Meanings First
Context and Content Lectures, Institut Jean Nicod

June 6: General Introduction and “Framing Event Variables”
June 13: “I-Languages, T-Sentences, and Liars”

June 20: “Words, Concepts, and Conjoinability”
[about 1/3 of the posted slides, but a lot of the content]

June 27: “Meanings as Concept Assembly Instructions”



Main Idea: Short Form

e |n acquiring words, kids use available concepts to introduce new ones.

Sound('ride') + RIDE(_, )==>RIDE(_ )+ RIDE( , )+ 'ride'

e Meanings are instructions for how to access and combine i-concepts

-- lexicalizing RIDE(_, ) puts RIDE(_) at an accessible address

-- introduced concepts can be constituents of (variable-free)
conjunctions that are formed without a Tarskian ampersand

'fast horses' FAST( )*HORSES( ) €=» FAST( )*HORSE( )APLURAL( )
'ride horses'  RIDE( )Ad[O( , )*HORSES( )]



Lots of Conjoiners

P&Q purely propositional

Fx &V Gx purely monadic

277 2Py

Rx;X, &°F Sx;x, purely dyadic, with fixed order

Rx;X, &PA Sx,x, purely dyadic, any order

Rx X, &°F T X,X5X, polyadic, with fixed order

RXX, & TXgX4X(Xs polyadic, any order

RX;X, &P TXgX, XX the number of variables in the

conjunction can exceed

NOT EXTENSIONALLY the number in either conjunct

EQUIVALENT



P&Q
Fx &M Gx

FxAGx ; RexMGx

DF
RX;X, &°" Sx;X,
DA
RX,X, & SX,X,
PF
RX;Xy &7 TXX5X3X,
PA
RX Xy &™ TX3X4XXs

PA
RX;Xy &™ TX3X XX,

Lots of Conjoiners

purely propositional
purely monadic

G(_) can “join” with F(_) or R( , )

purely dyadic, with fixed order
purely dyadic, any order

polyadic, with fixed order
polyadic, any order

the number of variables in the
conjunction can exceed
the number in either conjunct




Main Idea: Short Form

e |n acquiring words, kids use available concepts to introduce new ones.

Sound('ride') + RIDE(_, )==>RIDE(_ )+ RIDE( , )+ 'ride'

e Meanings are instructions for how to access and combine i-concepts

-- lexicalizing RIDE(_, ) puts RIDE(_) at an accessible address

-- introduced concepts can be constituents of (variable-free)
conjunctions that are formed without a Tarskian ampersand

'fast horses' FAST( )AHORSES( )
'ride horses' RIDE( )Ad[O©( , )*HORSES( )]
‘her ride horses' d[02( , )MHER( )]*RIDE( )Ad[6( , )*HORSES( )]

ext int



Main Idea: Short Form

e |n acquiring words, kids use available concepts to introduce new ones.

Sound('ride') + RIDE(_, )==>RIDE(_ )+ RIDE( , )+ 'ride'

e Meanings are instructions for how to access and combine i-concepts

-- lexicalizing RIDE(_, ) puts RIDE(_) at an accessible address

-- introduced concepts can be constituents of (variable-free)
conjunctions that are formed without a Tarskian ampersand

But what about...

*Chris devoured *Chris put the book

*Brutus sneezed Caesar *Brutus arrived Caesar (to) Antony



Conceptual Adicity

Two Common Metaphors

e Jigsaw Puzzles

-2
* 7™ Grade Chemistry +1p__p+1



Jigsaw Metaphor




Jigsaw Metaphor

one Dyadic Concept
(adicity: -2)

Brutus

“filled by” two Saturaters
(adicity +1)

Unsaturated Saturater

yields a complete Thought
one Monadic Concept
(adicity: -1)

“filled by” one Saturater
(adicity +1)

yields a complete Thought



7th Grade Chemistry Metaphor

a single atom with valence -2
can combine with
two atoms of valence +1
to form a stable molecule



7th Grade Chemistry Metaphor

*1Brutus(KickCaesart?)t



7th Grade Chemistry Metaphor

*1BrutusSang™

an atom with valence -1
can combine with
an atom of valence +1
to form a stable molecule



