HW2, due Tuesday, September 24 Math 606, Fall 2013 Patrick Brosnan, Instructor

1. Let X denote the affine algebraic subset of $\mathbb{A}^2(\mathbb{C})$ defined by the equation $y^2 = x^3$. Let U denote the complement of the point (1,1) in X. Show that the rational function $f(x,y) = x^2/(y-x)$ is regular on U.

Solution. Clearly f(x,y) is regular outside of the locus where y = x. Thus f is regular on $U \setminus \{0,0\}$. On the other hand, in the fraction field K(X),

$$f = \frac{x^2}{y - x} = \frac{x^2}{y - x} \cdot \frac{y + x}{y + x}$$
$$= \frac{x^2(y + x)}{y^2 - x^2} = \frac{x^2(y + x)}{x^3 - x^2}$$
$$= \frac{y + x}{x - 1}.$$

Since the value of x - 1 is -1 at (0,0), x - 1 is not in the maximal ideal $\mathfrak{m}_{(0,0)}$. So *f* is regular at (0,0).

2. Can *f* be written as g/h with $g,h \in \Gamma(X)$ and *h* non-zero on *U*?

Solution. No. First note that the ideal $(y^2 - x^3) \in \mathbb{C}[x,y]$ is irreducible. In fact, it follows from Gauss's lemma that $y^2 - x^3$ is irreducible as a polynomial in one variable over the field $\mathbb{C}(x)$. So $\Gamma(X) = \mathbb{C}[x,y]/(y^2 - x^3)$ is an integral domain. Now set $Y = \mathbb{A}^1(\mathbb{C})$ and let $\varphi : \Gamma(X) \to \mathbb{C}[t] = \Gamma(Y)$ be the \mathbb{C} -algebra homomorphism given by $x \mapsto t^2, y \mapsto t^3$. This is a well-defined ring homomorphism because the ideal $(y^2 - x^3)$ is sent to 0. So it defines a morphism $p : Y \to X$ of irreducible, affine algebraic sets.

Set $V := X \setminus \{(0,0)\}$ and $W := Y \setminus \{0\}$. Define $\sigma : V \to W$ by $(x,y) \mapsto y/x$. Since 1/x is regular on V, V is a morphism. Moreover, $p \circ \sigma = id_V$ and $\sigma \circ (p|_W) = id_W$. It follows that $K(X) = K(V) = K(W) = K(Y) = \mathbb{C}(t)$. So the ring homomorphism $\varphi : \Gamma(X) \to \Gamma(Y)$ is injective. Clearly the image of φ is $\mathbb{C}[t^2, t^3] \subset \Gamma(Y) = \mathbb{C}[t]$. In other words, $\varphi(\Gamma(X)) = \{P \in \mathbb{C}[t] : P'(0) = 0\}$.

Now suppose $h \in \Gamma(X)$ is non-zero on U. Then $P := \varphi(h) = h \circ p$ is non-zero on $p^{-1}(U) = Y \setminus \{1\}$. Thus $P = \alpha(t-1)^n$ for some non-zero $\alpha \in \mathbb{C}$ and some non-negative integer n. But then $P' = n\alpha(t-1)^{n-1}$. So $P'(0) = n\alpha$. It follows that n = 0. So P, and thus, h is constant.

So f can be writen as g/h with $g.h \in \Gamma(X)$ and h non-zero on U iff $f \in \Gamma(X)$. But $\varphi(f) = t^4/(t^3 - t^2) = t^2/(t-1)$. So $\varphi(f)$ is not in $\mathbb{C}[t]$. Therefore, f is not in $\Gamma(X)$.