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a b s t r a c t 

The current study develops a transient combustion model formulated in oblate ellipsoidal coordinates to 

analyze the behavior of non-buoyant burner-generated diffusion flames. The combustion model is axially 

symmetric and considers a porous gas-fueled burner called the Burning Rate Emulator (BRE), which is 

idealized as an ellipsoidal disk. An approximate analytical transient solution for the flame shape and heat 

transfer to the surface of the burner is generated as a product of the exact steady-state result and the 

asymptotic transient result that becomes exact far from the burner. Microgravity BRE experiments con- 

ducted at NASA Glenn’s 5.18-s Zero Gravity Research Facility indicated the evolution of an approximately 

ellipsoidal flame moving away from the burner with steady state not achieved during the 5-second test 

period. The microgravity experimental results are shown to be in good agreement with the mathematical 

model, which can help predict the flame behavior beyond the duration of the test. 

Published by Elsevier Inc. on behalf of The Combustion Institute. 
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. Introduction 

A porous circular burner has been recently developed to em-

late the combustion of condensed phase fuels in normal gravity

1] and microgravity conditions [2–4] . Known as the Burning Rate

mulator (BRE), it uses a gaseous fuel mixture as the simulant fuel

ith matching characteristic properties such as heat of gasification,

eat of combustion, surface vaporization temperature, and smoke

oint. Experiments using the burner were conducted at NASA

lenn’s 5.18-s Zero Gravity Research Facility in order to establish

mmediate sustained burning and provide a material flammability

est aboard spacecraft. The burner sizes and parameters for the

icrogravity tests were chosen to represent small laminar pool

res. The aim of the current study is to develop a simple yet

obust mathematical model and demonstrate its utility for such a

iffusion flame in microgravity conditions. 

The fuel flow through the BRE burner is set to generate laminar

iffusion flames that provide an easy way to assess fire behavior

n microgravity. Low momentum jet diffusion flames are probably

he closest in configuration to the BRE generated diffusion flames.

he jet flame microgravity experiments with low Reynolds num-

er have been analyzed theoretically and numerically using an ax-

symmetric cylindrical model [5–18] . The analyses primarily relied

n the Burke–Schumann model [19] , Roper model [20,21] or the
∗ Corresponding author. 
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palding model [22] . These basic models, while effective, provided

nly steady-state conditions. 

The BRE flames had an ellipsoidal shape during the 5-s mi-

rogravity experiment and their aspect ratios decreased with time

2,3] . Steady flames were not attained during the tests [3] . Longer

uration experiments have been planned on the International

pace Station (ISS) to find out if further flame growth would lead

o a steady flame or extinction [23] . The motivation of the current

ork is to mathematically examine the transient aspects of the

RE microgravity flames, focusing on flame growth and not flame

xtinction. That approach is based on a solution evolved from that

f a spherical flame. 

As a spherical diffusion flame is considered as an important

rst step in the formation of the BRE transient model, it is im-

ortant to review that body of work. Spherical steady flames have

een theoretically elucidated by Mills and Matalon [24,25] . The

ransient aspects of spherical flames in microgravity have been

tudied extensively using NASA’s 2.2 S Drop Tower with numer-

cal analyses [26–33] . Atreya and coworkers [26–30] developed a

nite-difference based theoretical model for an unsteady spherical

iffusion flame to understand radiation-induced flame extinction

haracteristics in a quiescent microgravity environment. Tse et al.

31] and Santa et al. [32,33] also studied the transient structure of

urner-generated spherical diffusion flames using a computational

odel based on a modification of the Sandia PREMIX code [34] . 

Other flame geometries have been studied by computational

odeling. For example, Bhowal and Mandal [35] carried out an

n-depth two-dimensional computational analysis of a laminar

https://doi.org/10.1016/j.combustflame.2019.09.030
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Fig. 1. Schematic of heated sphere without flow. 
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Nomenclature 

a semi-major axis 

b semi-minor axis 

c quantity to relate cylindrical and ellipsoidal 

coordinates 

c p specific heat 

D burner diameter 

D diffusivity 

h grid spacing 

�h c heat of combustion per mass of fuel 

k thermal conductivity 

Le Lewis number 

˙ m 

′′ fuel mass flux, or burning rate 
˙ M surface mass flow rate 

p pressure 

Pe Peclet number 

˙ q ′′ heat flux 

r radius 

R burner radius 

R ∗ offset radius 

S stoichiometric ratio 

t time 

T temperature 

u velocity 

x x coordinate 

y dimensionless radius 

Y mass fraction 

y f flame height 

Z mixture fraction 

Greek 

ε aspect ratio of the ellipsoidal object 

η ellipsoidal coordinate, or similarity variable 

θ dimensionless temperature 

μ viscosity 

ξ ellipsoidal coordinate 

ρ density 

τ dimensionless time 

φ velocity potential 

ω vorticity 

Subscripts 

F fuel 

Fb fuel at burner surface 

fl flame 

o burner surface 

O oxygen 

P products 

Pb products at burner surface 

s surface 

∞ ambient 

non-premixed jet flame in reduced gravity conditions. A similar

2D numerical model was developed by Smooke et al. [36,37] for

an axisymmetric laminar diffusion flame over a cylindrical coflow

burner in earth gravity. 

The current work aims to develop an approximate analytical so-

lution for the transient BRE microgravity flame instead of a numer-

ical analysis to gain a better understanding of the fluid dynamics-

thermochemistry interaction in a non-spherical geometry and its

effect on the flame structure. The analytical model also clearly re-

veals generalities in results and permits its accurate assessment,

a task that should also accompany a numerical solution. The BRE

diffusion combustion problem is simplified by neglecting gas radi-
tion and presence of soot as well as assuming an infinitely thin

one of the chemical reaction. Fursenko et al. [38] made simi-

ar assumptions to analytically model a steady spherical diffusion

icroflame. 

The analytical model for the combustion problem is developed

n stages. This is done to demonstrate the analytical approach

nd to establish a firm confidence level for the combustion solu-

ion. First, the transient spherical conduction problem of a heated

phere in a cold gas is presented since it depicts the mathematical

imilarity to the combustion problem. This problem is also used to

ntroduce the crucial approximation needed to develop analytical

olutions. The non-spherical geometry of the flame is then con-

idered by strategically introducing oblate ellipsoidal coordinates.

hese coordinates still maintain the one-dimensional simplicity to

he problem but help generate ellipsoidal flames as observed ex-

erimentally. The solution to the conduction problem can be bro-

en down into components that can be generalized to the combus-

ion problem using a model based on the burning of small particles

ormulated in ellipsoidal coordinates [39,40] . Thus, the ellipsoidal

ombustion model delivers an analytical description of the differ-

nt combustion features. The difference between the approximate

nalytical results and numerical results are calculated for the con-

uction problems with and without blowing to demonstrate the

ccuracy of the modeling approach. The final combustion problem

s then solved to obtain the results that are compared to the BRE

-s microgravity experiments. If the reader is not interested in the

ustification of the modeling approach, then one can proceed di-

ectly to Section 5 . 

