
RATIONAL CANONICAL AND JORDAN FORMS

PATRICK BROSNAN

1. Introduction

These are some notes about polynomials and rational canonical form for Math 405.
They mostly cover the material in Chapers 4, 6 and 7 of Linear Algebra by Hoffman and
Kunze. But the proof of the existnce of rational canonical form given here in Theorems 4.8
and 4.10 uses an argument involving duality which seems to make the proof shorter.

1.1. Notation. I write N = {0, 1, . . .}, P = {1, 2, . . .}. I write χ(T ) for the characteristic
polynomial of a linear operator T on a finite dimensional vector space.

2. Consequences of the Euclidean algorithm for polynomial rings

In this section, F is a field and F[x] is the ring of polynomials. We know that F[x] is a
principal ideal domain. In other words, every ideal in F[x] is of the form pF[x] where p is
a polynomial.

Definition 2.1. Suppose p1, . . . , pk are polynomials in F[x] which are not all 0. Set I =

〈p1, . . . , pk〉. Let d denote the monic generator of I. We call d the greatest common divisor
of the pi and write d = gcd(p1, . . . , pk). If d = 1, we say that the polynomials p1, . . . , pk is
relatively prime. Note that, by definition, there exists polynomials q1, . . . , qk ∈ F[x] such
that

d = p1q1 + · · · + pkqk.

So, if p1, . . . , pk are relatively prime, we can find q1, . . . , qk such that
∑k

i=1 piqi = 1.

Lemma 2.2. Suppose p, q ∈ F[x] are not both 0. Set d = gcd(p, q). If e|p and e|q, then
e|d.

Proof. Write d = ap + bq with a, b ∈ F[x]. Then it is obvious. �

Corollary 2.3. Suppose p, q ∈ F[x] are not both 0. Set d = gcd(p, q). Then gcd(p/d, q/d) =

1.

Proof. Suppose e|(p/d) and e|(q/d) for some monic polynomial e. Then ed|p and ed|q. So
ed|d. So e = 1. �

Theorem 2.4. Suppose p, q are relatively prime polynomials in F[x], and f ∈ F[x]. Then
p|q f ⇔ p| f .

Proof. (⇐) is obvious. (⇒): Write 1 = ap + bq. Then p|q f ⇒ p|(ap + bq) f = f . �

Corollary 2.5. Suppose p, q are relatively prime polynomials and f is a polynomial which
is divisible by both p and q. Then pq| f .

Proof. Suppose f = pa for some a ∈ F[x]. Then q| f ⇒ q|a. So a = qb for some b ∈ F[x].
So f = pqb. �
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Definition 2.6. A non-constant polynomial p is reducible if p = ab for a, b non-constant
polynomials. Otherwise not-constant polynomial p which is not reducible is called irre-
ducible.

Theorem 2.7. Suppose p is irreducible and a, b ∈ F[x]. Then p|ab⇒ p|a or p|b.

Proof. We can assume that p is monic. Then gcd(p, a) is either 1 or p. If gcd(p, a) = p
then p|a. Otherwise gcd(p, a) = 1. So p|b by Theorem 2.4. �

Theorem 2.8. Suppose f is a non-constant, monic, polynomial. Then there exists irre-
ducible polynomials p1, . . . , pk such that f = p1 · · · pk. These are unique up to reordering.

The expression f = p1 · · · pk is called the factorization of f into irreducibles.

Proof. Suppose there exists a non-constant, monic polynomial which cannot be written
as a product of irreducibles. Then let f be a non-constant, monic polynomial of smallest
possible degree which cannot be written as such a product. The polynomial f cannot itself
be irreducible (obviously). So we must have f = ab with deg a, deg b < deg f . But then a
and b can be written as products or irreducibles. So so can f .

