Locating Human Meanings:

Less Typology, More Constraint

James Higginbotham

“-
-1\:4-'\3 }4‘ o~ 1 i
] {
. »
. L0, " 3
l : < ‘l; Az ". 't-_ g
— RS 2 LY
= r
S A>=Dd

In this WX « copartAydeweiop on 0w zeption of semantic inquiry in
generat L: g v tions, I will address questions .
about dorioins o0 voolUgaiion, Lo Coln iL Laoil —oiaoios that ought to be accounted _

Paul M. Pietroski, University of Maryland
Dept. of Linguistics, Dept. of Philosophy



Elizabeth, on her side, had much to do. She wanted to
ascertain the feelings of each of her visitors, she wanted to
compose her own, and to make herself agreeable to all;

and in the latter object, where she feared most to fail,

she was most sure of success, for those to whom she
endeavoured to give pleasure were prepossessed in her favour.

Bingley was ready,
Georgiana was eager, and
Darcy determined to be pleased.

Jane Austen
Pride and Predjudice




Bingley is eager to please.

(a) Bingley is eager to be one who pleases.

#(b) Bingley is eager to be one who is pleased.

Bingley is easy to please.

#(a) Bingley can easily please.
(b) Bingley can easily be pleased.

Human children naturally acquire languages
that somehow generate boundlessly many expressions
that connect meanings (whatever they are)
with pronunciations (whatever they are)
in accord with certain constraints.




Human languages generate boundlessly many expressions
that connect meanings with pronunciations
in accord with certain constraints.

Do human linguistic expressions exhibit meanings of different types?

(1) Fido (5) every cat

(2) chase (6) chase every cat

(3) every (7) Fido chase every cat
(4) cat (8) Fido chased every cat.

And if so, which meaning types do they exhibit?




What are the Human Meaning Types?

e one familiar answer, via Frege’s conception of ideal languages
(i) a basic type <e>, for entity denoters

(ii) a basic type <t>, for thoughts or truth-value denoters

(iii) if <a> and <B> are types, then so is <a, B>

Fido, Garfield, Zero, ...

Fido barked.
Fido chased Garfield.
Zero precedes every positive integer.



What are the Human Meaning Types?

e one familiar answer, via Frege’s conception of ideal languages
(i) a basic type <e>, for entity denoters

(ii) a basic type <t>, for thoughts or truth-value denoters

(iii) if <a> and <B> are types, then so is <a, B>

e on the other hand, one might suspect
(a) there are no meanings of type <e>

(b) there are no meanings of type <t>

(c) the recursive principle is erazy implausible




What are the Human Meaning Types?

e one familiar answer, via Frege’s conception of ideal languages
(i) a basic type <e>, for entity denoters

(ii) a basic type <t>, for thoughts or truth-value denoters

(iii) if <a> and <B> are types, then so is <a, B>

That’s a lot of types



a basic type <e>, for entity denoters

. at Level 5,
a basic type <t>, for truth-value denoters

_ _ more than 5 x 1012
if <a>and <B> are types, then so is <a, >

0. <e> <t> (2) types at Level Zero

1. <e,e> <e, t> <t,e> <t t> (4) at Level One, all <0, 0>

2. eight of <0, 1> eight of <1,0> (32), including <e, et>

sixteen of <1, 1> and <et, t>
3. 64 of <0, 2> 64 of <2, 0> (1408), including
128 of<1,2> 128 of<2,1> <e, <e, et>>; <et, <et, t>>;
1024 of <2, 2> and <<e, et>, t>

4. 2816 of <0, 3> 2816 of <3, 0>
5632 of<1,3> 5632o0f<1, 3> (2,089,472), including
45,056 of <2, 3> 45,056 of <3, 2> <&, <g, <g, <et>> and
1,982,464 of <3, 3> <<e, et>, <<e, et>, t>



a basic type <e>, for entity denoters
a basic type <t>, for truth-value denoters

if <a>and <B> are types, then so is <a, >

0. <e> <t> Ziggy
Number(ziggy)

1. <e, t> AXx.Number(x)

2. <e, et> Ay.Ax.Predecessor(x, y)

Ay.Ax.Precedes(x, y)

3. <<e, et>, t> Transitive[Ay.Ax.Precedes(x, y)]

Intransitive[Ay.Ax.Predecessor(x, y)]

4. <<e, et>, <<e, et>, t>

TransitiveClosure[Ay.Ax.Precedes(x, y), Ay.Ax.Predecessor(x, y)]



Frege invented a language
that supported abstraction on relations

Three precedes four.

