
1. Introduction

Definition 1.1. Suppose G is a group. A G-set is a pair (X, ρ) where X is a set and ρ : G →
A(X) is a group homomorphism.

1.2. Suppose (X, ρ) is a G-set. If g ∈ G and x ∈ X, then we write gx for ρ(g)(x). Note that,
for g, h ∈ G, (gh)x = ρ(gh)(x) = ρ(g)(ρ(h)(x)) = g(hx). Since we can use the notation gx
instead of ρ(g)(x), we do not always need to explicitly name the group homomorphism ρ.
So, we often refer to a G-set simply as X instead of as the pair (X, ρ). If (X, ρ) is a G-set,
then the map

a : G × X → X given by
(g, x) 7→ gx

is called the action map. Note that the action map determines ρ because ρ(g)(x) = a(g, x)
for all x ∈ X.

Note also that a(gh, x) = ρ(gh)(x) = ρ(g)(ρ(h)(x)) = a(g, a(h, x)), and that a(e, x) =
ρ(e)(x) = idX(x) = x for all x ∈ X.

Proposition 1.3. Suppose X is a set, G is a group, and suppose a : G × X → X is a map
satisfying

a(g, a(h, x)) = a(gh, x);(1.3.1)
a(e, x) = x(1.3.2)

for g, h ∈ G and x ∈ X. For g ∈ G, set ρ(g)(x) = a(g, x). Then (X, ρ) is a G-set with action
map a.

Proof. Suppose g ∈ G and x ∈ X. Then ρ(g)ρ(g−1)(x) = a(g, a(g−1, x)) = a(gg−1, x) =
a(e, x) = x. Therefore ρ(g) ◦ ρ(g−1) = id. So ρ(g) ∈ A(X). We have ρ(gh)(x) = a(gh, x) =
a(g, a(h, x)) = ρ(g)(ρ(h)(x)) = (ρ(g) ◦ ρ(h))(x). So ρ(gh) = ρ(g) ◦ ρ(h). Therefore, ρ : G →
A(X) is a group homomorphism. �

Definition 1.4. Suppose X is a G-set. A sub-G-set is a subset Y of X such that, for all y ∈ Y
and g ∈ G, gy ∈ Y .

Proposition 1.5. Suppose X is a G-set and {Yi}i∈I are sub-G-sets. Then ∩i∈IYi is a sub-G-
set.

Proof. Suppose y ∈ ∩i∈IYi and g ∈ G. Then, for each g ∈ G, gy ∈ Yi. So gy ∈ ∩i∈IYi. �

Definition 1.6. Suppose X is a G-set and x ∈ X. The stabilizer of x is Gx := {g ∈ G : gx =
x}. The orbit of x is the set Gx := {gx : g ∈ G}.

Proposition 1.7. Suppose X is a G-set and x ∈ X.

(1) Gx ≤ G;
(2) The orbit of x is a the intersection of all sub-G-sets of X containing x.

Proof. (1): Clearly, e ∈ Gx, since ex = x. Suppose g, h ∈ Gx. Then gh−1x = gh−1hx =
gx = x. So gh−1 ∈ Gx. Therefore Gx ≤ G.

(2): First we show that Gx is a sub-G-set. To see this, suppose gx ∈ Gx with g ∈ G and
x ∈ X. Then, if h ∈ G, h(gx) = (hg)x ∈ Gx. So Gx is a sub-G-set and clearly Gx contains
x. On the other hand, suppose Y is a sub-G-set of X containing x. Then, for any g ∈ G,
gx ∈ Y . So Y contains Gx. (2) follows. �
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Lemma 1.8. Suppose X is a G set. Let R be the set of all pairs (x, y) ∈ X × X such that
x = gy for some g ∈ G. Then

(1) R is an equivalence relation on X.
(2) If x ∈ X, then the equivalence class [x] of x is the orbit Gx.

Proof. (1): Write x ∼ y if (x, y) ∈ R. Then, for x ∈ X, x ∼ x since x = ex. If x ∼ y, then
x = gy so y = g−1x. So y ∼ x. Similarly, if x ∼ y and y ∼ z, then x = gy and y = hz for
some g, h ∈ G. So x = g(hz) = (gh)z. So x ∼ z.

(2): We have y ∈ [x] if and only if y = gx for some g ∈ G. By definition, this holds if
and only if y ∈ Gx. �

Corollary 1.9. Suppose X is a G-set. Then the set {Gx : x ∈ X} of G-orbits of X is a
partition of X.

Proof. Follows directly from Lemma 1.8. �

Definition 1.10. Suppose X is a G-set. We write G\X for the set of G-orbits of X. By
Lemma 1.8, this is the same as X/R (where R is the equivalence relation of Lemma 1.8).
We say that X is a transitive G-set if X has exactly one orbit.

