Practice problems for Exam 1

1. Approximate \(y = (3.5)^{1/2} \) using the Taylor polynomial \(p_2(x) \). Give an upper bound \(|y - p_2(x)| \leq \cdots \).

2. We use the following Matlab command: \(y = 1000.2 - 1000.1 \)
 Give an upper bound for the relative error of the computed result.

3. We want to compute \(y = e^{0.01} - 1 \) and use Matlab: \(y = \exp(.001) - 1 \)
 (a) Which operation will cause a large error? Analyze this operation only, and find the expected error for the computed result. Give the answer as a number like \(10^{-8} \). Hint: Use a Taylor approximation for \(e^{0.01} \) to evaluate your expression for the error.
 (b) Can we get a more accurate result if we evaluate the Taylor approximation \(p_3(x) \) in Matlab?

4. Consider the matrix \(A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 4 \\ 4 & 1 & 2 \end{bmatrix} \)
 (a) Use Gaussian elimination WITH pivoting (use the pivot candidate with the largest absolute value) to find the matrices \(L, U \) and the vector \(p \).
 (b) Use \(L, U, p \) to solve the linear system \(Ax = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} \).
 (c) We solve the linear system \(Ax = \begin{bmatrix} 1 \\ 10 \\ 1000 \end{bmatrix} \) and find the solution vector \(x \). Then we find out that we actually need the solution vector \(\hat{x} \) for the linear system \(A\hat{x} = \begin{bmatrix} -1 \\ 10 \\ 1000 \end{bmatrix} \). Find an upper bound \(\|\hat{x} - x\|_\infty \leq \cdots \) assuming \(\|A^{-1}\|_\infty \leq 10 \).