Three is something that precedes four. Ax.Precedes(x, 4)
Four is something that three precedes. AXx.Precedes(3, x)
*Precedes is somerelat that three four. AR.R(3, 4)

The plate outweighs the knife.
The plate is something which outweighs the knife.
The knife is something which the plate outweighs
*Qutweighs is somerelat which the plate the knife.

10



a basic type <e>, for entity denoters
a basic type <t>, for truth-value denoters

if <a>and <B> are types, then so is <a, B>

3. <<eg, et>, t> Transitive[Ay.Ax.Precedes(x, y)]

Precedes transits.

4. <<e, et>, <<e, et>, t>

TransitiveClosure[Ay.Ax.Precedes(x, y), Ay.Ax.Predecessor(x, y)]

Precedes transits predecessor.



a basic type <e>, for entity denoters
a basic type <t>, for truth-value denoters

if <a>and <B> are types, then so is <a, >

0. <e> <t> (2) types at Level Zero

1. <e,e> <e, t> <t,e> <t t> (4) at Level One, all <0, 0>

2. eight of <0, 1> eight of <1,0> (32), including <e, et>

sixteen of <1, 1> and <et, t>
3. 64 of <0, 2> 64 of <2, 0> (1408), including
128 of<1,2> 128 of<2,1> <e, <e, et>>; <et, <et, t>>;
1024 of <2, 2> and <<e, et>, t>

4. 2816 of <0, 3> 2816 of <3, 0>
5632 of<1,3> 5632o0f<1, 3> (2,089,472), including
45,056 of <2, 3> 45,056 of <3, 2> <&, <g, <g, <et>> and
1,982,464 of <3, 3> <<e, et>, <<e, et>, t>



What are the Human Meaning Types?

e one familiar answer, via Frege’s conception of ideal languages
(i) a basic type <e>, for entity denoters

(ii) a basic type <t>, for thoughts or truth-value denoters

(iii) if <a> and <B> are types, then so is <a, B>

e asuggestion in the footnotes of “On Semantics”

Filter Functionals:

no <a, B> types where a is non-basic

<et, t> <e, <g, <g, <e, t>>>




What are the Human Meaning Types?

e one familiar answer, via Frege’s conception of ideal languages

(i) a basic type <e>, for entity denoters

(ii) a basic type <t>, for thoughts or truth-value denoters

(iii) if <a> and <B> are types, then so is <a, B>

e asuggestion less permissive than “Filter Functionals”

No Recursion: no <a, B> types

(1) a basic type <M>, for monadic predicates

(2) a basic type <D>, for dyadic predicates

(n) a basic type <N>, for N-adic predicates




What are the Human Meaning Types?

e one familiar answer, via Frege’s conception of ideal languages

(i) a basic type <e>, for entity denoters

(ii) a basic type <t>, for thoughts or truth-value denoters

(iii) if <a> and <B> are types, then so is <a, B>

e asuggestion much less permissive than “Filter Functionals”

No Recursion: no <a, B> types

(1) a basic type <M>, for monadic predicates

(2) a basic type <D>, for dyadic predicates

Minimal Relationality




Degrees of “Semantic Relationality”

* None: e.g., Monadic Predicate Calculi
— some M is (also) P

 Unbounded: e.g., Tarski-style Predicate Calculi
— Mx & Py & Syz & Rxw & Bzuv & ...