Extending the Metaphor

Aggie
+1

Aggie is brown

Aggie is (a) cow

BrownCow( )

Brown( )

&
Cow( )

Aggie is (a)
brown cow



Extending the Metaphor

Aggie
+1

Conjoining two
monadic (-1)
concepts can
vield a complex
monadic (-1)
concept




Conceptual Adicity

TWO COMMON METAPHORS
--Jigsaw Puzzles

--7t Grade Chemistry

DISTINGUISH
Lexicalized concepts, L-concepts
RIDE(_, ) GIVE: & 25) ALVIN
Introduced concepts, I-concepts
RIDE( ) GIVE( ) CALLED(_, Sound(‘Alvin’))

my hypothesis: I-concepts exhibit /ess typology than L-concepts

special case: I-concepts exhibit fewer adicities than L-concepts




A Different (older) Hypothesis

Words Label Concepts

Sound('ride') + RIDE( , )==>RIDE( , )+ 'ride'

Sound('Alvin') + ALVIN ==> ALVIN + 'Alvin'

e Acquiring words is basically a process of pairing
perceptible signals with pre-existing concepts

* Lexicalization is a conceptually passive operation

 Word combination mirrors concept combination



Bloom: How Children Learn the Meanings of Words

 word meanings are, at least primarily,
concepts that kids have prior to lexicalization

* learning word meanings is, at least primarily,
a process of figuring out which concepts
are paired with which word-sized signals

* in this process, kids draw on many capacities—e.g.,

recognition of syntactic cues and speaker intentions—

but no capacities specific to acquiring word meanings



Lidz, Gleitman, and Gleitman

“Clearly, the number of noun phrases required for the
grammaticality of a verb in a sentence is a function of the
number of participants logically implied by the verb meaning.

It takes only one to sneeze, and therefore sneeze is intransitive,

but it takes two for a kicking act (kicker and kickee), and hence
kick is transitive.

Of course there are quirks and provisos to these systematic
form-to-meaning-correspondences...”



Lidz, Gleitman, and Gleitman

“Clearly, the number of noun phrases required for the
grammaticality of a verb in a sentence is a function of the
number of participants logically implied by the verb meaning.

It takes only one to sneeze, and therefore sneeze is intransitive,
but it takes two for a kicking act (kicker and kickee), and hence
kick is transitive.

Of course there are quirks and provisos to these systematic
form-to-meaning-correspondences...”



Another Perpsective...

Clearly, the number of noun phrases required for the
grammaticality of a verb in a sentence is not a function of the
number of participants logically implied by the verb meaning.

A paradigmatic act of kicking has exactly two participants
(kicker and kickee), and yet kick need not be transitive.

Brutus kicked Caesar the ball *Brutus put the ball

Caesar was kicked *Brutus put
R T e *Brutus sneezed Caesar

T *Brutus devoured
Brutus gave Caesar a swift kick

Of course there are quirks and provisos. Some verbs do require
a certain number of noun phrases in active voice sentences.



Quirky information for
lexical items like ‘kick’

Concept
of :
adicity n Perceptible
Signal
Concept

of

adicity n

Quirky information for
lexical items like ‘put’

Concept

of

adicity -1 Perceptible

Signal




Clearly, the number of noun phrases
required for the grammaticality of a
verb in a sentence is a function of
the number of participants logically
implied by the verb meaning.

It takes only one to sneeze, and
therefore sneeze is intransitive, but it
takes two for a kicking act (kicker and
kickee), and hence kick is transitive.

Of course there are quirks and
provisos to these systematic
form-to-meaning-correspondences.

Clearly, the number of noun phrases
required for the grammaticality of a
verb in a sentence isn’t a function of
the number of participants logically
implied by the verb meaning.

It takes only one to sneeze, and
usually sneeze is intransitive. But it
usually takes two to have a kicking;
and yet kick can be untransitive.

Of course there are quirks and
provisos. Some verbs do require a
certain number of noun phrases in
active voice sentences.