Supppose there exists a monic, non-constant polynomial with two different factoriza-
tions into irreducibles. We can pick one of smallest possible degree. Write f = p1 · · · pn =

q1 · · · qm for the two factorizations. If pi = q j for some i, j then we can factor out pi and
see that f /pi has two different factorizations. So we can asssume that the sets {p1, . . . , pn}

and {q1, . . . , qm} are disjoint. But p1| f . So p1 must divide one of the qi. So p1 = qi for
some i. Contradiction.

�

Definition 2.9. We say a ∈ F is a root of a polynomial f ∈ F[x] if f (a) = 0. We say F is
algebraically closed if every non-constant polynomial has a root in F. For example, C is
algebraically closed.

Proposition 2.10. Suppose f ∈ F[x] and a ∈ F. Then f (a) = 0⇔ (x − a)| f .

Proof. Write f = (x − a)g + r with r constant. Then f (a) = r. �

Theorem 2.11. Suppose F is algebraically closed. Then a monic polynomial p ∈ F[x] is
irreducible iff p = x − a for some a ∈ F.

Proof. Obviously (x− a) is irreducible. Suppose p is monic, irreducible. Let a be a root of
p. Then p = (x − a)q for some monic q ∈ F[x]. This is a contradiction unless q = 1. �

3. Annihilators and cyclic subspaces

In this section V is a finite dimensional vector space over a field F and T ∈ L(V) is a
linear operator on V .

Definition 3.1. Write Ann(T ) = { f ∈ F[x] : f (T ) = 0}.

We know that Ann(T ) is a non-zero ideal in F[x]. So that leads us to the following
definition.

Definition 3.2. Write min(T ) for the monic generator of Ann(T ).

Definition 3.3. A subspace W ⊂ V is called T-stable if TW ⊂ W.
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Example 3.4. Suppose α ∈ V . Then set

F[T ]α := 〈α,Tα,T 2α, . . .〉.

This is the cyclic subspace generated by α. It is pretty obvious that F[T ]α is a T -stable
subspace of V . A subspace W of V is said to be cyclic if W = F[T ]α for some α ∈ W.

Lemma 3.5. Suppose A and B are T-stable subspaces of V. Then so are A + B and A∩ B.

Proof. Easy exercise. �

Definition 3.6. Suppose W is a T -stable subspace. We write T|W (or occasionally T |W)
for the restriction of T to W. So T|W is the linear operator on W sending any w ∈ W
to Tw. Write Ann(T,W) for Ann(T|W ) and min(T,W) for min(T|W ). If α ∈ V , write
Ann(T, α) := Ann(T, F[T ]α) and min(T, α) := min(T, F[T ]α). If T is fixed, as it often will
be for us, we drop it from the notation and just write Ann(W),min(W),Ann(α) and min(α).

Proposition 3.7. We have Ann(T, α) = { f ∈ F[x] : f (T )α = 0}.

Proof. Almost obvious. Just need to realize that f (T )α = 0 ⇒ f (T )q(T )α = 0 for any
q ∈ F[x]. �

Proposition 3.8. Suppose W ⊂ V is T-stable. Then Ann(W) ⊃ Ann(V). Consequently
min(W)|min(V).

Proof. Obvious. If f ∈ Ann(T,V) then f (T )α = 0 for all α ∈ V . So obviously f (T )α = 0
for all α ∈ W. �

Proposition 3.9. Suppose V = F[T ]α is cyclic. Let f = min(α) = xn + an−1xn−1 + · · · a0.
For each i ∈ N, set αi := T iα. Then

(1) B = (α0, . . . , αn−1) is a basis for V;
(2) αn = −

∑n−1
i=0 aiαi.

(3) In the basis B we have

T =



0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
...

...
...

...
...

0 0 0 · · · 1 −an−1


Proof. Suppose β ∈ V . We can write β = p(T )α for some p ∈ F[x]. Write p = q f + r
with q, r ∈ F[t] and deg r < deg f . Then p(T ) = r(T ) since f (T ) = 0. So we can write
β = r(T )α with deg r < n. This shows that B spans. To show that B is a basis, suppose
r(T )α = 0 for some r of degree less than n. Then f |r. So r = 0. This proves (1).