a Tarski-style Predicate Calculus permits Unbounded Adicity

Brown(x) 1

Brown(x) & Dog(x) 1

Saw(x, y) 2

Dog(x) & Saw(x, y) 2 unbounded adicity,
but no typolo

Dog(x) & Saw(x, y) & Cat(z) 3 YPOIOBY

Dog(x) & Saw(x, y) & Cat(z) & Saw(z, w) 4 each expression (wff)
is a sentence

Dog(Fido) & Saw(Fido, Garfield) 0

Between(x, v, z) 3 and each sentence
is satisfied by

Quartet(x, y, z, w) 4 all/some/no

Between(x, y, z) & Quartet(w, x, y, x) 4 seque.nces C?f.
domain entities

Between(x, y, z) & Quartet(w, v, v, x) 5

Between(x, y, z) & Quartet(w, v, u, y) 6

Between(x, y, z) & Quartet(w, v, u, t) 7



Degrees of “Semantic Relationality”

 None: e.qg., Monadic Predicate Calculi
— some M is (also) P

 Some, but Less Than Unbounded
— Minimally Relational (maximally limited)
— “Mildly” Relational (severely limited)
— Bounded, but still “pretty permissive”

 Unbounded: e.g., Tarski-style Predicate Calculi
— Mx & Py & Syz & Rxw & Bzuv & ...




Plan for Rest of the Talk

|H

Characterize a notion of “Minimally Relationa

Describe a Possible Language that is Minimally Relational and
(correlatively) “Minimally Interesting” in this respect

Suggest that while Human Meanings may be a little more
interesting, they approximate Minimal Relationality

End with reminders of some other respects in which
Human Languages seem to be Minimally Interesting, and
suggest that semantic typology is yet another case



Minimally Relational

* admit dyadic predicates, but no predicates of higher adicity
— ABOVE(_, ) and cAuse(_, ) are OK; so is AGENT(_, )
— SELL(_, , , ) and BETWEEN(_ , , ) are not-OK

* admit relational notions only in the lexicon
— BETWEEN(_, _, JIM) is not-OK
— ON(_, ) & HORSE(_) is not-OK

e correspondingly limited combinatorial operations

— if oN(_, ) and HORSE(_) combine, the result is monadic
— combining lexical items cannot yield relational notions



We can imagine a language whose expressions are limited to...

(1) finitely many atomic monadic predicates: Mq(_) ... M (_)

(2) finitely many atomic dyadic predicates: D{(_, _) ... Dj(_, )

(3) boundlessly many complex monadic predicates

Monad + Monad = Monad

BROWN(_) + HORSE(_) =» BROWN(_)*HORSE(_)

FAST(_) + BROWN(_)*HORSE(_) =» FAST(_)*BROWN(_)*HORSE(_)

21



We can imagine a language whose expressions are limited to...

(1) finitely many atomic monadic predicates: Mq(_) ... M (_)

(2) finitely many atomic dyadic predicates: D{(_, _) ... Dj(_, )

(3) boundlessly many complex monadic predicates

Monad + Monad = Monad

for each entity:

O(_ ) "W( ) applies to it
if and only if

®(_) applies toit, and
W( ) applies to it

22



We can imagine a language whose expressions are limited to...

(1) finitely many atomic monadic predicates: Mq(_) ... M (_)

(2) finitely many atomic dyadic predicates: D{(_, _) ... Dj(_, )

(3) boundlessly many complex monadic predicates

Monad + Monad = Monad Dyad + Monad =2 Monad
for each entity: ON(_, _) + HORSE(_)
7

O(_ ) "W( ) applies to it
if and only if ?[ON(—’ |—) HORSE(—l)]

®(_) applies toit, and

(thing that is) on a horse
W( ) applies to it



We can imagine a language whose expressions are limited to...

(1) finitely many atomic monadic predicates: Mq(_) ... M (_)

(2) finitely many atomic dyadic predicates: D{(_, _) ... Dj(_, )

(3) boundlessly many complex monadic predicates

Monad + Monad = Monad Dyad + Monad =2 Monad
for each entity: ON(_, _) + HORSE(_)
7

O(_ ) "W( ) applies to it
if and only if

®(_) applies to it, and (thing that is) on a horse
W(_) applies to it # thing that a horse is on

d[ON(_, _)*HORSE(_)]

24



We can imagine a language whose expressions are limited to...

(1) finitely many atomic monadic predicates: Mq(_) ... M (_)

(2) finitely many atomic dyadic predicates: D{(_, _) ... Dj(_, )

(3) boundlessly many complex monadic predicates

Monad + Monad = Monad Dyad + Monad =2 Monad
for each entity: for each entity:
O(_ ) W( ) applies to it d[A(, )*MW( )] applies to it
if and only if / if and only if
®(_) applies toit, and it bears A to something

W( ) applies to it that W( ) applies to

25



A[AGENT(_, ) HORSE( )]*EAT( )AFAST( )
is like
Je[AGENT(e’, e) & HORSE(e)] & EAT(e’) & FAST(e’)

A[AGENT(_, )AFAST(_)*HORSE( )]*EAT( )
is like
Je[AGENT(e’, e) & FAST(e) & HORSE(e)] & EAT(e’)]

We don’t need variables to capture the meanings of
‘horse eat fast’ and ‘fast horse eat’.

26



SEE(_)MA[THEME(_, )HORSE( )]
is like
SEE(e’) & Je[THEME(e’, e) & HORSE(e)]

SEE(_)AA[THEME(_, )"I[AGENT(_, )AHORSE(_)]*EAT( )]
is like
SEE(e””) & Je’[THEME(e”, e’) & Je[AGENT(e’, e)*HORSE(e)] & EAT(e’)]

We don’t need variables to capture the meanings of
‘see a horse’ and ‘see a horse eat’.

27



What are the Human Meaning Types?

--two basic types, <e> and <t>
--endlessly many derived types
of the form <a, B>

-- <> can combine with
<a, B> to form <>

--a monadic type <M>
--a dyadic type <D>, for finitely
many atomic expressions

- <M> + <M> = <M>
<M> + <D> = <M>



Can Human Lexical Iltems have “Level Four Meanings”

\ /

a linguist sold a «car to a friend for a dollar

(sold a friend a car for a dollar)

whatever the order of arguments,
the concept SOLD, which differs from GAVE,
is plausibly (at least) tetradic

?

29



Can Human Lexical Iltems have “Level Four Meanings”

So why not...

N

a linguist sold a «car a friend a dollar
X y 4 w
(she sold this him that)

Ay. Az . Aw. Ax . x sold y to z for w

?

30



Can Human Lexical Items have “Level Four Meanings”?

AZ . AY. AX . GLONK(X, Y, Z)
Vx[X(x) v Y(x) v Z(x)]
Ix[X(x) & Y(x)] & Ix[Y(x) & Z(x)]

Glonk cat friendly dog

31



Can Human Lexical Items have Level Three Meanings?

<t>
. <e, t>
FIDO_., CHASED(_, _).c <e t>» GARFIELD
<t>
<e, et>~ <e, >
ROMEO,,, GAVE(_, _).c < <e 15~ GARFIELD

JULIET

<e>
32



but double-object constructions do not show
that verbs can have Level Three Meanings

Romeo  gave it to Juliet

Romeo  kicked the rock to Juliet
Romeo  kicked Juliet the rock



PN

a thief jimmied a lock with a knife




Why not instead...

< D

a thief jimmied a lock a knife
(x) (y) (2)
he jimmied it that

‘fimmied’ =» Az. Ay . Ax . x jimmied y with z

The concept JIMMIED is plausibly (at least) triadic.
So why isn’t the verb of type <e, <e, <et>>>?




a rock betwéens a lock a knife

(x) (y) (2)

‘betweens’ = Az. Ay . Ax . x is between y and z



Still, one might think that
many verbs do have Level Three Meanings...

<t>

/ \
-E D(_)<et, t> <et>
N

FIDO BARK( , )

<e> <e, et>

<et>

<e, et>

FIDO_., CHASE(_, _) GARFIELD_,,

<e, <e, et>>

37



Can Human Lexical Items have Level Three Meanings?

<e, et>

<<e, et>, <e, et>>

CHASE(_, _) GARFIELD_,,  INTO-A-BARN

THE-SENATOR

<e, <e, et>> <et>

FROM-TEXAS

<e> <§t>

Saying that expressions of type <e, et> can be modified by

expressions of type <et> is like positing a covert Level 4 element.

And why does the modifier skip over the thing chased,
applying instead to the chase?

38



<e, et>

chased
<e,<e, et>>

Garfield was

if the meaning of ‘chase’
is at Level Three,
then a “passivizer” would
also be at Level Four:
<Kg,<eg, et>, <e, et>>

<et>

<e, et>

a

Garfield was chased
<e> <e, et>>

Kratzer and others
“sever” agent-variables
from verb meanings:

‘chase’ =
Ay.\e . eisachaseofy




<et>

FIDO

<e>
<et, <e, et>>

“active voice head”
Level Three

CHASE(_, _)co ot>»  GARFIELD_,,  INTO-A-BARN_,

But if the posited verb meaning is below Level Three,
do we really need the covert Level Three element?

40



FIDO_.. <e, et>
* AGENT
CHASE(_, _)<e, et>>

GARFIELD,,

INTO-A-BARN

<et>

41



What are the Human Meaning Types?

e one familiar answer, via Frege’s conception of ideal languages
(i) a basic type <e>, for entity denoters

(ii) a basic type <t>, for thoughts or truth-value denoters

(iii) if <a> and <B> are types, then so is <a, B>

e butis it independently plausible that some of our
human linguistic expressions have meanings of type <e>?

-- proper nouns like ‘Tyler’, ‘Burge’, and ‘Pegasus’?
-- pronouns like ‘he’, ‘she’, ‘it’, ‘this’, ‘that’ ?

e we know how to Pegasize, and
treat names as special cases of monadic predicates

42



What are the Human Meaning Types?

e one familiar answer, via Frege’s conception of ideal languages
(i) a basic type <e>, for entity denoters

(ii) a basic type <t>, for thoughts or truth-value denoters

(iii) if <a> and <B> are types, then so is <a, B>

e butis it independently plausible that some of our
human linguistic expressions have meanings of type <t>?

-- which ones? VPs, TPs, CPs?

-- pronouns like ‘he’, ‘she’, ‘it’, ‘this’, ‘that’ ?

e we know (via Tarski) how to
treat “sentences” as special cases of monadic predicates

43



Do Human i-Languages have expressions of type <t>?

S =>» NP aux VP

T(P) Why think tensed phrases denote truth values?
/[ \

T V(P)=>» Ae.eis (tenselessly) a John-see-Mary event
past /\
D(P)  V(P)
John / '\
V D(P)
see Mary

Why think the tense morpheme
is of type <et, t> AE . de[Past(e) & E(e)]

as opposed to <et> or <M> A\e . Past(e)

44



Do Human i-Languages have expressions of type <t>?

T(P)
/[ \
T V(P)=>» Ae.eis (tenselessly) a John-see-Mary event
past / \
D(P)  V(P)
John / '\
V.  D(P)
see Mary
a quantifier...
Why think the tense morpheme |

is of type <et, t> AE . de[Past(e) & E(e)]
..that is also a
conjunctive adjunct to V?

45




Kinds of 1
Quantifiers
>
Kinds of Predicates:
Propositional Calculus 0 1 2 3 4 ... unbounded
(monadic) (dyadic) adicity
Mx & Px Rxy ... & Syz & Rxw & Bzuv & ...

Mx & Py



“Minimally Relational”
Second-Order Systems

Kinds of
Quantifiers:

Second-Order

First-Order

Propositional Calculus:
complete sentences

N\

“Mildly Relational”

Second-Order Systems

A

Quantification
over Relations

Church’s

A-Calculus
(maybe typed
a la Frege, and
limited to a few
“Lower Levels”)

(truth-table conjunction)

Quantification
over Properties [N

Aristotelian Sold(x, y, z, w) Tarskian

Syllogisms Between(x, y, z) Predicate

Cause(x, y) Calculus
>
Kinds of Predicates:
1 2 3 unbounded

(monadic) (dyadic) adicity



Plan for Rest of the Talk

IH

Characterize a notion of “Minimally Relationa

Describe a Possible Language that is Minimally Relational and
(correlatively) “Minimally Interesting” in this respect

Suggest that while Human Meanings may be a little more
interesting, they approximate Minimal Relationality

End with reminders of some other respects in which
Human Languages seem to be Minimally Interesting, and
suggest that semantic typology is yet another case



Flavors of Recursion

e Some recursive procedures are very, very, ..., very boring

 Others generate more interesting
[phrases [within [phrases [within [phrases ... ]]]]]

* And some allow for displacement of a sort
that permits construction of relative clauses
like ‘who saw Juliet’ and ‘who Romeo saw’,
whose elements can be systematically recombined
to form boundlessly many expressions
that allow for displacement...