. Spherical conduction problem without flow 

To begin, a heated sphere at temperature T s immersed in a

ool environment is considered with ambient temperature T ∞ 

. The

phere has a radius R and the environment has a specific heat c p ,

ensity ρ and thermal conductivity k . There is no flow through the

phere and it transfers heat to the surroundings only through con-

uction. The schematic of the heated sphere is as shown in Fig. 1 . 

The aim is to find a transient analytical solution for the temper-

ture T as a function of distance r from the center of the sphere.

 dimensionless temperature θ is defined for solving this problem

s follows: 

= 

T − T ∞ 

T s − T ∞ 

(1)

The governing equation in this case is the heat conduction

quation [41] which could be written as, 

c p 
∂θ

∂t 
= 

1 

r 2 
∂ 

∂r 

(
k r 2 

∂θ

∂r 

)
(2)

The radial distance r and time t are nondimensionalized to pro-

ide the dimensionless distance y and dimensionless time τ . 

 = 

r 

R 

, τ = 

kt 

ρc p R 

2 
(3)
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Fig. 2. Schematic of the spherical combustion model. 

r

 

t

r

 

n

y  

 

d

 

a  

b

θ

θ

y

3

 

b  

b  

t  

p  

f  

o

 

a

θ

 

a  

a  

s

θ

 

o  

r  

l  
This simplifies the heat conduction equation in terms of all

on-dimensional variables. 

∂θ

∂τ
= 

1 

y 2 
∂ 

∂y 

(
y 2 

∂θ

∂y 

)
(4) 

The initial and boundary conditions need to be defined for this

roblem. The initial temperature, i.e., the temperature at t = 0 is

he ambient temperature T ∞ 

everywhere around the sphere. The

oundary conditions are defined at the surface of the sphere and

t a distance far from the burner ( y → ∞ ). The temperature at the

urface of the sphere is the preset temperature T s while the tem-

erature far from the sphere is the ambient temperature T ∞ 

. These

onditions can be written in non-dimensional form as shown

elow. 

( τ = 0 , y > 1 ) = 0 (5a) 

( τ, y = 1 ) = 1 (5b) 

lim 

 →∞ 

θ ( τ, y ) = 0 (5c) 

The heat conduction equation has a similarity variable solution

lucidated in literature [42] , and it can be expressed as, 

= 

1 

y 
erfc 

(
y − 1 

2 

√ 

τ

)
. (6) 

This result suggests that the solution for temperature is the

roduct of its steady state result and the transient component. It

ill be shown that this is an expected solution form for the prob-

ems considered here. 

Also, the surface heat flux is given as, 

˙ 
 

′′ 
s = 

k ( T s − T ∞ 

) 

R 

+ 

k ( T s − T ∞ 

) 

R 

√ 

πτ
. (7) 

Here, the surface heat flux, a key parameter in the combustion

olution, is represented as the sum of the steady solution and its

ransient component. 

. Heated sphere problem with blowing 

The form of the solution obtained above provides the motiva-

ion for the remainder of the analysis. Note that the term 1/ y in

q. (6) is in fact the exact steady state solution to the problem.

he complete solution is the product of the steady state solution

hat is dominant near the surface of the sphere at r = R , and the

ransient solution dominant far from the sphere. 

To illustrate this solution behavior let us examine a conduction

roblem approaching the nature of the more complex combustion

roblem. Consider a porous sphere at temperature T s with fluid

owing out of the surface at a constant rate with ambient tem-

erature T ∞ 

. The sphere has a radius R and the environment has

 specific heat c p , density ρ and thermal conductivity k that are

ere considered to be constant. The schematic of the sphere is as

hown in Fig. 2 . 

The fluid carries heat by conduction and convection due to the

otion of the fluid. The spherical symmetry makes the model a

ne-dimensional problem. The desired quantity is the transient

emperature T as a function of the radial distance r and the fluid

ow. A dimensionless temperature θ is again defined for solving

his problem as follows: 

= 

T − T ∞ 

T s − T ∞ 

(8) 

The governing equations for this case are the continuity equa-

ion and the energy equation. The continuity equation is given be-

ow where ˙ m 

′′ 
o is the mass flux at the surface which is a constant.
 

2 ρu = r 2 ˙ m 

′′ = R 

2 ˙ m 

′′ 
o = constant (9) 

The energy equation for the fluid with conduction and convec-

ion heat transfer is given as, 

 

2 ρc p 
∂θ

∂t 
+ r 2 ρc p u 

∂θ

∂r 
= 

∂ 

∂r 

(
k r 2 

∂θ

∂r 

)
(10) 

The radial distance r , time t and surface mass flux ˙ m 

′′ 
o are

ondimensionalized as follows: 

 = 

r 

R 

, τ = 

kt 

ρc p R 

2 
, Pe = 

˙ m 

′′ 
o R c p 

k 
(11)

This simplifies the energy equation in terms of all non-

imensional variables. 

∂θ

∂τ
= 

∂ 2 θ

∂ y 2 
+ 

( 2 y − Pe ) 

y 2 
∂θ

∂y 
(12) 

Note that Pe is the Peclet number for this problem. The initial

nd boundary conditions are similar to the previous model and can

e written in non-dimensional form as shown below. 

( τ = 0 , y > 1 ) = 0 (13a) 

( τ, y = 1 ) = 1 (13b) 

lim 

 →∞ 

θ ( τ, y ) = 0 (13c) 

.1. Composite solution 

This section now builds on the solution form of the non-

lowing problem as given in Eq. (6) . The solution is considered to

e the product of the exact steady state solution and the asymp-

otic transient solution in the far field. The accuracy of this ap-

roximation will be shown based on a numerical solution to the

ull equations of Eqs. (12) and (13) together with an error analysis

f the approximate solution. 

The steady state solution for Eq. (12) is obtained and it is given

s, 

= 

exp ( −Pe /y ) − 1 

exp ( −Pe ) − 1 

. (14) 

The effect of fluid flow becomes negligible far from the sphere

nd hence, in Eq. (12) the term with 1/ y 2 can be neglected. This

symptotic equation is the pure conduction problem of Eq. (4) . Its

olution is repeated here as, 

= 

1 

y 
erfc 

(
y − 1 

2 

√ 

τ

)
. (15) 

Now the assumption for the approximate solution as made up

f the steady result with the product of the asymptotic transient

esult for y large is invoked. Therefore, the transient composite so-

ution for Eq. (12) is achieved by replacing (1/ y ) in Eq. (15) with
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Fig. 3. Dimensionless temperature vs radius for Pe = 0.79 (spherical conduction 

model). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Dimensionless temperature vs radius for Pe = 1.52 (spherical conduction 

model). 