Example 1.11. Suppose G = O(2) and X = R2. Then G actions on X by multiplication. If
v = (x, y) ∈ R2, then the G-orbit of v is the circle of radius |v| centered at the origin. We
have G0 = G. On the other hand, if v , 0, then the stabilizer Gv is the group K of order 2
generated by the reflection in the line from the origin though v.

Definition 1.12. Suppose G is a group and H is a subgroup. Define maps L : H → E(G),
R : H → E(G) and I : H → E(G) as follows:

(1) L(h)(g) = hg;
(2) R(h)(g) = gh−1;
(3) I(h)(g) = hgh−1.

Proposition 1.13. Suppose H is a subgroup of a group G. The maps L, R and I defined
above are all group homomorphisms from H to A(G). Consequently, each defines an action
of H on G. The action defined by L is called the left action, the action defined by R is called
the right action and the action defined by I is called the inner action.

Proof. We have L(hk)(g) = hkg = L(h)(L(k)g). So L(hk) = L(h) ◦ L(k). So L(hh−1) =
L(e) = idG. Thus L(h)−1 = L(h)−1. So L : G → A(G), and L is a group homomorphism.

We have R(hk)(g) = g(hk)−1 = gk−1h−1 = R(h)(R(k)g) = (R(h) ◦ R(k))(g). So R(hk) =
R(h) ◦ R(k). Since R(e) = idG, this shows that R(G) ⊂ A(G) and that R : G → A(G) is a
group homomorphism.

The proof for I is similar. �

Remark 1.14. Suppose H ≤ G and g ∈ G. The H-orbit of g under the action L is the right
coset Hg. The H-orbit of g under the action R is the right coset gH. If H = G, then the
H-orbit of g under the action I is the conjugacy class of G.

Definition 1.15. Suppose G is a group and X and Y are G-sets. A morphism of G-sets is a
map f : X → Y such that, for g ∈ G and x ∈ X, f (gx) = g f (x).

Proposition 1.16. Suppose G is a group and X,Y and Z are G-sets.
(1) If α : X → Y and β : Y → Z are morphisms of G-sets, then so is β ◦ α.
(2) If α : X → Y is a morphism of G-sets which is one-one and onto then α−1 : Y → X

is also a morphism of G-sets.
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Proof. (1): For x ∈ X and g ∈ G, we have (β ◦ α)(gx) = β(α(gx)) = β(gα(x)) = gβ(α(x)) =
g(β ◦ α)(x).

(2): Set β = α−1. Pick y ∈ Y and set x = β(y). Then β(gy) = β(gα(x)) = β(α(gx)) =
gx = gβ(y). �

1.17. Suppose X and Y are two G-sets. An isomorphism of G-sets from X to Y is a mor-
phism α : X → Y of G-sets which is one-one and onto. By Proposition 1.16, if α : X → Y
is an isomorphism of G-sets, then so is α−1 : Y → X. We say that two G-sets X and Y are
isomorphic and write X � Y if there exists an isomorphism of G-sets from X to Y . Clearly,
X � X, and, by Proposition 1.16, if X � Y and Y � Z, then X � Z.

1.18. Suppose G is a group and H ≤ G. Then for x, y ∈ G, we have x(yH) = (xy)H. So we
can define a map

a : G ×G/H → G/H given by
(x, yH) 7→ x(yY).

It is very easy to see that this map satisfies the conditions of Proposition 1.3. So it defines
an action of G on G/H. This is the only action we will consider on G/H (unless otherwise
specified). Clearly G/H is a transitive G-set with this action.

Theorem 1.19 (Orbit-Stabilizer Theorem). Suppose X is a transitive G-set and x ∈ X.
Then there is a map ϕ : G/Gx → X satisfying ϕ(gGx) = gx. Moreover, ϕ is an isomorphism
of G-sets.

Proof. Suppose g1, g2 ∈ G and that g1Gx = g2Gx. Then g1 = g2h for some h ∈ Gx. So
g1x = (g2h)x = g2(hx) = g2x. Therefore, we can define a map ϕ : G/Gx → X by setting
ϕ(gGx) = gx.

The map ϕ is surjective because X is transitive. So, if y ∈ X, there exists g ∈ G such
that ϕ(gGx) = gx = y.

To see that ϕ is a morphism of G-sets, suppose a, b ∈ G. Then ϕ(a(bGx)) = ϕ((ab)Gx) =
abx = a(bx) = aϕ(bGx).

Finally, to show that ϕ is one-one, suppose ϕ(aGx) = ϕ(bGx). Then ax = bx. So
x = a−1bx. So a−1b ∈ Gx. Therefore, b ∈ aGx. So aGx = bGx. �


