Solution Assignment 1, MATH 463, Spring 06

Contents

Needed files and definitions

Before running this m-file you need to download the files

http://www.wam.umd.edu/~petersd/463/Arg.m
http://www.wam.umd.edu/~petersd/463/complexpolargridplot.m

We will use I and Pi for the symbolic versions of i and pi:

I = sym('sqrt(-1)');
Pi = sym('pi');
format compact           % don't put blank lines between answers

Problem 1

z1 = 1-I;  z2 = -2-2*I;
t1 = Arg(z1)
t2 = Arg(z2)
t1 =
-1/4*pi
t2 =
-3/4*pi

1(a)

p = z1*z2
Arg(p)
t1 + t2  % Note: t1+h2 is not in (-pi,pi], hence this is not Arg(p)
p =
-4
ans =
pi
ans =
-pi

1(b)

q = z1/z2
Arg(q)
t1 - t2  % Note: t1-t2 is in (-pi,pi], hence this is Arg(q)
q =
1/2*sqrt(-1)
ans =
1/2*pi
ans =
1/2*pi

Problem 2

z = 1 + I
r = abs(z)
th = Arg(z)
w1 = simplify( r^21*(cos(21*th) + I* sin(21*th)) )
w2 = simplify( r^-5*(cos(-5*th) + I* sin(-5*th)) )

plot(double(z).^(1:8),'o-'); axis equal; grid on
z =
1+sqrt(-1)
r =
2^(1/2)
th =
1/4*pi
w1 =
-1024-1024*sqrt(-1)
w2 =
-1/8+1/8*sqrt(-1)

Problem 3

3(i)

w = -1/4 - 1/4*I;
t = Arg(w)
r = abs(w)
z1 = simplify( r^(1/3)*(cos(t/3) + I*sin(t/3)) )   % principal value
omega = cos(2*Pi/3) + I*sin(2*Pi/3)                  % root of 1
z2 = simplify(z1*omega)
z3 = simplify(z1*omega^2)

plot( double([z1 z2 z3 z1]),'o-'); axis equal; grid on
t =
-3/4*pi
r =
1/4*2^(1/2)
z1 =
1/2-1/2*sqrt(-1)
omega =
-1/2+1/2*sqrt(-1)*3^(1/2)
z2 =
1/4*sqrt(-1)*3^(1/2)-1/4+1/4*sqrt(-1)+1/4*3^(1/2)
z3 =
-1/4*sqrt(-1)*3^(1/2)-1/4+1/4*sqrt(-1)-1/4*3^(1/2)

3(ii)

w = -8 + 8*sym('sqrt(3)')*I;
t = Arg(w)
r = abs(w)
z1 = simplify( r^(1/4)*(cos(t/4) + I*sin(t/4)) )   % principal value
omega = cos(2*Pi/4) + I*sin(2*Pi/4)                  % root of 1
z2 = simplify(z1*omega)
z3 = simplify(z1*omega^2)
z4 = simplify(z1*omega^3)

plot( double([z1 z2 z3 z4 z1]),'o-'); axis equal; grid on
t =
2/3*pi
r =
16
z1 =
3^(1/2)+sqrt(-1)
omega =
sqrt(-1)
z2 =
sqrt(-1)*(3^(1/2)+sqrt(-1))
z3 =
-3^(1/2)-sqrt(-1)
z4 =
-sqrt(-1)*3^(1/2)+1

Problem 4

% x + i y = (u + i v)^2 = (u^2 - v^2) + i (2uv)
% x = u^2 - v^2      (eq1)
% y = 2uv            (eq2)
% (x + y)^2 = (u^2 - v^2)^2 + (2uv)^2 = (u^2 + v^2)^2
% r = u^2 + v^2      (eq3)
% (eq1) and (eq3) give
% u^2 = (r + x)/2
% v^2 = (r - x)/2
% By definition of principal value of root we must have u >= 0
% (eq2) and u>=0 imply that sign(v) = sign(y)
% RESULT:   u = sqrt((r+x)/2)
%           v = sign(y)*sqrt((r-x)/2)

4(i)

x = sym(3); y = sym(-4);
r = sqrt(x^2+y^2)
u = sqrt((r+x)/2)
v = -sqrt((r-x)/2)                % "-" since y<0
square = (u + I*v)^2              % check result
root = sqrt(3-4*I)                % The sqrt command gives the same result
r =
5
u =
2
v =
-1
square =
3-4*sqrt(-1)
root =
2-sqrt(-1)

4(ii)

x = sym(4); y = sym(3);
r = sqrt(x^2+y^2)
u = sqrt((r+x)/2)
v = sqrt((r-x)/2)                 % "+" since y<0
square = simplify( (u + I*v)^2 )  % check result
root = sqrt(4+3*I)                % The sqrt command gives the same result
r =
5
u =
3/2*2^(1/2)
v =
1/2*2^(1/2)
square =
4+3*sqrt(-1)
root =
3/2*2^(1/2)+1/2*sqrt(-1)*2^(1/2)

Problem 5

5(i)

a = 1;  b = 1 - I;  c = 4 + 7*I;
d = b^2-4*a*c
s = sqrt(d)          % use formula from problem (4) for finding root
z1 = (-b+s)/(2*a)
z2 = (-b-s)/(2*a)
d =
-16-30*sqrt(-1)
s =
3-5*sqrt(-1)
z1 =
1-2*sqrt(-1)
z2 =
-2+3*sqrt(-1)

5(ii)

Let w:=z^2, then we have to solve the quadratic equation w^2 - 6w + 25 = 0:

a=sym(1); b=sym(-6); c=sym(25);
s = sqrt(b^2-4*a*c)
w1 = (-b+s)/(2*a)
w2 = (-b-s)/(2*a)

z1 = sqrt(w1)        % use formula from problem (4) for finding root
z2 = -z1
z3 = sqrt(w2)        % use formula from problem (4) for finding root
z4 = -z3
s =
8*sqrt(-1)
w1 =
3+4*sqrt(-1)
w2 =
3-4*sqrt(-1)
z1 =
2+sqrt(-1)
z2 =
-2-sqrt(-1)
z3 =
2-sqrt(-1)
z4 =
-2+sqrt(-1)

Problem 6

% Assume that
%
%    pvsqrt(z^2) = z          (1)
%
% As Arg(pvsqrt(w)) is always in (-pi/2,pi/2] we must have
%
%    Arg(z) in (-pi/2,pi/2]    (2)
%
% Let t=Art(z), r=|z| and assume that (2) holds. Then z^2 = r^2 exp(i*2*t)
% (2) implies that 2*t is in (-pi,pi], hence Arg(z^2) = 2*t and
% pvsqrt( z^2 ) = sqrt(r^2) exp(i*(2*t)/2) = r exp(i*t) = z.
%
% ANSWER:
% in polar coordinates: all numbers of the form r*exp(i*t) where
%          r>=0, t in (-pi/2,pi/2]
% in cartesian coordinates: all numbers of the form x + i*y where
%          x>0 or (x=0 and y>=0)

Problem 7

7(a)

complexpolargridplot('z',1,2,0,pi/2)

7(b)

complexpolargridplot('z^3',1,2,0,pi/2)

7(c)

complexpolargridplot('z^-1',1,2,0,pi/2)

7(d)

complexpolargridplot('sqrt(z)',1,2,0,pi/2)