Fig. 5. Transient flame standoff (in mm) for Pe = 0.79 (spherical conduction model). 
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the steady state solution given in Eq. (14) . It is important to note

that the steady state solution given by Eq. (14) is proportional to

1/ y for large y so that Eq. (15) is satisfied. Thus, the composite so-

lution is the product of the steady state solution and its transient

solution far from the sphere. Explicitly the approximate solution is

given as 

θ = 

(
exp ( −Pe /y ) − 1 

exp ( −Pe ) − 1 

)
erfc 

(
y − 1 

2 

√ 

τ

)
. (16)

3.2. Numerical solution 

Eq. (12) is solved numerically to determine the accuracy of

Eq. (16) . The equation is a second order partial differential equa-

tion that is semi-discretized. This results in a system of ordinary

differential equations that can be readily solved using a numerical

method for ODEs based on the 2nd order central difference for-

mula. The semi-discretized form of Eq. (12) looks like, (
dθ

dτ

)
i 

= 

θi +1 − 2 θi + θi −1 

h 

2 
+ 

(
2 y i − Pe 

y 2 
i 

)(
θi +1 − θi −1 

2 h 

)
(17)

3.3. Direct comparison of the approximate and numerical results 

To check the accuracy of the composite solution, it is compared

with the numerical solution for two particular cases. The cases cor-

respond to two mass fluxes that range the data of the combus-

tion problem used during the 5-s microgravity experiments [2,3] . A

sphere of diameter 25 mm has a fluid flowing through it. The two

cases are a surface mass flux of ˙ m 

′′ 
0 = 3 . 582 g / m 

2 −s correspond-

ing to a Peclet number of 0.79, and case for a surface mass flux

of ˙ m 

′′ 
0 

= 6 . 887 g / m 

2 −s corresponding to a Peclet number of 1.52.

The environmental properties are taken for Nitrogen at 10 0 0 K. To

compare the results, the numerical analysis is run for up to 30 s

and the dimensionless temperature is recorded as a function of di-

mensionless radius at every time step. Figures 3 and 4 compare the

variation of numerical and the approximate analytical dimension-

less temperature with dimensionless radius for both Peclet num-

bers at three different times: 2 s, 10 s and 30 s. It can be seen that

the analytical and numerical solutions coincide in all regions, i.e.,
ear the sphere, in far field and in between. The approximate so-

ution is within 0.5% of the numerical results. 

Also let us use the conduction problem to represent the

ombustion problem with the flame sheet located where the di-

ensionless temperature is 0.25. The position of this represents

he location of the flame at ( r − R ) and could be determined as

 function of time. We do this in anticipation of using the com-

osite approximate solution for the combustion, and wish to check

he accuracy in determining the ‘flame location’. Figures 5 and 6

ompare the numerical and analytical flame position (0.25) with

ime for both Peclet numbers. Again, the numerical and analytical

olutions in this case are within 0.5% of each other and the er-

or reduces with time. This depicts the reliability and accuracy of

he analytical model for both the dependent variable and its locus

osition. 
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Fig. 6. Transient flame standoff (in mm) for Pe = 1.52 (spherical conduction model). 

Fig. 7. PDE Error% for the composite solution to the spherical conduction problem 

with flow (Pe = 0.79). 
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Fig. 8. Oblate Ellipsoidal Coordinate System for ε = 0.05. 
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.4. Accuracy by substitution method 

Another method to verify the accuracy of the composite solu-

ion is to substitute Eq. (16) in the PDE given by Eq. (12) . The dis-

repancy in the solution, i.e. the amount by which the equation is

ot satisfied, is compared with the magnitude of the largest term

n the equation. The ratio of the two is a measure of the error. The

rror in the PDE is determined as a function of time for different

alues of y ( r / R ). It is considered for a sphere of diameter 25 mm

aving a surface mass flux of ˙ m 

′′ 
o = 3 . 582 g / m 

2 − s , which corre-

ponds to a Peclet number of 0.79. The PDE substitution error is

hown in Fig. 7 . It can be seen that the error is less than 1% for all

adial positions and at all times. This error estimate is consistent

ith the accuracy of the numerical results shown here. 
. Heated ellipsoid problem with blowing 

In anticipation to the combustion problem, the conduction

roblem for an ellipsoidal object with blowing is considered.

blate ellipsoids of revolution are considered here that range in

hape from a sphere to a thin disk. The spherical shape has been

ddressed in Section 3 , and the combustion problem will be rep-

esented as a thin disc. Fluid is emitted at the heated surface of a

orous oblate ellipsoid particle with a constant mass flow rate ˙ M .

he starting point is to introduce the oblate ellipsoidal coordinate

ystem. 

.1. Oblate ellipsoidal coordinates 

The cylindrical coordinate system in ( x, r ) is represented for an

llipsoidal object as shown in Fig. 8 . The oblate ellipsoid is sym-

etric about the x axis and has a semi-major axis a and a semi-

inor axis b . The semi-major axis can be written as a = R . 

The problem can be converted from cylindrical coordinates to

blate ellipsoidal dimensionless coordinates given by ( ξ , η) as il-

ustrated in Fig. 8 . This will simplify the problem for an ellip-

oidal object with blowing at its surface. The system aligns with

he cylindrical coordinate system such that the surface of the el-

ipsoid object is defined by ξ = ξo . The two coordinate systems are

elated by a length c as shown here: 

 

2 = c 2 
(
1 + ξ 2 

)(
1 − η2 

)
(18a) 

 = cξη (18b) 

The quantity c can be related to the semi-major and semi-minor

xis as follows: 

 = c 

√ 

1 + ξo 
2 
, b = c ξo (19)

The oblate ellipsoidal surface in cylindrical coordinates can be

ritten as, 

r 2 

c 2 
(
1 + ξo 

2 
) + 

x 2 

( c ξo ) 
2 

= 1 (20) 

An aspect ratio ε is introduced as the ratio of the semi-minor

xis to the semi-major axis. Then the quantities c and ξ o can be

ritten in terms of the aspect ratio as follows: 

o = 

ε√ 

1 − ε2 
, c = R 

√ 

1 − ε2 (21)

Figure 8 shows the oblate ellipsoidal coordinate system for

= 0.05 or ξo = 0 . 0501 . The oblate ellipsoidal coordinates can be

ritten in terms of cylindrical coordinates as follows: 



98 A. Markan, H.R. Baum and P.B. Sunderland et al. / Combustion and Flame 212 (2020) 93–106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

a  

ξ  

b

u  

∇  

 

t

 

 

w(
 

 

o  

i

 

e  

t  

s  

n  

t  

a

∇  

∇  

∇  

 

e

−  

 

 

P

P  

 

t

 

 

a  

t

θ ( ξ = ξo , t ) = 1 , θ ( ξ → ∞ , t ) = 0 (37) 
ξ = 

1 √ 

2 c 

[
x 2 + r 2 − c 2 + 

√ (
x 2 + r 2 − c 2 

)2 + ( 2 xc ) 
2 

] 1 
2 

, η = 

x 

cξ

(22)

4.2. Governing equations 

The ellipsoid surface is at a constant temperature T s while the

ambient temperature is fixed at T ∞ 

. Here we will assume that the

density ρ and (thermal) diffusivity D ≡ k/ρc p are constant. That

assumption will be relaxed in the combustion problem later. The

objective is to obtain the transient temperature domain for the

fluid surrounding the ellipsoid of revolution by our approximate

method. 