Clearly, the number of noun phrases
required for the grammaticality of a
verb in a sentence is a function of
the number of participants logically
implied by the verb meaning.

It takes only one to sneeze, and
therefore sneeze is intransitive, but it
takes two for a kicking act (kicker and
kickee), and hence kick is transitive.

Of course there are quirks and
provisos to these systematic
form-to-meaning-correspondences.

Clearly, the number of noun phrases
required for the grammaticality of a
verb in a sentence isn’t a function of
the number of participants logically
implied by the verb meaning.

It takes only one to sneeze, and
sneeze is typically used intransitively;
but a paradigmatic kicking has
exactly two participants, and yet kick
can be used intransitively or
ditransitively.

Of course there are quirks and
provisos. Some verbs do require a
certain number of noun phrases in
active voice sentences.



Quirks and Provisos, or Normal Cases?

KICK(x4, X,) The baby kicked
RIDE(X4, X,) Can you give me a ride?
BEWTEEN(x,, X,, X3) | am between him and her

why not: | between him her

BIGGER(x,, X,) This is bigger than that
why not: This bigs that

MORTAL(...?...) Socrates is mortal
A mortal wound is fatal

FATHER(...?...) Fathers father
Fathers father future fathers
EAT/DINE/GRAZE(...?...)



OK, but what about...

(1) *Chris devoured (2) *Chris put the book

(3) *Brutus sneezed Caesar (4) *Brutus arrived Caesar (to) Antony



OK, but what about...

(1) *Chris devoured (2) *Chris put the book

(1a) Chris devoured the pizza
(1b) Chris ate (1c) Chris ate the pizza

if (1) is unacceptable because ‘devoured’ lexicalized DEVOURED(x, y)

and so this verb has valence -2, then why are (1b) and (1c) acceptable?

if (2) is unacceptable because ‘put’ lexicalized PUT(x, v, z)
and so this verb has valence of -3, then a verb whose valence is —n
can take fewer than n grammatical arguments




OK, but what about...

(1) *Chris devoured (2) *Chris put the book

(1a) Chris devoured the pizza
(1b) Chris ate (1c) Chris ate the pizza

if (1) and (2) are unacceptable because verbal valences are unsatisfied,
then a “single” verb (‘ate’, ‘kick’, ...) can have different “valence forms,”

and valence requirements can sometimes be satisfied by adjuncts

Another way ‘devoured’ fetches a monadic concept; but it also
of encoding imposes a [+Patient] requirement on phrases,
the constrasts partly because it lexicalized a certain dyadic concept



OK, but what about...

(1) *Chris devoured (2) *Chris put the book

(1a) Chris devoured the pizza
(1b) Chris ate (1c) Chris ate the pizza

if (1) and (2) are unacceptable because verbal valences are unsatisfied,
then a “single” verb (‘ate’, ‘kick’, ...) can have different “valence forms,”

and valence requirements can sometimes be satisfied by adjuncts

Another way ‘put’ fetches a monadic concept; but it also
of encoding imposes a [+Patient, +Loc] requirement on phrases,
the constrasts partly because it lexicalized a certain dyadic concept



OK, but what about...

(1) *Chris devoured (2) *Chris put the book

(1a) Chris devoured the pizza
(1b) Chris ate (1c) Chris ate the pizza

Sometimes, unacceptability is just idiosyncracy

*Chris goed to the store

(1d) Chris dined (1e) *Chris dined the pizza
(1f) Chris dined on shrimp (1g) *Chris devoured on shrimp

(2a) ? Chris placed the book (2b) Chris placed the book nicely



OK, but what about...

(1) *Chris devoured (2) *Chris put the book

(1a) Chris devoured the pizza
(1b) Chris ate (1c) Chris ate the pizza

if (1) and (2) are unacceptable because verbal valences are unsatisfied,
then a “single” verb (‘ate’, ‘kick’, ...) can have different “valence forms,”
and valence requirements can sometimes be satisfied by adjuncts

Don’t encode idiosyncracies as structural requirements.
This makes a mystery of flexibility and idiosyncracy.

Distinguish structural requirements from filters.




A verb can access a monadic concept and
impose further (idiosyncratic) restrictions on complex expressions

e Semantic Composition Adicity Number (SCAN)

(instructions to fetch) singular concepts +1 <e>
(instructions to fetch) monadic concepts -1 <e, t>
(instructions to fetch) dyadic concepts -2 <e,<e, t>>

 Property of Smallest Sentential Entourage (POSSE)
zero NPs, one NP, two NPs, ...

the SCAN of every verb can be -1, while POSSEs vary: zero, one, two, ...




a verb’s POSSE may reflect

...the adicity of the concept lexicalized

...whether or not this concept is itself “thematically rich”

...statistics about how verbs are used (e.g., in active voice)

...prototypicality effects

...other agrammatical factors

* ‘put’ may have a (lexically represented) POSSE of three in part because

--the concept lexicalized was PUT( , , )
--this concept is relatively “bleached”

--the frequency of locatives (as in ‘put the cup on the table’) is salient



On any view: Two Kinds of Facts to Accommodate

* Flexibilities
— Brutus kicked Caesar
— Caesar was kicked
— The baby kicked
— | get a kick out of you
— Brutus kicked Caesar the ball

* Inflexibilities
— Brutus put the ball on the table
— *Brutus put the ball
— *Brutus put on the table



On any view: Two Kinds of Facts to Accommodate

* Flexibilities
— The coin melted
— The jeweler melted the coin
— The fire melted the coin
— The coin vanished
— The magician vanished the coin

* Inflexibilities
— Brutus arrived
— *Brutus arrived Caesar



OK, but what about...

(3) *Brutus sneezed Caesar (4) *Brutus arrived Caesar (to) Antony
Well...

Brutus burped Caesar
Brutus vanished Caesar
Brutus sent Caesar Antony
Brutus sent for help

*Brutus goed to the store Unacceptable

*Brutus seems sleeping n/\
Ungranimatical

*Brutus kicked that Caesar arrived

Ungenerable Filtered-Out



Lexicalization as Concept-Introduction (not mere labeling)

Concept
of
type T

Concept
of
type T

Perceptible
Signal

Concept of
type T*



Lexicalization as Concept-Introduction (not mere labeling)

Number( )
type: <e, t>

Number( )
type: <e, t>

Perceptible
Signal

NumberOf[_, ®( )]
type: <<e, t>, <n, t>>




One Possible (Davidsonian) Application: Increase Adicity

ARRIVE(x) mmmm) ARRIVE(e, x)

Concept of
adicity n

Concept of
adicity n

Perceptible
Signal

Concept of
adicity n-1




One Possible (Davidsonian) Application: Increase Adicity

KICK(x,, x,) mmmm» KICK(e, Xy, X,)

Concept of
adicity n

Concept of
adicity n

Perceptible
Signal

Concept of
adicity n-1




Another Possible Application: Make Monads

KICK(x,, x,) mmmm) KICK(e)

~ 7

Concept of KICK(e, x4, X,)
adicity n
Concept of Perceptible
adicity n Signal

Concept of
adicity n-1




Language
Acquisition
Device in its
Initial State

Experience
and
Growth

Phonological Articulation and

Instructions € perception of
AV Signals

Language Acquisition Device
in @ Mature State
(an I-Language):

GRAMMAR
LEXICON

" T 4
Semantic Instructions

N




Two Pictures of
Lexicalization

Concept of
adicity n

Further lexical
information

(regarding
flexibilities)

Concept of
adicity -1

Concept of
adicity n
(or n—1) Perceptible
Signal
further lexical
- information Perceptible
Conc;gpt 0 (regarding Signal
adicity n inflexibilities)




Two Pictures of
Lexicalization

Concept of
adicity n

offer some reminders of the reasons

for adopting the second picture

further lexical

information
adicity n inflexibilities)

Concept of
adicity -1

Perceptible
Signal




Absent Word Meanings

Striking absence of certain (open-class) lexical meanings

that would be permitted
if Human I-Languages permitted nonmonadic semantic types

<e,<e,<e,<e, t>>>> (instructions to fetch) tetradic concepts
<e,<e,<e, t>>> (instructions to fetch) triadic concepts

