HW7, due Tuesday, December 10 Math 403, Fall 2013 Patrick Brosnan, Instructor

Practice Problems: Do the following problems from Gallian for practice, but do not turn them in. The format below is that **G4** means "Chapter 4 of Gallian."

G12: 9, 19, 27 G13: 5, 11, 15 G14: 9 G15: 13

G16: 3, 15

Graded Problemes: Work the following problems for a grade.

1. Let M be an abelian group and write $\operatorname{End} M$ for the set of group homomorphisms $\phi: M \to M$. In class, I mentioned that $\operatorname{End} M$ has two binary operations: $(f,g) \mapsto f+g$ and $(f,g) \mapsto f \circ g$ given on $m \in M$ by the formulas

$$(f+g)(m) = f(m) + g(m)$$
$$(f \circ g)(m) = f(g(m)).$$

Show that End*M* with these operations is a ring with unity.

- **2.** Suppose a and b are elements of a commutative ring a. We say that a divides b and write a|b if there is an element a0 of a2 such that a2 b. Let a3 be the ring consisting of real numbers of the form $a+b\sqrt{3}$ with a4 be a5. Show that a7 does not divide a8 does not divide a9.
- **3.** Suppose *R* is an integral domain and *r* is an element of *R* satisfying $r^2 = r$. Show that *r* is either 0 or 1.
- **4.** Suppose p is a prime number and k is an integer satisfying 1 < k < p. Show that p divides $\binom{p}{k}$. Using this, show that, if R is a commutative ring of characteristic p and $x, y \in R$, then $(x+y)^p = x^p + y^p$.