This model follows the previous spherical conduction

model where the dimensionless temperature is given as

θ = ( T − T ∞ 

) / ( T s − T ∞ 

) and the velocity vector as �
 u . Under

constant property assumptions, the governing equations from the

conservation of mass and energy become: 

∇ · ( � u ) = 0 (23a)

∂θ

∂t 
+ ∇ · ( � u θ ) − D∇ · ( ∇θ ) = 0 (23b)

The conservation of mass equation can be solved assuming that

the flow field is irrotational. This follows from the momentum

equation for a constant viscosity [41] : 

ρ

[
∂ � u 

∂t 
+ 

�
 ω × �

 u + ∇ ( � u ) 
2 
/ 2 

]
+ ∇ ( p − p ∞ 

) 

= −μ( ∇ × �
 ω ) + 

4 

3 

μ∇ ( ∇ · � u ) (24)

Here, � ω is the vorticity and p is the pressure related to the flow

field. If the vorticity vanishes then the velocity potential φ can be

introduced such that: 

�
 u = ∇φ, � ω = 0 (25)

This momentum equation can be integrated such that p − p ∞ 

and 

�
 u vanish for r large. The result is the generalized Bernoulli

equation. 

ρ

(
∂φ

∂t 
+ ( � u . � u ) / 2 

)
+ ( p − p ∞ 

) − 4 

3 

μ( ∇ · � u ) = 0 (26)

The velocity satisfies the no-slip boundary condition so long as

the velocity potential φ is a function of ξ everywhere. Substitution

of Eq. (25) into the mass and energy conservation equations yields:

∇ 

2 φ = 0 (27a)

∂θ

∂t 
+ ∇ · ( θ∇φ) − D ∇ 

2 θ = 0 (27b)

In order to explicitly express the above equations in oblate el-

lipsoidal coordinates, it is necessary to express the divergence of a

vector � f ( ξ , η) = ( f ξ , f η) and the gradient of a scalar g ( ξ , η). Math-

ematically, 

∇ · � f = 

1 

c 
(
ξ 2 + η2 

){
∂ 

∂ξ

[√ (
ξ 2 + η2 

)(
ξ 2 + 1 

)
f ξ

]

+ 

∂ 

∂η

[√ (
ξ 2 + η2 

)(
1 − η2 

)
f η

]}
(28a)

∇g = 

1 

c 

√ (
ξ 2 + 1 

)(
ξ 2 + η2 

) ∂g 

∂ξ
�
 i ξ + 

1 

c 

√ (
1 − η2 

)(
ξ 2 + η2 

) ∂g 

∂η
�
 i η (28b)
The no-slip condition at the surface requires that the velocity

otential have no component parallel to any surface of constant ξ
nd the velocity vectors are aligned in the direction of increasing

. Then from Eq. (28b) , the velocity vector � u and its divergence can

e expressed in ellipsoidal coordinates as: 

�
  = ∇φ = 

1 

c 

√ (
ξ 2 + 1 

)(
ξ 2 + η2 

) dφ

dξ
�
 i ξ (29a)

 · � u = ∇ 

2 φ = 

1 

c 2 
(
ξ 2 + η2 

) d 

dξ

[(
ξ 2 + 1 

)dφ

dξ

]
(29b)

Substituting Eq. (29b) in Eq. (27a) , the mass conservation equa-

ion takes the form: 

d 

dξ

[(
ξ 2 + 1 

)dφ

dξ

]
= 0 (30)

This equation can be integrated at the surface of the ellipsoid

here the mass flow rate is ˙ M . 

ξ 2 + 1 

)dφ

dξ
= 

˙ M 

4 πc ρ
(31)

Note that here the mass flow rate is over the entire ellipsoidal

bject. The solution of this equation for φ can be continued, but

nstead we focus on the solution of the energy equation for θ . 

To express the energy conservation equation for the fluid in

llipsoidal coordinates, derivatives of temperature θ with respect

o η are ignored as it is anticipated that the solution to be con-

tructed is a function only of ξ and time. The various compo-

ents of the energy conservation equation can be derived using

he formula for divergence and gradient in ellipsoidal coordinates

s shown in Eqs. (28a) and ( 28b ). 

θ = 

1 

c 

√ (
ξ 2 + 1 

)(
ξ 2 + η2 

) ∂θ

∂ξ
�
 i ξ , 

∂θ

∂η
= 0 (32a)

 

2 θ = 

1 

c 2 
(
ξ 2 + η2 

) ∂ 

∂ξ

[(
ξ 2 + 1 

)∂θ

∂ξ

]
(32b)

 · ( θ∇φ) = 

1 

c 2 
(
ξ 2 + η2 

) ∂ 

∂ξ

[(
ξ 2 + 1 

)∂φ

∂ξ
θ

]
(32c)

Using equation (32) , the energy conservation Eq. (23b) can be

xpressed as shown below. 

∂θ

∂t 
+ 

1 

c 2 
(
ξ 2 + η2 

){
∂ 

∂ξ

[(
ξ 2 + 1 

)dφ

dξ
θ

]

D 

∂ 

∂ξ

[(
ξ 2 + 1 

)∂θ

∂ξ

]}
= 0 (33)

Eq. (31) can be substituted in ( 33 ), to get 

∂θ

∂t 
+ 

1 

c 2 
(
ξ 2 + η2 

) ∂ 

∂ξ

[
˙ M 

4 πcρ
θ − D 

(
ξ 2 + 1 

)∂θ

∂ξ

]
= 0 (34)

The equation becomes more concise when the non-dimensional

eclet number and time are introduced. 

 e c = 

˙ M 

( 4 πc ) ρD 

, τ = 

Dt 

c 2 
(35)

Then, the energy conservation equation can be expressed in

erms of dimensionless parameters as follows: 

∂θ

∂τ
+ 

1 (
ξ 2 + η2 

) ∂ 

∂ξ

[
P e c θ −

(
ξ 2 + 1 

)∂θ

∂ξ

]
= 0 (36)

The boundary conditions for this problem are that the temper-

ture is T s on the surface of the ellipsoid given by ξ = ξo , and the

emperature is T ∞ 

in the far field where ξ → ∞ , or 
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Fig. 9. PDE Error for the composite solution to the ellipsoidal conduction problem. 
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.3. Composite solution 

The composite transient solution for the ellipsoidal conduction

roblem is adopted from the solution presented for the spheri-

al conduction problem with heated flow. This composite solution

ombines the steady state solution to the above problem near the

llipsoid with the far field transient solution. 

The steady state equation follows from Eq. (37) : 

d 

dξ

[
P e c θ −

(
ξ 2 + 1 

)dθ

dξ

]
= 0 (38) 

Eq. (38) can be readily integrated to obtain, 

 e c θ −
(
ξ 2 + 1 

)dθ

dξ
= E (39) 

Here, E is a constant of integration. Eq. (39) is integrated by

earranging the terms and applying the boundary condition that

= 0 at ξ → ∞ . This gives, 

θ
 

0 

dθ

P e c θ − E 
= 

ξ

∫ 
∞ 

dξ

ξ 2 + 1 

(40) 

The above integral can be simplified to the following form: 

1 

P e c 
ln 

[ 
E 

E − P e c θ

] 
= 

π

2 

− arctan ( ξ ) (41) 

The value of the constant E can be obtained by enforcing the

oundary condition for the temperature on the ellipsoid surface,

.e., θ = 1 at ξ = ξo . 

 = P e c 

{ 

1 − exp 

[ 
P e c 

(
arctan ( ξo ) − π

2 

)] } −1 

(42) 

Thus, the final form of the steady state solution reduces to: 

= 

1 − exp 

[
P e c 

(
arctan ( ξ ) − π

2 

)]
1 − exp 

[
P e c 

(
arctan ( ξo ) − π

2 

)] (43) 

here P e c = 

˙ M / ( 4 πcρD ) is the Peclet number for the ellipsoidal

onduction problem. Note that the steady state solution behaves

s 1/ ξ . 

The far field transient solution is developed from Eq. (36) . The

ffect of the surface fluid flow is negligible because Pe is a much

ower order compared to ξ . Also, since ξ → ∞ in the far-field

nd −1 ≤ η ≤ 1 , it is reasonable to assume that ξ 2 + 1 ≈ ξ 2 and
2 + η2 ≈ ξ 2 . Hence, the transient energy Eq. (36) in the far field

educes to the form as shown below. 

∂θ

∂τ
= 

1 

ξ 2 

∂ 

∂ξ

(
ξ 2 ∂θ

∂ξ

)
(44) 

This form of partial differential equation has already been

olved ( Eq. (15) ) and the analytical solution is given as: 

= 

1 

ξ
erfc 

(
ξ − ξo 

2 

√ 

τ

)
(45) 

The above expression is the transient solution for the dimen-

ionless temperature θ in the far-field. If the steady-state for

q. (45) is considered, i.e., τ → ∞ , θ varies with 1/ ξ . This shows

hat the error-function part of the solution is the transient compo-

ent whereas the 1/ ξ indicates the steady component. Hence, to

et the composite solution in the entire domain, 1/ ξ in Eq. (45) is

eplaced with the exact steady state solution derived in Eq. (43) .

he final solution for the dimensionless temperature can be writ-

en as, 

θ = 

{ 

1 − exp 

[
P e c 

(
arctan ( ξ ) − π

2 

)]
1 − exp 

[
P e c 

(
arctan ( ξo ) − π

2 

)]
} 

erfc 

(
ξ − ξo 

2 

√ 

τ

)
, 

P e c = 

˙ M 

(46) 

( 4 πc ) ρD t
.4. Error analysis 

The composite transient solution to the ellipsoidal conduction

roblem with blowing is exact in the near field and the far field.

he objective of the error analysis is to assess the accuracy of the

olution in the entire domain. The accuracy of the transient ellip-

oidal solution is tested by substituting the dimensionless temper-

ture, as derived in Eq. (46) , in the energy equation as given by

q. (36) . The error in the PDE, as previously defined in Section 3.3 ,

s determined with time for different values of ξ . Since η does not

ppear in the final solution, an average value of η2 = 1/3 is used. 

The aspect ratio ε = 0 is chosen here as the burner in the com-

ustion problem will ultimately be approximated by a flat disk,

 disk of diameter 25 mm is considered that has a fluid flow-

ng through it at a surface mass flux of ˙ m 

′′ 
o = 3 . 582g / m 

2 −s cor-

esponding to a Peclet number of 0.39, again representative of the

ombustion problem. The error in the energy equation is shown in

ig. 9 . It can be seen that the error peaks at less than 4% for dif-

erent values of ξ and at all times, rapidly decreasing as time in-

reases. Thus, the accuracy of the approximate composite thermal

olution has been tested here by the ‘substitution’ method, verified

s sound by the full numerical solution in Section 3 . 

. Ellipsoidal combustion model 

The model used to study the combustion induced by the BRE

urners in a microgravity environment can now be considered. The

urner is replaced by a circular disk in an unbounded medium.

 circular disk is the limiting form ( ε = 0) of an oblate ellipsoid

f revolution. The introduction of oblate ellipsoidal coordinates to-

ether with the approximate composite solution approach devel-

ped in Sections 2 –4 permits the construction of an analytical so-

ution for the burner with a fixed flow rate of fuel in microgravity.

ections 2 –4 justify the solution approach, and offer an explicit for-

ula for parameters over the alternative numerical modeling. Of

ourse, the real proof of the solution is how well it predicts the

xperimental data. The experimental data available is the transient

ehavior of the flame shape and the heat transfer to the surface of

he burner for about 5 s in microgravity combustion. 
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Fig. 10. Schematic and geometry of the ellipsoidal body. 
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The burning of fuel leaving the surface of an axially symmetric

oblate ellipsoidal body is studied in a microgravity environment.

The model considers fuel injected through the surface at a constant

mass flow rate ˙ M . The schematic and geometry of the ellipsoidal

body is as shown in Fig. 10 . 

The ellipsoid surface is at a constant temperature T s that is the

vaporization temperature of the fuel. This temperature T s corre-

sponds to the density ρs and diffusivity D s . Initially at time t = 0 ,

the environment surrounding the particle is at a constant temper-

ature T ∞ 

, density ρ∞ 

and diffusivity D ∞ 

. The flame that is initially

at the surface starts spreading outwards while the density ρ , ve-

locity u and temperature T vary in space and time. 

5.1. Conservation laws 

The temperature T and oxygen mass fraction Y O are combined

into a mixture fraction variable Z [39] which can be written as 

Z = 

c p ( T − T ∞ 

) + �h c ( Y O − Y O, ∞ 

) /S 

c p ( T s − T ∞ 

) − �h c Y O, ∞ 

/S 
, (47)

or in alternate forms involving the species as will be shown later.

Here, Y O , ∞ 

is the ambient oxygen mass fraction, �h c is the heat

of combustion per mass of fuel, c p is the specific heat of the gas

and S is the stoichiometric ratio which denotes the mass of oxy-

gen consumed per unit mass of fuel. The mixture fraction model

requires that the Lewis number Le ≡ k/ρc p D = 1 . Then the energy

and species conservation equations can be combined into a single

mixture fraction equation. As in Section 4.2 the velocity is assumed

to be represented by a potential function. The mass conservation

and mixture fraction equations in ellipsoidal coordinates [40] now

take the form with density variable (and following the Equation of

State ρT = ρ∞ 

T ∞ 

): 

∂ρ

∂t 
+ 

1 

c 2 
(
ξ 2 + η2 

) ∂ 

∂ξ

[
ρ
(
ξ 2 + 1 

)∂φ

∂ξ

]
= 0 (48a)

∂ ( ρZ ) 

∂t 
+ 

1 

c 2 
(
ξ 2 + η2 

){
∂ 

∂ξ

[
ρZ 

(
ξ 2 + 1 

)∂φ

∂ξ

]

− ∂ 

∂ξ

[
ρD 

(
ξ 2 + 1 

) ∂Z 

∂ξ

]}
= 0 (48b)

Here, φ is the velocity potential such that � u = ∇φ. The velocity

potential φ is only a function of ξ as per the no-slip condition and

the derivative of mixture fraction Z with respect to η is ignored as

it is anticipated that the solution to be constructed is a function

only of ξ and time so that ( ∂ Z/∂ η = 0 ). The boundary conditions

for this problem following its definition ( 47 ) are that the mixture

fraction Z = 1 on the surface of the burner which is defined by

ξ = ξo , and Z = 0 in the far field where ξ → ∞ . Also, the velocity

potential φ takes a constant value along the burner due to no-slip
ondition, and in the far field takes the form, 

∼ −
˙ M 

4 πρ| � y | (49a)

here ˙ M is the total mass flow rate leaving the particle surface

nd | � y | is the distance from the burner center. For the BRE burner

aken as the upper half of the ellipsoidal general surface, the ve-

ocity potential φ in the far field becomes, 

∼ −
˙ M 

2 πρ| � y | . (49b)

.2. Composite solution: steady 

A composite solution is presented for the ellipsoidal combus-

ion problem similar to the thermal solution Section 4 . The steady

tate continuity and energy equations follow from Eqs. (48a) and

 48b ): 

d 

dξ

[
ρ
(
ξ 2 + 1 

)dφ

dξ

]
= 0 (50a)

d 

dξ

[
ρZ 

(
ξ 2 + 1 

)dφ

dξ

]
− d 

dξ

[
ρD 

(
ξ 2 + 1 

) dZ 

dξ

]}
= 0 (50b)

Here ρ and ρD are assumed to be functions of Z . Eqs. (50a) and

 50b ) can be readily integrated, similar to the derivation in Section

.3 , and the boundary conditions can be applied to get the final

orm of the steady state solution. Eq. (50a) is integrated with the

onstant of integration evaluated for the mass flow rate through

he upper surface of the ellipsoid or burner disc in the limit: (
ξ 2 + 1 

)dφ

dξ
= 

˙ M 

2 πc 
(51a)

Similarly, a first integral of Eq. (50b) can be found in the form:

˙ M 

2 πc 
Z ( ξ ) − ρD( ξ 2 + 1 ) 

dZ 

dξ
= constant (51b)

In this scenario, for the sake of simplicity, ρD is taken as a con-

tant, ρ∞ 

D ∞ 

, as that is a common assumption for gases. This is in

ffect a statement about the temperature dependence of the diffu-

ivity. Then Eq. (51b) takes the form of Eq. (39) , and operating as

efore in Eqs. (40 )–( 42 ), the steady solution follows for Z . 

 = 

1 − exp 

[
P e c 

(
arctan ( ξ ) − π

2 

)]
1 − exp 

[
P e c 

(
arctan ( ξo ) − π

2 

)] (52)

Here, P e c = 

˙ M 

2 πc ρ∞ 

D ∞ 

is the effective Peclet number for the up-

er ellipsoidal combustion problem. Note that ξo = 

ε√ 

1 −ε2 
and c =

 

√ 

1 − ε2 . 

.3. Composite solution: transient 

To get the far field transient solution, as in 4.3, the velocity

s small ( � u → 0 ) and the density now approaches a constant, ρ∞ 

.

lso since ξ → ∞ in the far-field and −1 ≤ η ≤ 1 , it is reasonable

o take ξ 2 + 1 ≈ ξ 2 and ξ 2 + η2 ≈ ξ 2 . Hence, the mixture fraction

ransient Eq. (48b) in the far field reduces to 

∞ 

∂Z 

∂t 
= ρ∞ 

D ∞ 

1 

c 2 ξ 2 

∂ 

∂ξ

(
ξ 2 ∂Z 

∂ξ

)
(53)

This partial differential equation has a solution as shown in

ections 3.1 and 4.3 , and it is given as: 

 = 

1 

ξ
erfc 

(
ξ − ξo 

2 

√ 

τ

)
, τ = 

D ∞ 

t 

c 2 
(54)
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The above expression is the transient solution for the ellip-

oidal combustion problem in the far-field. If the steady-state for

q. (54) is considered, i.e., τ → ∞ , Z varies with 1/ ξ . This shows

hat the error function part of the solution is the transient com-

onent whereas the 1/ ξ indicates the steady component. Hence, to

et the composite solution in the entire domain, 1/ ξ in Eq. (54) is

eplaced with the exact steady state solution derived in Eq. (52) .

ence, the final solution for the mixture fraction can be written

s, 

Z = 

{ 

1 − exp 

[
P e c 

(
arctan ( ξ ) − π

2 

)]
1 − exp 

[
P e c 

(
arctan ( ξo ) − π

2 

)]
} 

erfc 

(
ξ − ξo 

2 

√ 

τ

)
, 

P e c = 

˙ M 

2 πc ρ∞ 

D ∞ 

(55) 

.4. Variation of temperature and species mass fractions 

A piecewise linear state relation given by Eq. (55) expresses

he mixture fraction in terms of the temperature and oxygen mass

raction. Further state relations are chosen to connect the fuel

ass fraction and products mass fraction to the mixture fraction

s shown below. 

 = 

S Y F − ( Y O − Y O, ∞ 

) 

S Y F b + Y O, ∞ 

(56a) 

 = 

( 1 + S ) Y F + Y P 

( 1 + S ) Y F b + Y Pb 

(56b) 

The quantities Y Fb and Y Pb denote the fuel and product mass

ractions at the burner surface respectively. The state relations

merge from the assumptions of Fick’s Law of diffusion and equal

iffusivity for all species, a plausible approximation if nitrogen

s the dominant molecular species as in the experiments. These

elations satisfy the mixture fraction equation and the boundary

onditions. 

The combustion reaction assumed to be infinitely fast such that

he oxidizer and fuel cannot coexist. This is the classical thin flame

ssumption to circumvent the need for explicit chemical kinetics.

he fuel and oxygen are separated by the infinitesimally thin flame

heet that is located by, 

 = Z f l = 

Y O, ∞ 

S Y F b + Y O, ∞ 

(57) 

The above value of the mixture fraction at the flame sheet can

e substituted in the composite solution given by Eq. (55) to obtain

he flame position ξ fl. 

Since the thin flame sheet separates the fuel and the oxygen,

he reaction zone can be divided into two domains, i.e., the oxi-

izer side and the fuel side. On the fuel side of the flame where

o ≤ ξ ≤ ξ fl and Z ≥ Z fl, the species mass fractions can be expressed

s: 

 O = 0 , 

 F = Z Y F b − ( 1 − Z ) Y O, ∞ 

/S, 

 P = Z Y Pb + ( 1 − Z ) ( 1 + S ) Y O, ∞ 

/S, 

 = T ∞ 

+ Z ( T s − T ∞ 

) + ( 1 − Z ) 

(
�h c Y O, ∞ 

S c p 

)
. (58) 

Similarly, on the oxidizer side of the flame where ξ fl ≤ ξ < ∞
nd Z ≤ Z fl, the species mass fractions are given as shown below. 

 F = 0 , 

 O = ( 1 − Z ) Y O, ∞ 

− SZ Y F b , 

 P = Z [ ( 1 + S ) Y F b + Y Pb ] , 

 = T ∞ 

+ Z ( T s − T ∞ 

) + Z 

(
�h c Y F b 

c p 

)
. (59) 
In the expressions for the temperature and the species mass

ractions, Y O , ∞ 

is the ambient oxygen mass fraction which is

nown whereas the fuel and product mass fractions at the surface,

 Fb and Y Pb , respectively, are not known. In order to determine Y Fb ,

t is required that the fuel mass flux crossing the ellipse surface at

teady-state is equal to that carried away by advection and diffu-

ion. This can be expressed as: 

 F b 

(
ρ

∂φ

∂ξ

)
ξ= ξo 

− ρD 

(
∂ Y F 
∂ξ

)
ξ= ξo 

= 

(
ρ

∂φ

∂ξ

)
ξ= ξo 

(60) 

In the above equation, ρD is a constant and the steady mass

ux of fuel supplied through the upper surface is given by Eq. (51)

s, 

˙ 
 

′′ = 

(
ρ

∂φ

∂ξ

)
ξ= ξo 

= 

˙ M 

2 πc 
(
ξo 

2 + 1 

) = ρD 

P e c 

ξo 
2 + 1 

(61) 

Hence, to determine Y Fb , it is necessary to compute the value

f ( ∂ Y F /∂ξ ) ξ= ξo 
at steady-state. The steady-state solution for the

ixture fraction Z given by Eq. (52) can be differentiated and its

alue at the surface of the particle is given as: 

dZ 

dξ

)
ξ= ξo , t→∞ 

=−
(

P e c 

ξo 
2 + 1 

){ 

exp 

[
P e c 

(
arctan ( ξo ) − π

2 

)]
1 − exp 

[
P e c 

(
arctan ( ξo ) − π

2 

)]
}

(62) 

The expression for the fuel mass fraction given in Eq. (58) can

e differentiated to obtain the following relation. 

∂ Y F 
∂ξ

)
ξ= ξo 

= 

(
S Y F b + Y O, ∞ 

S 

)(
∂Z 

∂ξ

)
ξ= ξo 

(63) 

Thus, combining Eqs. (62) and ( 63 ) provides the value for

( ∂ Y F /∂ξ ) ξ= ξo 
which is substituted in Eq. (60) along with Eq. (61) to

btain the fuel mass fraction at the surface Y Fb . 

 F b = 1 −
(

Y O, ∞ 

+ S 

S 

)
exp 

[ 
P e c 

(
arctan ( ξo ) − π

2 

)] 
(64) 

The product mass fraction at the surface Y Pb requires that the

dvection and diffusion of combustion products at the surface

ounterbalance each other. Thus, in the same way as the derivation

f the fuel mass fraction, the product mass fraction at the surface

 Pb can be obtained. 

 Pb = Y O, ∞ 

(
1 + S 

S 

)
exp 

[ 
P e c 

(
arctan ( ξo ) − π

2 

)] 
(65) 

These values for Y Fb and Y Pb complete the solution for temper-

ture and mass fractions. 

.5. Surface heat flux distribution 

The heat flux to the surface of the burner is measured during

he microgravity experiments. The analytical transient behavior of

he heat flux at the surface of the ellipsoidal burner can be derived.

he starting point is the coordinate independent representation of

he surface heat flux. 

˙ 
 

′′ 
s = −k |∇T | s (66) 

Here, k is the thermal conductivity of the fluid and s represents

he burner surface. To simplify Eq. (66) in oblate ellipsoidal coor-

inates, it is necessary to express the gradient of temperature T ( ξ ).

T ( ξ ) = 

1 

c 

√ (
ξ 2 + 1 

)(
ξ 2 + η2 

) ∂T 

∂ξ
�
 i ξ (67) 
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Fig. 11. Comparison of 5-s microgravity tests with the transient model for the 25 mm burner. 
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 i ξ denotes the unit vector normal to the surface of ellipsoid de-

fined by ξ . The temperature gradient can be related to the differ-

ential of mixture fraction from Eq. (47) . 

∂T 

∂ξ
= 

[
( T s − T ∞ 

) − �h c Y O, ∞ 

S c p 

](
∂Z 

∂ξ

)
(68)

The gradient of temperature T ( ξ ) can then be expressed as: 

∇T ( ξ ) = 

1 

c 

√ (
ξ 2 + 1 

)(
ξ 2 + η2 

)[
( T s − T ∞ 

) − �h c Y O, ∞ 

S c p 

]
∂Z 

∂ξ
�
 i ξ (69)
Since surface heat flux is the desired quantity, the temperature

radient at the burner surface, defined by ξ = ξo , can be written

s: 

T ( ξ = ξo ) = 

1 

c 

√ (
ξo 

2 + 1 

)
(
ξo 

2 + η2 
)[

( T s − T ∞ 

) − �h c Y O, ∞ 

S c p 

](
∂Z 

∂ξ

)
ξ= ξo 

�
 i ξo 

(70)

The transient composite solution for the mixture fraction given

y Eq. (55) can be differentiated and its value at the surface of the
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Fig. 12. Comparison of 5-s microgravity tests with the transient model for the 50 mm burner. 
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q

llipsoid body is given as: 

∂Z 

∂ξ

)
ξ= ξo 

=− 1 √ 

πτ
−

(
P e c 

ξo 
2 +1 

){ 

exp 

[
P e c 

(
arctan ( ξo ) − π

2 

)]
1 −exp 

[
P e c 

(
arctan ( ξo ) − π

2 

)]
}

(71) 

The radial heat flux distribution is considered by introducing

he cylindrical variable r to replace the ellipsoidal variable η. 

2 = 1 −
(

r 

R 

)2 

(72) 
Also, the aspect ratio of the ellipsoid body ε can be related

o the surface ellipse ξ o and the variable c using the following

quations. 

o = 

ε√ 

1 − ε2 
, c = R 

√ 

1 − ε2 (73)

Thus, the analytical transient heat flux distribution at the sur-

ace of the ellipsoid body (defined by ξ = ξo ) takes the final form:

˙ 
 

′′ 
s ( r ) = 

˙ q ′′ s ( r = 0 ) √ 

1 −
(
1 − ε2 

)
( r/R ) 

2 
, (74) 
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Fig. 13. Comparison of analytical and experimental flame height for the 25 mm 

burner microgravity tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Comparison of analytical and experimental flame height for the 50 mm 

burner microgravity tests. 

Table 1 

Microgravity tests to study the ellipsoidal combustion model. 

Test no. D (mm) Fuel X O 2 p (atm) ˙ m 

′′ 
(g/m 

2 -s) T s ( °C) 

1 25 C 2 H 4 0.30 0.5 3.53 34.5 

2 25 C 2 H 4 0.26 0.81 3.46 32.9 

3 25 C 2 H 4 0.21 1.0 4.65 32.7 

4 50 50% C 2 H 4 0.3 0.7 6.14 80.7 

5 50 C 2 H 4 0.26 0.81 3.47 89.0 

6 50 C 2 H 4 0.21 1.0 3.41 135.3 

2  

i  

T  

u  

v  

d  

a  

b  

t  

a  

a  

t  

s  

i  

t

 

f  

t  

fl  

c  

p  

5  

s  

i  

m  

h  

d  

t  

i  
where 

˙ q ′′ s ( r = 0 ) = − k 

R 
√ 

1 −ε2 

[ 
( T s − T ∞ 

) − �h c Y O, ∞ 
S c p 

] 
A ε, 

A ε = 

1 √ 

πτ
+ P e c 

(
1 − ε2 

){ 

exp 

[ 
P e c 

(
arctan 

(
ε√ 

1 −ε2 

)
− π

2 

)] 
1 −exp 

[ 
P e c 

(
arctan 

(
ε√ 

1 −ε2 

)
− π

2 

)] 
} 

. 

The BRE burner surface under study is a flat disk. The geometry

of a disk is the limiting configuration of the oblate ellipsoid. The

heat flux distribution at the surface of the burner with ellipsoidal

aspect ratio ε = 0 can be expressed as follows: 

˙ q ′′ s ( r ) = 

˙ q ′′ s ( r = 0 ) √ 

1 − ( r/R ) 
2 

(75)

where 

˙ q 
′′ 
s ( r = 0 ) = − k 

R 

[ 
( T s − T ∞ 

) − �h c Y O, ∞ 
S c p 

] 
A ε=0 , 

A ε=0 = 

1 √ 

πτ
+ P e c 

[ 
exp ( − π

2 P e c ) 
1 −exp ( − π

2 P e c ) 

] 
. 

The direction of the heat flux is normal to the flat burner disk.

It is interesting to note that the surface heat flux follows an inverse

square-root distribution with the least value at the center of the

disk. This dependence has been shown to accurately represent the

data by Markan et al. [4] . 

6. Prediction of 5-s microgravity tests 

The BRE burner, as described in the Introduction and literature

[1-4] , was tested at NASA Glenn’s 5.18-s Zero Gravity Research Fa-

cility and flame growth along with surface heat flux were recorded.

The flames were found to be nearly hemispherical within 5 s, with

the flame height still increasing. The heat flux initially fell quickly

and then became steadier. The results of the BRE microgravity ex-

periments are utilized to investigate the accuracy of the transient

mathematical model. During these experiments, fuel at a constant

mass flux is passed through the burner surface. This is the condi-

tion of the transient model. The burner geometry can be idealized

as an axially symmetric flat porous disk with fuel flowing out from

one side so as to apply the ellipsoidal model. Several representative
5 mm and 50 mm diameter burner tests are selected for compar-

son with the model. The parameters for these tests are shown in

able 1 and form the input to the mathematical model. The prod-

ct of density and diffusivity ( ρD) is taken as a constant and its

alue is fixed at 6 × 10 −5 kg/m-s. Also, the value of thermal con-

uctivity ( k ) is fixed at 0.07 W/m-K, specific heat at 1.167 kJ/kg-K

nd �h c , S depend on the fuel used during the test. Since the BRE

urner is idealized as a flat disk, the ellipsoidal aspect ratio ε is

aken as 0. The measurements during the test include the heat flux

nd the temperature at two locations on the burner surface, one

t the center and the other at an offset radius R ∗ ( R ∗ = 8.25 mm for

he 25 mm burner, R ∗ = 16 mm for the 50 mm burner). The flame

hape is recorded using analog video. The surface temperature dur-

ng the 5 s test does not change by much and hence, it can be

aken as a constant input for the mathematical model. 

It is important to account for the fact that the experiment runs

or only about 5 s and a steady flame is not achieved during the

est. Hence, the transient model would provide a prediction of the

ame shape and heat flux beyond the duration of the test. The

omposite transient solution presented in Section 5.2 is utilized to

rovide a prediction of the flame shape and the heat flux for the

 s drop tests. The ellipsoidal flame location ξ fl is obtained by sub-

tituting the mixture fraction value Z fl at the flame in the compos-

te solution. The heat flux at the surface is obtained using the for-

ula derived in Section 5.4 . Figures 11 and 12 show the predicted

eat flux and flame shape for the tests listed in Table 1 . The pre-

icted flame shape is denoted by dotted lines superimposed over

he flame images. The flame images are taken at each 1-second

nterval. The graph shows the predicted heat flux at the surface
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long with the experimental heat flux at the two locations. There

s good agreement between the predicted heat flux and the exper-

mental heat flux after the initial two seconds. The initial differ-

nces are due to the transformation of the initial 1 g flame to a

icrogravity flame during the 5 s experiment. So the experiment

oes not have the initial condition of the model. The flame height

 f , i.e., the location of the flame above the center of the burner, is

erived from the ellipsoidal flame location ξ fl and compared with

he experimental values. This is done for the 25 mm BRE2 tests in

ig. 13 and the 50 mm BRE2 tests in Fig. 14 . Test 6 from Table 1 is

ot plotted in Fig. 14 since it closely resembles the flame growth

f Test 5. It can be seen for 25 mm and 50 mm tests that the ellip-

oidal combustion model closely predicts the flame height. The 5-s

ame height reaches about 30 – 40% of the predicted steady-state

eight. 

The ISS tests are designed to examine if a steady state can be

chieved. Radiation loss from the flame and extinction are not in-

luded in the current model so it is not clear how this can be ex-

rapolated to longer time durations. But the model accurately pre-

icts the flame shape and heat flux for the microgravity BRE ex-

eriments up to 5-s. 

. Conclusions 

A transient approximate mathematical model for the BRE mi-

rogravity flame is presented. It is based on an axisymmetric

odel that predicts the quasi-steady burning of small firebrands

hat employs oblate ellipsoidal coordinates. This coordinate sys-

em greatly simplifies the problem to one space dimension. The

pproximate analytical transient solution is generated by multiply-

ng an exact steady-state solution with a far-field asymptotic tran-

ient solution. The combustion model is justified by analyses of

onstant property heat transfer problems where comparison with

 numerical solution is very good and theoretical substitution er-

or is very small. The combustion model accurately predicts the

ame shape and heat flux for the microgravity BRE experiments

p to the 5-second ground test durations. The model also correctly

emonstrated that the surface heat flux approaches steady state

aster than the flame length, and may be near steady state at the

 s experimental end point. Hence, the assumption of steady state

or the heat flux at 5 s to derive an effective heat of gasification

or steady burning may be reasonable. However, longer ISS experi-

ents will be telling. 

The five second ground duration was not sufficient to detect any

adiative extinguishment or cool flames. However, radiation might

ecome dominant in the ISS flames due to their extended burn

ime and bigger flame shapes. Barring radiative extinguishment,

he ISS flames burning for 60 s are estimated to reach about 90%

f their steady-state positions. Future work will include the effects

f radiation in the unsteady combustion model as a basis for anal-

sis of the ISS tests. 
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