<e,<e, t>> (instructions to fetch) dyadic concepts

<e> (instructions to fetch) singular concepts



Proper Nouns

even English tells against the idea that lexical proper nouns
label singular concepts (of type <e>)

Every Tyler | saw was a philosopher

Every philosopher | saw was a Tyler

There were three Tylers at the party

That Tyler stayed late, and so did this one
Philosophers have wheels, and Tylers have stripes

The Tylers are coming to dinner

| spotted Tyler Burge

| spotted that nice Professor Burge who we met before

proper nouns seem to fetch monadic concepts,
even if they lexicalize singular concepts



Lexicalization as Concept-Introduction: Make Monads

EEm) TYLER(x)

b g

Concept of CALLED[x, SOUND(‘Tyler’)]
adicity n

Concept of
adicity n

Perceptible
Signal

Concept of
adicity -1




Absent Word Meanings

Striking absence of certain (open-class) lexical meanings
that would be permitted
if I-Languages permit nonmonadic semantic types

<e,<e,<e,<e, t>>>> (instructions to fetch) tetradic concepts
<e,<e,<e, t>>> (instructions to fetch) triadic concepts

<e,<e, t>> (instructions to fetch) dyadic concepts

<e> (instructions to fetch) singular concepts



Absent Word Meanings

Brutus sald a car Caesar a dollar

[

sald

sald

[l

sald

sald

a car]]

[a car]]

a car]]

x soldytoz
=» SOLD(x, S, z,y) (in exchange) for $

=» SOLD(x, S, z, a car)
Caesar] =>» SOLD(x, S, Caesar, a car)

Caesar]] a dollar] =» SOLD(x, a dollar, Caesar, a car)

Caesar bought a car

bought a car from Brutus for a dollar

bought Antony a car from Brutus for a dollar



Absent Word Meanings

Brutus tweens Caesar Antony

tweens = BETWEEN(X, z, y)
[tweens Caesar] =» BETWEEN(x, z, Caesar)
[[tweens Caesar] Antony] =» BETWEEN(x, Antony, Caesar)

Brutus sold Caesar a car
Brutus gave Caesar a car *Brutus donated a charity a car
Brutus gave a car away Brutus donated a car

Brutus gave at the office Brutus donated anonymously



Absent Word Meanings

Striking absence of certain (open-class) lexical meanings
that would be permitted
if I-Languages permit nonmonadic semantic types

<e,<e,<e,<e, t>>>> (instructions to fetch) tetradic concepts
<e,<e,<e, t>>> (instructions to fetch) triadic concepts

<e,<e, t>> (instructions to fetch) dyadic concepts

<e> (instructions to fetch) singular concepts



Absent Word Meanings

Alexander jimmed the lock a knife
jimmed = JIMMIED(X, z, y)
[jimmed [the lock] = JIMMIED(X, z, the lock)

[[immed [the lock] [a knife]] = JIMMIED(x, a knife, the lock)

Brutus froms Rome
froms =>» COMES-FROM(x, vy)

[froms Rome] =» COMES-FROM(x, Rome)



Absent Word Meanings

Alexander jimmed the lock a knife
jimmed = JIMMIED(X, z, y)
[jimmed [the lock] = JIMMIED(X, z, the lock)

[[immed [the lock] [a knife]] = JIMMIED(x, a knife, the lock)

Brutus talls Caesar
talls =>» IS-TALLER-THAN(X, y)

[talls Caesar] =2 IS-TALLER-THAN(x, Caesar)



Why doesn’t the structure below support the following meaning:
A doctor both rode a horse and was from Texas
dedx{Doctor(x) & dy[Rode(e, x, y) & Horse(y) & From(x, Texas)]}

A doctor rode a horse
& and the ride was from Texas

dedx{Doctor(x) &
dy[Rode(e, X, y) &
Horse(y) & From(e, Texas)]}
A doctor rode a horse from Texas



Even on Kratzer’s view,
the verb ‘rode’ does not have a
“robustly relational” meaning

A doctor rode a horse
& and the ride was from Texas

dedx{Doctor(x) & Agent(e, x)
dy[Rode(e, y) &
Horse(y) & From(e, Texas)]}
A doctor rode a horse from Texas



Absent Word Meanings

Striking absence of certain (open-class) lexical meanings
that would be permitted
if I-Languages permit nonmonadic semantic types

<e,<e,<e,<e, t>>>> (instructions to fetch) tetradic concepts
<e,<e,<e, t>>> (instructions to fetch) triadic concepts

<e,<e, t>> (instructions to fetch) dyadic concepts

<e> (instructions to fetch) singular concepts



Language
Acquisition
Device in its
Initial State

Experience
and
Growth

Phonological Articulation and

Instructions € perception of
AV Signals

Language Acquisition Device
in @ Mature State
(an I-Language):

GRAMMAR
LEXICON

" T 4
Semantic Instructions

N




Back to the Main Idea

e |n acquiring words, kids use available concepts to introduce new ones.

Sound('ride') + RIDE(_, )==>RIDE(_ )+ RIDE( , )+ 'ride'

e Meanings are instructions for how to access and combine i-concepts

--lexicalizing RIDE(_, ) puts RIDE( ) at an accessible address

--introduced concepts can be constituents of (variable-free)
conjunctions that are formed without a Tarskian ampersand

'fast horse' FAST( )*HORSE( )
'ride a horse'  RIDE( )*3[O( , _)*HORSE(_)]

Meaning('fast horse') = JOIN{Meaning('fast'), Meaning('horse')}
= JOIN{fetch@'fast'), fetch@’horse’)}



Back to the Main Idea

e |n acquiring words, kids use available concepts to introduce new ones.

Sound('ride') + RIDE(_, )==>RIDE(_ )+ RIDE( , )+ 'ride'

e Meanings are instructions for how to access and combine i-concepts

--lexicalizing RIDE(_, ) puts RIDE( ) at an accessible address

--introduced concepts can be constituents of (variable-free)
conjunctions that are formed without a Tarskian ampersand

'fast horse' FAST( )*HORSE( )
'ride a horse'  RIDE( )*3[O( , _)*HORSE(_)]

Meaning('ride a horse') = JOIN{Meaning('ride'), @[Meaning(‘'horse')]}
= JOIN{fetch@'ride'), ©[Meaning('horse')]}

= JOIN{fetch@'ride'), O[fetch@'horse']}




Comparison with a More Familiar View

Sound('ride') + RIDE(_, ) ==> Ay.Ax.T = RIDE(x, vy)
Sound(’Sadie') + SADIE ==> SADIE

Den:'ride Sadie' = Den:'ride'(Den:'Sadie') = Ax.T = RIDE(x, SADIE)
Den:'from Texas' = Ax.T = FROM(x, TEXAS)
Den:'horse' = Ax.T = HORSE(x)

Den:'horse from Texas' = ???



Comparison with a More Familiar View

'fast horse' FAST( )*HORSE( )
'ride a horse' RIDE( )*adjust[HORSE( )]
RIDE(Z2I[O 575 A HORSE ()]

Sound('ride') + RIDE(_, ) ==> Ay.Ax.T = RIDE(x, vy)
Sound(’Sadie') + SADIE ==> SADIE

Den:'ride Sadie' = Den:'ride'(Den:'Sadie') = Ax.T = RIDE(x, SADIE)
Den:'from Texas' = Ax.T = FROM(x, TEXAS)
Den:'horse' = Ax.T = HORSE(x)

adjust[Den:'from Texas'] = AX.T = X(x) = T & FROM(x, TEXAS)
Den:'horse from Texas' = adjust[Den:'from Texas'](Den:'horse’)

= Ax.T = HORSE(x) & FROM(x, TEXAS)



On my view, meanings are neither extensions nor concepts.

Meanings are composable instructions for how to build concepts.

So the meaning of 'horse' is a part of the meaning of 'fast horse'.

Meaning('fast') = fetch@'fast')

Meaning('horse') = fetch@'horse’)

Meaning('fast horse') = JOIN{Meaning('fast'), Meaning('horse')}
= JOIN{fetch@'fast'), fetch@’horse’)}

But “instructionism” and “conjunctvism” are distinct theses

Meaning('ride Sadie') = APPLY{Meaning('ride'), Meaning('Sadie')}
= APPLY{fetch@'ride'), fetch@'Sadie')}



L is “Semantically Compositional” if...

(A) at least some expressions of L have “semantic values”
that can be specified in terms of finitely many

-- lexical axioms that specify the semantic values of atomic L-expressions, and

-- phrasal axioms that specify the semantic values of complex L-expressions
in terms of the semantic values of their (immediate) constituents

(B) each expression of L has a meaning
that is constituted by the meanings of its (immediate) constituents

lexical axioms describe the meanings of atomic L-expressions

in a way that encodes the typology required by the phrasal axioms,

which describe how the meanings of atomic L-expressions are built



The Meaning of Merging: Restricted Conjunction

if M is @ monadic concept with which we can think about Ms

and Cis a monadic concept with which we can think about Cs,

then CAM is a conjunctive monadic concept with which

we can think about Ms that are also Cs

REDABARN( ) applies to e iff both BARN( ) and RED( ) apply to e



The Meaning of Merging: Restricted Conjunction/Closure
(allowing for a smidgeon of dyadicity)

if M is @ monadic concept with which we can think about Ms

and D is a dyadic concept with which we can

think about things that are D-related to other things,

then DM is a conjunctive monadic concept with which we can

think about things that are D-related to an M

INTOMBARN( ) applies to e iff for some €’,
BARN( ) applies to €’, and
INTO( , ) applies to <e, e’>



Predicate-Argument:
Francois saw Pierre Francois saw Pierre ride horses

Predicate-Adjunct:
ride fast fast horse

Relative-Clauses:
what Francois saw who saw Pierre

Quantifier+Restrictor
every horse most horses

RestrictedQuantifier+Scope

every horse saw Pierre Pierre saw every horse



Predicate-Argument:
Francois saw Pierre Francois saw Pierre ride horses

Higginbotham: ©-linking
©2(e, Francois) & Saw(e, 2, 1) & O(e, Pierre)
©2(€e’, Pierre) & Ride(e’, 2, 1) & O(e’, sm horses)
©2(e, Francois) & Saw(e, 2, 1) & O(e, sm[Pierre ride sm horses])

Heim/Kratzer: function-application (with ‘e’-variables)

[[Ay.Ax.Ae.T iff Saw<e, x, y>(Pierre)](Francois)]
Saw<e, F, P> =>» 02<e, F> & Saw<e, P>

[[Ay.Ax.Ae.T iff Saw<e, x, y>(sm[Pierre ride sm horses])](Francois)]



Predicate-Argument:
Francois saw Pierre Francois saw Pierre ride horses

Higginbotham: ©-linking
©2(e, Francois) & Saw(e, 2, 1) & O(e, Pierre)
©2(€e’, Pierre) & Ride(e’, 2, 1) & O(e’, sm horses)
©2(e, Francois) & Saw(e, 2, 1) & O(e, sm[Pierre ride sm horses])

Proposed Variant

3[02( , )ATHAT-FRANCOIS( )]ASAW( )A3[O( , )ATHAT-PIERRE( )]

3[02( , )ATHAT-PIERRE( )]*RIDE( )A3[O( , ) HORSES( )]

4[02( , )ATHAT-FRANCOIS(_)]*SAW( )AA[e( , )A..()]



Human Language: a language that human children can naturally acquire

(D) for each human language, there is a theory of truth that is also
the core of an adequate theory of meaning for that language

(C) each human language is an i-language:
a biologically implementable procedure that generates

expressions that connect meanings with articulations

(B) each human language is an i-language for which
there is a theory of truth that is also
the core of an adequate theory of meaning for that i-language



(D) for each human language, there is a theory of truth that is also

the core of an adequate theory of meaning for that language

Good Ideas Bad Companion Ideas
“e-positions” allow for “e-positions” are Tarskian variables
conjunction reductions that have mind-independent values

as Foster’s Problem reveals, the meanings computed are
humans compute meanings truth-theoretic properties of
via specific operations human i-language expressions
Liar Sentences don’t Liar T-sentences are true
preclude meaning theories (‘The first sentence is true. iff

for human i-languages the first sentence is true.)



(D) for each human language, there is a theory of truth that is also
the core of an adequate theory of meaning for that language

Good Ideas Bad Companion Ideas
“e-positions” allow for characterizing meaning
conjunction reductions in truth-theoretic terms

yields good analyses
as Foster’s Problem reveals, of specific constructions
humans compute meanings
via specific operations such characterization also
helps address foundational
Liar Sentences don’t issues concerning how
preclude meaning theories human linguistic expressions

for human i-languages could exhibit meanings at all



Main Idea: Short Form

e |n acquiring words, kids use available concepts to introduce new ones.

Sound('ride') + RIDE(_, )==>RIDE(_ )+ RIDE( , )+ 'ride'

e Meanings are instructions for how to access and combine i-concepts

-- lexicalizing RIDE(_, ) puts RIDE(_) at an accessible address

-- introduced concepts can be constituents of (variable-free)
conjunctions that are formed without a Tarskian ampersand

'fast horses' FAST( )*HORSES( )
'ride horses'  RIDE( )A3d[O©( , )*HORSES( )]



Meanings First

MANY THANKS



Predicate-Argument:
Francois saw (a/the/every) Pierre Francois saw Pierre ride horses

does saturation/function-application/@-linking do any work not done
by thematic concepts and simple forms of conjunction/3-closure?

Predicate-Adjunct: ride fast fast horse
here, everybody appeals to a simple form of conjunction
Higginbotham: ©-binding
Heim & Kratzer: Predicate Modification

Relative-Clauses: what Francois saw
here, everybody appeals to a syncategorematic abstraction principle
one way or another: Francois saw Al =»
for some A’ such that A’ =; A, Francois saw A'1l



Quantifier+Restrictor RestrictedQuantifier+Scope
every horse every horse saw Pierre

Pierre saw every horse

(1) Saturation + RestrictedAbstraction

every horse [AYAX.T iff EVERY<X, Y>(Ax.T iff Horse(x)]
Pierre saw Sadie T iff de[Saw(e, Pierre, Sadie)]
Pierre saw _ Ax.T iff de[Saw(e, Pierre, x)

every horse [Pierre saw ] EVERY< ™, Ax.T iff Horse(x)>

every horse [who Pierre saw _ ]

So why doesn’t Every horse who Pierre saw have a sentential reading?
And if determiners express relations, why are they conservative?



Quantifier+Restrictor RestrictedQuantifier+Scope
every horse every horse saw Pierre
Pierre saw every horse

(1) Saturation + RestrictedAbstraction

(2) Conjunction/3-closure/ThematicConcepts + RestrictedAbstraction

Francois saw Pierre

d[External( , )"That-F(_)]*Saw( )*d[Internal( , )*That-P( )]
That,GuySawThat,Guy( )

de[That,GuySawThat,Guy(e)]

AN-That,GuySawThat,Guy( )
1[AN-That,GuySawWhichPerson( )

for some A’ such that A" =, A, A’2 saw A'l



Lots of Conjoiners, Semantics

If T and ™ are propositions, then
TRUE(mt & t*) iff TRUE(t) and TRUE(mt*)

If T and n* are monadic predicates, then for each entity x:
APPLIES[(mt &V rt*), x] iff APPLIES[rt, X] and APPLIES[rt*, X]

If T and t* are dyadic predicates, then for each ordered pair o:
APPLIES[(rt &°A it*), o] iff APPLIES[m, o] and APPLIES[rt*, o]

If T and t* are predicates, then for each sequence o:
SATISFIES[o, (1t &PA mt*)] iff SATISFIES[o, ] and SATISFIES[o, t*]
APPLIES[o, (rt &2 nt*)] iff APPLIES[m, o] and APPLIES[r*, o]



