1. INTRODUCTION

Definition 1.1. Suppose G is a group. A G-set is a pair (X, p) where X isasetandp : G —
A(X) is a group homomorphism.

1.2. Suppose (X, p) is a G-set. If g € G and x € X, then we write gx for p(g)(x). Note that,
for g,h € G, (gh)x = p(gh)(x) = p(g)(p(h)(x)) = g(hx). Since we can use the notation gx
instead of p(g)(x), we do not always need to explicitly name the group homomorphism p.
So, we often refer to a G-set simply as X instead of as the pair (X, p). If (X, p) is a G-set,
then the map

a:GxX — Xgiven by
(g,x) — gx

is called the action map. Note that the action map determines p because p(g)(x) = a(g, x)
for all x € X.

Note also that a(gh, x) = p(gh)(x) = p(g)(p(h)(x)) = a(g,a(h, x)), and that a(e, x) =
p(e)(x) = idx(x) = x for all x € X.

Proposition 1.3. Suppose X is a set, G is a group, and suppose a : G X X — X is a map
satisfying

(1.3.1) a(g, a(h, x)) = a(gh, x);
(1.3.2) ale,x) = x

forg,h € Gand x € X. For g € G, set p(g)(x) = a(g, x). Then (X, p) is a G-set with action
map a.

Proof. Suppose g € G and x € X. Then p(g)p(g~)(x) = a(g,a(g™!,x)) = a(gg™",x) =
a(e, x) = x. Therefore p(g) o p(g™") = id. So p(g) € A(X). We have p(gh)(x) = a(gh, x) =
a(g, a(h, x)) = p(g)(p(h)(x)) = (p(g) o p(M))(x). So p(gh) = p(g) o p(h). Therefore, p : G —
A(X) is a group homomorphism. O

Definition 1.4. Suppose X is a G-set. A sub-G-set is a subset Y of X such that, forally e Y
andgeG,gyeY.

Proposition 1.5. Suppose X is a G-set and {Y;}ic; are sub-G-sets. Then Ni;Y; is a sub-G-
set.

Proof. Suppose y € Ni;Y; and g € G. Then, for each g € G, gy € Y;. So gy € Nig; Y. ]

Definition 1.6. Suppose X is a G-set and x € X. The stabilizer of xisG, :={ge€ G : gx =
x}. The orbit of x is the set Gx := {gx : g € G}.

Proposition 1.7. Suppose X is a G-set and x € X.

(1) G <G;
(2) The orbit of x is a the intersection of all sub-G-sets of X containing x.

Proof. (1): Clearly, e € G,, since ex = x. Suppose g,h € G,. Then gh™'x = gh™'hx =
gx = x. So gh™! € G,. Therefore G, < G.

(2): First we show that Gx is a sub-G-set. To see this, suppose gx € Gx with g € G and
x € X. Then, if h € G, h(gx) = (hg)x € Gx. So Gx is a sub-G-set and clearly Gx contains
x. On the other hand, suppose Y is a sub-G-set of X containing x. Then, for any g € G,
gx €Y. So Y contains Gx. (2) follows. O



Lemma 1.8. Suppose X is a G set. Let R be the set of all pairs (x,y) € X X X such that
x = gy for some g € G. Then

(1) R is an equivalence relation on X.
(2) If x € X, then the equivalence class [x] of x is the orbit Gx.

Proof. (1): Write x ~ y if (x,y) € R. Then, for x € X, x ~ x since x = ex. If x ~ y, then
x=gysoy=g'x. Soy~ x. Similarly, if x ~ yand y ~ z, then x = gy and y = hz for
some g,h € G. So x = g(hz) = (gh)z. So x ~ z.

(2): We have y € [x] if and only if y = gx for some g € G. By definition, this holds if
and only if y € Gx. O

Corollary 1.9. Suppose X is a G-set. Then the set {Gx : x € X} of G-orbits of X is a
partition of X.

Proof. Follows directly from Lemma 1.8. O

Definition 1.10. Suppose X is a G-set. We write G\X for the set of G-orbits of X. By
Lemma 1.8, this is the same as X/R (where R is the equivalence relation of Lemma 1.8).
We say that X is a transitive G-set if X has exactly one orbit.

Example 1.11. Suppose G = O(2) and X = R?. Then G actions on X by multiplication. If
v = (x,y) € R?, then the G-orbit of v is the circle of radius |v| centered at the origin. We
have Gy = G. On the other hand, if v # 0, then the stabilizer Gy is the group K of order 2
generated by the reflection in the line from the origin though v.

Definition 1.12. Suppose G is a group and H is a subgroup. Define maps L : H — E(G),
R:H — E(G)and I : H — E(G) as follows:

(1) L(h)(g) = he;
2) R)(g) = gh™;
(3) 1(h)(g) = hgh™".

Proposition 1.13. Suppose H is a subgroup of a group G. The maps L, R and I defined
above are all group homomorphisms from H to A(G). Consequently, each defines an action
of H on G. The action defined by L is called the left action, the action defined by R is called
the right action and the action defined by I is called the inner action.

Proof. We have L(hk)(g) = hkg = L(h)(L(k)g). So L(hk) = L(h) o L(k). So L(hh™") =
L(e) = idg. Thus L(h)™' = L(h)™". So L : G — A(G), and L is a group homomorphism.
We have R(hk)(g) = g(hk)™" = gk™'h™! = R(h)(R(k)g) = (R(h) o R(k))(g). So R(hk) =
R(h) o R(k). Since R(e) = idg, this shows that R(G) c A(G) and thatR : G — A(G) is a
group homomorphism.
The proof for I is similar. O

Remark 1.14. Suppose H < G and g € G. The H-orbit of g under the action L is the right
coset Hg. The H-orbit of g under the action R is the right coset gH. If H = G, then the
H-orbit of g under the action / is the conjugacy class of G.

Definition 1.15. Suppose G is a group and X and Y are G-sets. A morphism of G-sets is a
map f : X — Y such that, for g € G and x € X, f(gx) = gf(x).

Proposition 1.16. Suppose G is a group and X, Y and Z are G-sets.
(D) Ifa: X - YandB: Y — Z are morphisms of G-sets, then so is B o a.
(2) Ifa: X — Y is a morphism of G-sets which is one-one and onto thena™" : Y — X
is also a morphism of G-sets.



Proof. (1): For x € X and g € G, we have (8 o @)(gx) = B(a(gx)) = B(ga(x)) = gB(a(x)) =
8B o a)(x).

(2): Set 8 = @', Pick y € Y and set x = B(y). Then 8(gy) = B(ga(x)) = Bla(gx)) =
8x = gB(y). O

1.17. Suppose X and Y are two G-sets. An isomorphism of G-sets from X to Y is a mor-
phism @ : X — Y of G-sets which is one-one and onto. By Proposition 1.16,iff @ : X = Y
is an isomorphism of G-sets, then so is ™! : ¥ — X. We say that two G-sets X and Y are
isomorphic and write X = Y if there exists an isomorphism of G-sets from X to Y. Clearly,
X = X, and, by Proposition 1.16,if X Y and Y = Z, then X = Z.

1.18. Suppose G is a group and H < G. Then for x,y € G, we have x(yH) = (xy)H. So we
can define a map

a:GxG/H — G/H given by
(x,yH) — x(yY).

It is very easy to see that this map satisfies the conditions of Proposition 1.3. So it defines
an action of G on G/H. This is the only action we will consider on G/H (unless otherwise
specified). Clearly G/H is a transitive G-set with this action.

Theorem 1.19 (Orbit-Stabilizer Theorem). Suppose X is a transitive G-set and x € X.
Then there is amap ¢ : G/G, — X satisfying p(gG.) = gx. Moreover, ¢ is an isomorphism
of G-sets.

Proof. Suppose g1,g> € G and that g;G, = g,G,. Then g, = g,h for some h € G,. So
g1x = (g2h)x = gr(hx) = grx. Therefore, we can define a map ¢ : G/G, — X by setting
o(8Gy) = gx.

The map ¢ is surjective because X is transitive. So, if y € X, there exists g € G such
that p(gG,) = gx = y.

To see that ¢ is a morphism of G-sets, suppose a, b € G. Then p(a(bG,)) = ¢((ab)G,) =
abx = a(bx) = ap(bG,).

Finally, to show that ¢ is one-one, suppose ¢(aG,) = ¢(bG,). Then ax = bx. So
x=a'bx. Soa'b € G,. Therefore, b € aG,. So aG, = bG,. O