(2) is obvious because, by definition, f (T )α = 0. (3) follows directly from (2). �

Definition 3.10. The matrix in Proposition 3.9 (3) is called the companion matrix of
F[T ]α. Note that, if V is cyclic, the companion matrix depends only on the minimal
polynomial f of T .

Theorem 3.11. Suppose V = F[T ]α is cyclic. Then min(T ) is equal to the characteristic
polynomial χ(T ) of T .
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Proof. We just need to show that the characteristic polynomial of the companion matrix
is equal to the polynomial f = xn + an−1xn−1 + · · · + a0 (as in Proposition 3.9 (3)). For
this, write f = xg + a0 and induct on n. It is obvious when n = 1; so assume n > 1. The
characteristic polynomial of T is

(3.11.1) h :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0 · · · 0 a0
−1 x 0 · · · 0 a1
0 −1 x · · · 0 a2
...

...
...

...
...

0 0 0 · · · −1 x + an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Let S denote the matrix 

0 0 0 · · · 0 −a1
1 0 0 · · · 0 −a2
0 1 0 · · · 0 −a3
...

...
...

...
...

0 0 0 · · · 1 −an−1


By induction, the characteristic polynomial of S is g. Then, expanding out the determinate
in (3.11.1) in minors on the first column, we see that h = xg+(−1)n−1(−1)n−1a0 = xg+a0 =

f . �

4. Canonical Form

Here again V is a finite dimensional vector space over F and T ∈ L(V).

Lemma 4.1. Suppose E1, E2 ∈ L(V) satisfy the following
(1) E1 + E2 = Id;
(2) E1E2 = E2E1 = 0.

Then E1 and E2 are the projectors onto complementary subspaces.

Proof. We just need to show that E2
i = Ei for i = 1, 2. But we have E1 = E1(E1 + E2) =

E2
1 + E1E2 = E2

1. �

Theorem 4.2. Suppose f := min(T ) = p1 p2 with p1, p2 relatively prime. Set Wi = ker pi.
Then

V = W1 ⊕W2.

Moreover both subspaces in the above decomposition are T-stable, and min(T,Wi) = pi.

Proof. It is obvious that ker pi(T ) is T -stable i = 1, 2.
Pick a1, a2 ∈ F[x] such that a1 p1 + a2 p2 = 1. Then set hi = ai pi, Ei = hi(T ). We have

E1E2 = a1(T )a2(T ) f (T ) = 0 = E2E1, and E1 + E2 = Id. So E1 and E2 are projections onto
complementary subspaces. It follows that V = ker E1 ⊕ ker E2.

Now, Ei = ai(T )pi(T ). So ker pi(T ) ⊂ ker Ei. On the other hand, suppose α ∈ ker E1.
Then p1(T )α = p1(T )(E1 + E2)α = p1(T )E2(T )α = p1(T )a2(T )p2(T )α = a2(T ) f (T )α = 0.
So ker p1(T ) = ker E1. And similarly ker p2(T ) = ker E2.

It is clear that p1(T ) = 0 on W1. Suppose g(T ) = 0 on W1. Then g(T )p2(T ) = 0. So
f |gp2. So p1|g. �

Lemma 4.3. Suppose W1 and W2 are T-stable subspaces of V with min(Wi) = gi. Set
W = W1 + W2 and suppose that gcd(g1, g2) = 1. Then

(a) W1 ∩W2 = {0}. So W = W1 ⊕W2.
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(b) min(W) = g1g2.

Proof. (a): Suppose w ∈ W1∩W2. Then min(w)|g1 and min(w)|g2. So min(w)| gcd(g1, g2) =

1. So min(w) = 1. So w = 0.
(b): Suppose f ∈ F[x]. Then f (T ) = 0 iff f (T )|W1 = f (T )|W2 = 0. This happens iff

g1| f and g2| f . Since g1 and g2 are relatively prime, this happens iff g1g2| f . So min(V) =

g1g2. �

Lemma 4.4. Suppose α1, α2 ∈ V and set gi = min(αi). If gcd(g1, g2) = 1, then min(α1 +

α2) = g1g2.

Proof. Set Wi = F[T ]αi. Then W1 ∩ W2 = {0} since gcd(g1, g2) = 1. So, if we set
W = W1 + W2, the sum is direct and W = W1 ⊕W2. Then, set α = α1 + α2. For f ∈ F[x],
f (T )α = 0 ⇔ f (T )α1 = f (T )α2 = 0 ⇔ g1| f and g2| f . Since g1, g2 are relatively prime,
this happens iff g1g2| f . �

Theorem 4.5. Suppose min(V) = f . Then there is an α ∈ V with min(α) = f .

Proof. If T = 0 so that f = 1, then the result is obvious. So assume that T is non-zero.
Write f =

∏r
i=1 pdi

i with the pi distinct irreducibles and di ∈ P, and induct on r.
If r = 1, then f = pd1

1 . So, for every β ∈ V , we have min(β) = pe(β)
1 for some integer

e(β) satisfying 0 ≤ e ≤ d1. Let e be the maximum value of e(β) obtained as β ranges over
all elements of V . Then p1(T )e = 0 on V . So e = d1. Therefore d1 = e(α) for some α ∈ V
and the result follows.

Now assume r > 1. Write f = gpdr
r with gcd(g, pr) = 1, and write V = W ⊕ Wr with

W = ker g(T ) and Wr = ker pdr
r (T ). By induction, can find β ∈ W such that min(β) =

min(W) = g. And by the proof for r = 1, we can find γ ∈ Wr such that min(γ) = pdr
r . Set

α = β + γ. Then min(α) = gpr
r = f . �

Lemma 4.6. We have Ann(T ∗,V∗) = Ann(T,V).

Proof. For X,Y ∈ L(V), we have (X + Y)∗ = X∗ + Y∗ and (XY)∗ = Y∗X∗. Moreover,
it is easy to see that X = 0 ⇔ X∗ = 0. So p(T )∗ = p(T ∗) for p ∈ F[x]. Therefore,
p(T ) = 0⇔ p(T )∗ = 0⇔ p(T ∗) = 0. �

Lemma 4.7. Suppose W ⊂ V∗ is a T ∗-stable subspace. Then W⊥ ⊂ V is T-stable.

Proof. Suppose v ∈ W⊥ and λ ∈ W. Then 〈λ,Tv〉 = 〈T ∗λ, v〉 = 0. So Tv ∈ W⊥. �

Theorem 4.8. Suppose α ∈ V is an element with f = min(α) = min(T,V). Then there
exists a T-stable subspace K such that

V = (F[T ]α) ⊕ K.

Proof. Set H = F[T ]α. Then min(T ∗,H∗) = min(T,H) = f . So there exists a λ̄ ∈ H∗

such that min(λ̄) = f . Find a λ ∈ V∗ such that λ|H = λ̄. (Exercise 3.5.12 in Hoffman-
Kunze shows that we can do this.) Then p(T )λ = 0 ⇒ p(T )λ̄ = 0. So f |min(λ). But
min(T ∗,V∗) = min(T,V) = f . So we have f = min(λ). Now set K = (F[T ]λ)⊥. By
Lemma 4.7 K is T -stable.

If p(T )α ∈ K then 〈q(T ∗)λ, p(T )α〉 = 〈p(T ∗)λ, q(T )α〉 = 0 for all q ∈ F[T ]. So
p(T ∗)λ̄ = 0. So f |p. So p(T )α = 0. This shows that H ∩ K = {0}. On the other hand,
dim F[T ]λ = deg f = dim H. So dim K = dim V − dim H. So, by the Hausdorff dimension
formula it follows that V = H ⊕ K. �
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Theorem 4.9 (Cayley-Hamilton). Suppose T ∈ L(V) with dim V < ∞. Then the minimal
polynomial of T divides the characteristic polynomial.

Proof. Pick α ∈ V with f = min(α) = min(T,V). Then write V = H⊕K with H := F[T ]α.
We have χ(T ) = χ(T|H) χ(T|K) = f χ(T|K). �

Theorem 4.10 (Rational canonical form). We can find elements α1, . . . , αr of V such that
(1) V = F[T ]α1 ⊕ · · · ⊕ F[T ]αr;
(2) min(αi)|min(αi−1) for i = 2, . . . , r.

Moreover, the polynomials min(αi) are unique. They are called the elementary divisors
of T .

Proof. Apply Theorem 4.8 inductively to prove the existence.
For uniqueness, suppose V,T ∈ L(V) is a pair where the polynomials associated to the

decomposition above are not unique and assume that V has minimal dimension for this
property. So we have

V = F[T ]α1 ⊕ · · · ⊕ F[T ]αr

= F[T ]β1 ⊕ · · · ⊕ F[T ]βs

with min(αi)|min(αi−1) and min(βi)|min(βi−1 for i ≥ 2. Set fi = min(αi), gi = min(βi).
Then f1 = Ann(T,V) = g1.

Suppose pi = qi for i = 1, . . . , j − 1, but p j , q j. By switching the p’s and q’s we can
assume that deg p j ≤ deg q j. Then

p j(T )V = F[T ]p j(T )α1 ⊕ · · · ⊕ F[T ]p j(T )α j−1

=
(
F[T ]p j(T )β1 ⊕ · · · ⊕ F[T ]p j(T )β j−1

)
⊕ F[T ]p j(T )β j ⊕ · · · ⊕ p j(T )F[T ]βs.

We have min(p j(T )αi) = min(p j(T )βi) = pi/p j for i < j. So, for i < j, dim F[T ]p j(T )αi =

dim F[T ]p j(T )βi. Therefore

F[T ]p j(T )β j ⊕ · · · ⊕ p j(T )F[T ]βs = 0.

So, since p j(T )β j = 0, q j|p j. But this implies that q j = p j since deg q j ≥ deg p j. Contra-
diction. �

Proposition 4.11. The product of the elementary divisors is the characteristic polynomial
of T .

Proof. Obvious. Since χ(T |F[T ]αi) = min(T |F[T ]αi). �

Definition 4.12. We say T is nilpotent if T k = 0 for some k ∈ N. Then min(T ) = xn where
n is the smallest positive integer such that T n = 0. We say that n is the nilpotence index of
T .

Proposition 4.13. Suppose T is nilpotent and V is cyclic. Then the companion matrix of
T is

T =



0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0


Proof. Obvious. �
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It follows from the proposition that any nilpotent T is similar to a matrix having blocks
of the form in Proposition 4.13 with size less than or equal to the nilpotence index.

5. Jordan form

Here V is a finite dimensional vector space over a field F which we assume to be al-
gebraically closed. We fix T ∈ L(V), and let f = min(T ). We assume that T , 0 so that
f , 1. Since F is algebebraically closed we can factor

f =

r∏
i=1

(x − ai)di

where ai ∈ F and di, r ∈ P.

Theorem 5.1. Set Wi = ker(T − ai)di for i = 1, . . . r. Then

V = W1 ⊕ · · · ⊕Wr.

Proof. Induct on r. If r = 1 it is obvious. Otherwise write f = g(x − ar)dr . We get

V = W ⊕Wr

where W = ker g(T ), and min(T |W) = g. Now apply induction. �

Corollary 5.2. We can find a basis for V such that T is a block matrix with ` × ` blocks
Ti j, i = 1, . . . , r, j = 1, . . . ,m(i) for some m(i) ∈ P, of the following form.

