H2 requiring on average less than two
minutes of CPU time and the linearized formulation
requiring, on average, almost three hours.

5. Summary and Conclusions
Recent changes in the regulatory environment have
created opportunities for long-distance companies to
better manage their access networks and to signifi-
cantly reduce their costs. In this paper, we have stud-
ied a problem that arises in the design of access
networks for long-distance communications in the
United States. We have developed a novel three-
phase approach that considers the stochastic aspects
of the problem. Our computational results indicate a
potential cost savings of hundreds of millions of dol-
lars annually to long-distance companies. Although

we have described the problem in terms of a man-
agerial problem specific to the U.S. telecommuni-
cations industry, we believe that our approach has
relevance beyond the United States as deregulation of
the telecommunications industry spreads worldwide.
With the continued advances in communications

technology, local telephone companies are beginning
to offer higher-capacity optical facilities. Our under-
standing is that, so far, these facilities generally are
available and used for data traffic. However, in the
future, if a long-distance company decides to lease
higher-capacity optical facilities for DTT, the LDAND
problem can be modified to handle the additional
layer of multiplexing and the additional facility types.
Preliminary experiments indicate that our approach is
viable with more than two facility types.
In this paper, we have assumed that all traffic is

carried. In practice, however, a small fraction of traf-
fic may be blocked. To model the blocking, we would
need a characterization of the traffic of the other
long-distance companies sharing the trunks connect-
ing the tandem switch to each EO as well as the
number of trunks provisioned by the local telephone
company. These data elements are not available to a
long-distance company as they are considered confi-
dential information. Consequently, we do not model
this blocking in the LDAND problem. Further, since
the blocking probability is extremely small (generally
on the order of 0.05% during the busy period for long-
distance traffic), we do not believe that it will materi-
ally affect the results.
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To conclude, with the (global) deregulation in the
telecommunications industry, the opportunities for
applying management science techniques to the man-
agement of communications networks are increasing.
Our research demonstrates a novel method for solv-
ing a new and a high-impact network management
problem in the telecommunications industry that can
produce hundreds of millions of dollars in cost sav-
ings annually for long-distance companies.

Appendix

A Bound for sMAXi . As noted earlier, the number of DTT
DS1s that prove in at an EO is a function of the cost of
leasing DS1s from the EO to its permissible hubs. A priori,
we do not know the best hubbing strategy, so we compute
an upper bound on the number of DS1s at EO i ∈ N , i.e.,
sMAXi . (We use sMAXi in the approach outlined in §2.3.) Recall
from Initial Values that we add DS1s while the decrease in
TST costs is larger than the cost of adding a DS1. Therefore,
for EO i, an upper bound on the number of DS1s is the
smallest j for which kji, the decrease in TST costs associated
with adding a jth DS1, is less than the smallest possible DS1
cost. The smallest possible DTT DS1 cost is the cost of a DS1
when an EO is assigned to its closest permissible hub.

��-Completeness Proof. It is well known that the stan-
dard transportation problem can be transformed to a mini-
mum cost flow problem on a bipartite graph. Thus, to prove
��-completeness, it suffices to consider the transportation
problem with the additional constraint that a supply node
may supply at most e demand nodes. Note, due to the sym-
metric nature of the transportation problem (just reverse the
role of supply and demand nodes), the degree constraints
equivalently could be on the demand nodes (i.e., a demand
node may be supplied by no more than e supply nodes).
We call this the degree-constrained transportation problem.
The following result, described to us by Zhi-Long Chen

(2003) at University of Maryland, shows that even the feasi-
bility version of the degree-constrained transportation prob-
lem is ��-complete.

Theorem 2. The degree-constrained transportation problem,
with degree equal to one or three, is ��-complete.

Proof. Consider the ��-complete 3-partition problem.
Given 3m items, each with integer size bi with 	1/4�b < bi <
	1/2�b and mb =∑

bi. The decision version asks: Is there a
partition of these 3m items into m disjoint subsets each with
exactly three items and a total size b. We transform the 3-
partition problem to an instance of the degree-constrained
transportation problem as follows. Use the 3m items as
3m supply nodes, each with supply amount bi. They will

supply m demand nodes each with a demand b. The trans-
portation costs are zero. This corresponds to an instance of
the feasibility version of the degree-constrained transporta-
tion problem with the constraint that each supply node sup-
ply no more than one demand node. (A feasible solution
provides a yes answer and an infeasible solution provides a
no answer.) Or, equivalently, it corresponds to an instance of
the feasibility version of the degree-constrained transporta-
tion problem with the constraint that each demand node
be supplied by no more than three supply nodes. Thus,
the degree-constrained transportation problem with degree
equal to 1 or 3 is ��-complete. �
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