N =» phrases
NP = N

P =» within
PP =>» P NP PP =» within NP =» within N =» within phrases
NP => N PP NP =» N within phrases =2 phrases within phrases

S =» NP aux VP =» Romeo did see Juliet =»
Romeo saw Juliet = Romeo saw who =»
who Romeo sawt € CP




Ways of Generating Lots of Expressions

* Finite State (Markovian)
* Phrase Structure (“Context Free”)

* Transformational
— but humanly constrained (“mildly” context sensitive)

— not so constrained (“pret-ty” context sensitive)
— computable but otherwise unconstrained




PushDown Automata are not very, ..., very boring. Mildly
(A stack is a fine thing.)

Context
Sensitive

e
/’

B?]/ond Context

e .

bale Sensitive Phrase Finite
Structure State

-_— -
e e e -

But Turing Machines
(with limited tape) can do a lot more.



Caveat: distinguish sets of generable expressions (E-languages)
from expression-generating procedures (I-languages) | Mildly

Context
Sensitive

Context

Sensitive Phrase Finite
Structure State

the power relations
reflect the available operations: with regard to generative capacity,
CS-grammars > PS-grammars > FS-grammars




Human Grammars (lI-Languages) seem to have Mildly

a bit more generative power than PS-grammars
8 P 8 Context

Sensitive

Context
Sensitive

Finite
State

Phrase
Structure

| This locates Human Languages in a
“Computational Space.” Can they
be located in a “Semantic Space”?




“Minimally Relational”
Second-Order Systems
(Minimal Typology) ™\

Kinds of
Quantifiers:

Second-Order

First-Order

Propositional Calculus:
complete sentences

“Mildly Relational”
Second-Order Systems

A

Quantification
over Relations

Church’s

A-Calculus
(maybe typed
a la Frege, and
limited to a few
“Lower Levels”)

(truth-table conjunction)

Quantification
over Properties [N

Aristotelian Sold(x, y, z, w) Tarskian

Syllogisms Between(x, y, z) Predicate

Cause(x, y) Calculus
>
Kinds of Predicates:
1 2 3 unbounded

(monadic) (dyadic) adicity



a basic type <e>, for entity denoters

. at Level 5,
a basic type <t>, for truth-value denoters

_ _ more than 5 x 1012
if <a>and <B> are types, then so is <a, >

0. <e> <t> (2) types at Level Zero

1. <e,e> <e, t> <t,e> <t t> (4) at Level One, all <0, 0>

2. eight of <0, 1> eight of <1,0> (32), including <e, et>

sixteen of <1, 1> and <et, t>
3. 64 of <0, 2> 64 of <2, 0> (1408), including
128 of<1,2> 128 of<2,1> <e, <e, et>>; <et, <et, t>>;
1024 of <2, 2> and <<e, et>, t>

4. 2816 of <0, 3> 2816 of <3, 0>
5632 of<1,3> 5632o0f<1, 3> (2,089,472), including
45,056 of <2, 3> 45,056 of <3, 2> <&, <g, <g, <et>> and
1,982,464 of <3, 3> <<e, et>, <<e, et>, t>



Thanks,
and thanks to Jim

James Higginbotham 1
e d 2 < b T o
g0, 1= g S l
b Adp K v A
N9 sy A ':’-.—-\‘), 0 x.ly.
g A = b .-.;_, :4!'. 3 l v .'.I:-.»
In this 5:.5 B Coth ~:1 ety fuorbio eption of semantic inquiry in
generat S wirt tions, I will address questions
about doroins ol DVIClgalion, Lis CLll L Luoil woiaoans that ought to be accounted