Ti j =



ai 0 0 · · · 0 0
1 ai 0 · · · 0 0
0 1 ai · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 ai


.

Moreover, if the blocks Ti j are of size λi j, then λi1 + · · · + λim(i) = di.

Proof. Set Ti = T|Wi . Then set Ni = Ti − aiId. Since (T − ai)di = 0, Ni is nilpotent. So we
can write Ni as a sum of blocks as in Proposition 4.13. Then Ti = aiId + Ni, and the result
follows. We say a matrix in the above form is in Jordan canonical form. �

Example 5.3. Suppose we have

T =

 3 1 0
−1 1 0
3 2 2

 .
Let’s compute the Jordan form of T . The first step is to compute the characteristic polyno-
mial. This is (x − 2)3. One way to do this is to just multiply it out. There is also a clever
way to do it using row and column operations.

Now, set

N = T − 2 =

 1 1 0
−1 −1 0
3 2 0

 .
We have

N2 =

0 0 0
0 0 0
1 1 0

 ,N3 = 0.
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So the minimal polynomial of N is x3 and therefore the minimal polynomial of T is (x−2)3.
It follows that T has Jordan form

J :=

2 0 0
1 2 0
0 1 2

 .
Note that we did not have to compute a basis B for which [T ]B has this form to do this
computation.

But suppose we want such a basis. It’s not hard. We just need to find a vector α such
that F[N]α = V . In other words, we need a vector not in the kernel of N2. So e1 will do.
Set B = (e1,Ne1,N2e1) = (e1, e1 − e2 + e3, e3). Then [T ]B = J.

Now, let’s give the clever way compute χT using row and column operations. Set

S =

x − 3 −1 0
1 x − 1 0
3 −2 x − 2

 .
The idea is to do row and column operations (including permuting rows and permuting
columns) in such a way as to reduce S to a diagonal matrix. Keeping track of the sign
of the determinant. Suppose R1,R2 and R3 are the rows and p is a polynomial. Then the
matrix with rows R1,R2 + pR1,R3 has the same determinant as S . This allows us to reduce
the degrees in the the matrix using long division.

So here’s the computation:

|S | = −

∣∣∣∣∣∣∣∣
1 x − 1 0

x − 3 −1 0
3 −2 x − 2

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 x − 1 0
0 −1 − (x − 1)(x − 3) 0
0 −2 − 3(x − 1) x − 2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 0 0
0 x2 − 4x + 4 0
0 −3x + 1 x − 2

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 0 0
0 −3x + 1 x − 2
0 (x − 2)2 0

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 0 0
0 x − 2 −3x + 1
0 0 x2 − 4x + 4

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 0
0 x − 2 −5
0 0 (x − 2)2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 0 0
0 5 x − 2
0 −(x − 2)2 0

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 0
0 5 x − 2
0 0 (x − 2)3/5

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 0
0 1 0
0 0 (x − 2)3

∣∣∣∣∣∣∣∣ .
So |S | = (x− 2)3. Note that we only really had to do the first three parts of the computation
to get down to a lower triangular matrix. However, I wanted to do this computation to the
end so that I could state the following fact.

Theorem 5.4. Suppose T ∈ L(V) and let S = xId − T. Using row and column operations
as above, we can reduce S to a diagonal matrix of the form

(5.4.1)


p1 0 . . . 0
0 p2 . . . 0
...

...
...

0 0 . . . pn


where the pi are monic polynomils and p1|p2| · · · pn. Then the pi are the elementary divisors
of T (in reverse order with 1’s omitted).

Proof. See §7.4 of Hoffman and Kunze. �
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Example 5.5. What is the Jordan canonical form of the matrix

N =

0 a b
0 0 c
0 0 0


with a, b ∈ C? The easiest way to figure this out is to note that Ne3 = be1+ce2, N2e3 = ace1
and N3e3 = 0. So the minimal polynomial divides x3. If a, c are both non-zero, then
V = C[N]e3. So, using the ordered basis e3,Ne3,N2e3, we see that

(5.5.1) N ∼

0 0 0
1 0 0
0 1 0

 .
If a = b = c = 0, then clearly N is the 0-matrix. Otherwise, N has Jordan form

(5.5.2)

0 0 0
1 0 0
0 0 0


and elementary divisors x2 and x. This is easy to see abstractly because the list of elemen-
tary divisors of N is not x3 and not x, x, x. So the only thing it can be is x2, x. And this
shows that the Jordan form must be as above.

However, to see it explicitly it helps to work in cases. Let’s do the case where a = 0
but c , 0 explicitly using the method of proof in Theorem 4.8. This is certainly not the
easiest way to do the computation. But it may help in understanding how the proof of
Theorem 4.8 works. Set H = C[N]e3 = 〈, e3, be1 + ce2〉. Let e∗1, e

∗
2, e
∗
3 denote the dual

basis the the standard basis e1, e2, e3. Set λ = e∗2 and let λ̄ denote the restriction of λ
to H. Then (N∗λ̄, e3) = (λ̄,Ne3) = (λ̄, be1 + ce2) = (e∗2, be1 + ce2) = c. And, since
N2 = 0, (N∗)2 = 0 as well. So C[N∗]λ̄ = H∗. So, following the argument in the proof of
Theorem 4.8, set K := (C[N∗]λ)⊥. We have Ne∗2 = ce∗3. So K = 〈e∗2, e

∗
3〉
⊥ = 〈e1〉. We get

V = H ⊕ K = 〈e3, be1 + ce2〉 ⊕ 〈e1〉. for the Jordan blocks. In other words, with respect to
the ordered basis B = (e3, be1 + ce2, e1), N has the matrix in (5.5.2).

Example 5.6. Set

T =

4 0 1
2 3 2
1 0 4

 .
Let’s find the elementary divisors of T both by hand and using the method in Theorem 5.4.
First we do the row and column operations needed. We write A ≈ B if A and B differ by an
elementary row or column operation. (Not to be confused with ∼ for similarity of matrices.
But hopefully this will be clear from the context.) We have

S =

x − 4 0 −1
−2 −3 −2
−1 0 −4

 ≈
 −1 0 −4
x − 4 0 −1
−2 x − 3 −2


≈

 −1 0 0
x − 4 0 (x − 4)2 − 1
−2 x − 3 −2x + 6

 ≈
−1 0 0

0 0 x2 − 8x + 15
0 x − 3 −2x + 6


≈

1 0 0
0 x − 3 −2x + 6
0 0 (x − 3)(x − 5)

 ≈
1 0 0
0 x − 3 0
0 0 (x − 3)(x − 5)

 .
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This tell us that the elementary divisors are (x − 3) and (x − 3)(x − 5). It follows that T has
diagonal Jordan form. That is

T ∼

3 0 0
0 3 0
0 0 5

 .
But, since we haven’t prove Theorem 5.4 yet. Maybe we don’t trust it. So let’s find the

Jordan form another way. The above computation tells us at least that χ(T ) = (x−3)2(x−5).
So we have

T − 5 =

−1 0 1
2 −2 2
1 0 −1

 .
This has row-echelon form 1 0 −1

0 1 −2
0 0 0

 .
So (1, 2, 1) generates the eigenspace of T with eigenvalue 5.

Now

T − 3 =

1 0 1
2 0 2
1 0 1

 = (1/2)(T − 3)2.

This row reduces to 1 0 1
0 0 0
0 0 0

 .
This shows us that that vectors (−1, 0, 1) and (0, 1, 0) generate the eigenspace with eigen-
value 3. So again we get that T is diagonalizable into the form above.
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