HW4, due Tuesday, November 11 Math 403, Fall 2013 Patrick Brosnan, Instructor

1. Suppose *X* is a topological space and *U* is an open subset of *X*. Write h_U for the sheaf on *X* consisting of continous sections of the étalé space $U \to X$. So $h_U(V)$ is the empty set if *V* is not contained in *U* and $h_U(V)$ is a singleton if *V* is contained in *U*. Suppose \mathscr{F} is a sheaf of sets on *X*. Show that there is a canonical isomorphism $\mathscr{F}(U) \to \operatorname{Hom}(h_U, \mathscr{F})$ sending a map $\sigma : h_U \to \mathscr{F}$ to the section of $\mathscr{F}(U)$ which is the image of the singleton $h_U(U)$.

2. In a category \mathscr{C} , a morphism $f: X \to Y$ is said to be a *monomorphism* if for all objects Z, the induced map $\operatorname{Hom}(Z,X) \to \operatorname{Hom}(Z,Y)$ is injective. Using the previous exercise, show that a morphism $\mathscr{F} \to \mathscr{G}$ in the category of sheaves on a topological space X is a monomorphism if and only if, for every open U in X, the map $\mathscr{F}(U) \to \mathscr{G}(U)$ is injective.

3. Suppose *X* is a topological space and $i : \{x\} \to X$ is the inclusion of a point of *X*. For a set *S*, we get a sheaf $i_*(S)$ by pushforward. Show that, for any sheaf \mathscr{F} on *X*, Hom $(\mathscr{F}, i_*(S)) = \text{Hom}(\mathscr{F}_X, S)$.

4. In a category \mathscr{C} , a morphism $f: X \to Y$ is said to be an *epimorphism* if the opposite map to f is a monomorphism in the opposite category to \mathscr{C} . Explicitly, this means that f is an epimorphism, if for all Z in \mathscr{C} , the map $\operatorname{Hom}(Y,Z) \to \operatorname{Hom}(X,Z)$ is injective. Using the previous exercise, show that a morphism $\mathscr{F} \to \mathscr{G}$ of sheaves on a topological space X is an epimorphism if and only if the map $\mathscr{F}_x \to \mathscr{G}_x$ is surjective.

5. Show that a map of sheaves on *X* is a monomorphism iff the map $\mathscr{F}_x \to \mathscr{G}_x$ is a monomorphism for all $x \in X$.

6. Show that a morphism of sheaves of sets is an isomorphism if and only if it is an epimorphism and a monomorphism.

7. Write **Rings** for the category of rings. Any scheme *X* defines a functor h_X : **Rings** \rightarrow **Sets** sending a ring *R* to $h_X(R) := \text{Hom}(\text{Spec} R, X)$. Usually we write X(R) for $h_X(R)$ and call X(R) the *R*-valued points of *X*. Show that the natural map $\text{Hom}(X,Y) \rightarrow \text{Hom}(h_X,h_Y)$ is an isomorphism. Conclude that *X* and *Y* are isomorphic if and only if h_X and h_Y are. We say a functor *F* : **Rings** \rightarrow **Sets** is *representable* if it is isomorphic to a functor of the form h_X for *X* a scheme.

8. GW Problem 3.1.

- 9. GW Problem 3.5.
- 10. GW Problem 3.6.