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Abstract. We show that the zero locus of an admissible normal function on

a smooth complex algebraic variety is algebraic.

1. Introduction

Let H be a variation of pure, polarizable Hodge structure of weight −1 over a
smooth complex manifold S with integral structure HZ and J(H) be the associated
bundle of intermediate Jacobians over S. In this paper, we prove the following
conjecture of Phillip Griffiths and Mark Green:

Conjecture 1.1. If S is smooth complex algebraic variety and ν : S → J(H) is an
admissible normal function then the zero locus Z of ν is an algebraic subvariety of
S.

To prove (1.1), let S̄ be a smooth partial compactification such that D = S̄ − S
is a normal crossing divisor, and ν is represented by an extension

0→ H→ V → Z(0)→ 0

in the category of admissible variations of mixed Hodge structure over S. For
elementary reasons, Z is a complex analytic subvariety of S. Therefore, by GAGA,
the algebraicity of Z is equivalent to the following result:

Theorem 1.2. If p ∈ D is an accumulation point of Z then there exists an polydisk
P ⊂ S̄ containing p and an analytic subvariety A of P such that A ∩ S = Z ∩ P .

In the remainder of this section, we reduce the proof of Theorem (1.2) to a pair of
technical results regarding the asymptotic of period maps of admissible variations
of mixed Hodge structure. To this end, let P ∗ = P−P ∩D, r = dimS and ∆ denote
the unit disk in C. Then, there exists a system of local coordinates (s1, . . . , sr) on
P ∼= ∆r relative to which P ∩ D is a union of hypersurfaces of the form sj = 0.
Therefore, after relabeling coordinates, P ∗ ∼= ∆∗m × ∆r−m where ∆∗ ⊂ ∆ is the
punctured disk. The local monodromy of V about p is quasi-unipotent, and hence
by passage to a finite cover f : P → P we can assume that V has unipotent
monodromy. By the proper mapping theorem, if the closure of the zero locus f∗(ν)
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is an analytic subvariety of P then the closure of zero locus of ν is an analytic
subvariety of P . Accordingly, we may assume without loss of generality that V has
unipotent local monodromy at p. Furthermore, we can assume that m = r above
by taking the local monodromy of V about the last r −m punctured disks to be
trivial.

Let ϕ : P ∗ → Γ\M be the period map of V over P ∗ [21]. Let Ur ⊂ Cr denote
the product of upper half-planes with coordinates (z1, . . . , zr) and Ur → P denote
the covering map defined by sj = e2πizj . Then, ϕ has a lifting F : Ur →M which
makes the following diagram commute:

Ur
F−−−−→ My y

P ∗
ϕ−−−−→ Γ\M

If s ∈ P then z ∈ Ur is a point over s if z maps to s via the covering map Ur → P .
Given an increasing filtration W of a finite dimensional vector space V over a

field of characteristic zero, a grading of V is a semisimple endomorphism Y of V
such that Wk is the direct sum of Wk−1 and the k-eigenspace Ek(Y ) for each index
k. By a theorem of Deligne [7], a mixed Hodge structure (F,W ) induces a unique,
functorial decomposition

VC =
⊕
r,s

Ir,s

of the underlying complex vector space VC such that
(a) F p = ⊕r≥p Ir,s;
(b) Wk = ⊕r+s≤k Ir,s;
(c) Īp,q = Iq,p mod ⊕r<q,s<p Ir,s.

In particular, a mixed Hodge structure (F,W ) induces a grading Y(F,W ) of VC by
the requirement that Y(F,W ) acts as multiplication by p+ q on Ip,q.

Lemma 1.3. A point s ∈ P ∗ belongs to Z if and only if Y(F (z),W ) is an integral
grading of W for any point z ∈ Ur over s.

To continue, let I be a closed and bounded subinterval of the real numbers.
Then, the vertical strip associated to I is the set of all points (z1, . . . , zr) ∈ Ur such
that the real part of zj = xj + iyj belongs to I for each j. Let s(m) sequence of
points in P ∗ which converge to 0 ∈ P as m→∞, and z(m) be a sequence of points
in Ur over s(m) which is contained in a vertical strip associated to an interval of
length 2π. The sequence z(m) will be said to be sl2-convergent if

(i) y1(m) ≥ y2(m) ≥ · · · ≥ yr(m) and yr(m)→∞;
(ii) for each j = 1, . . . , r, the sequence of points λj(m) = [yj(m), yj+1(m)]

converges in RP1, where yr+1(m) = 1;
(iii) the sequence of points (x1(m), . . . , xr(m)) converges.

A straightforward argument shows that (after reordering the variables) given any
sequence of points s(m) in P ∗ which converge to 0 there exists a subsequence s(mj)
of s(m) and a sequence of points z(mj) over s(mj) such that z(mj) is sl2-convergent.

By (i), λj(m) takes values in the affine chart of RP1 with coordinates [1, a] and
0 ≤ a ≤ 1. We will freely identify

λj = lim
m→∞

λj(m)
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with its limiting value in this affine chart. Let

λ = (λ1, . . . , λr)

and form a graph with vertices {1, . . . , r} by connecting i to i+1 by an edge if λi 6= 0.
Let P (λ) be the corresponding partition of {1, . . . , r} into connected components.
For example, the partition associated to λ = (0, 1, 1, 0) is {1} ∪ {2, 3, 4}.

Let (N1, . . . , Nr;F,W ) define an admissible nilpotent orbit θ = e
P
j zjNj .F .

(See [12, §5] for an explanation of nilpotent orbits.) Let λ = (λ1, . . . , λr) be a
sequence of non-negative real numbers and as above (i.e. λr = 0), let P (λ) be the
corresponding partition of {1, . . . , r} defined by the vanishing of the λj ’s. Given
σ ∈ P (λ) let

C(σ) = {
∑
j∈σ

ajNj | aj > 0}

and
N(σ) =

∑
j∈σ

(Πk∈σ,k<j λk)Nj

(where the empty product is equal to 1, so N(σ) = Nminσ + · · · ). Let N (σ) denote
an open neighborhood of N(σ) in C(σ). The elements σ of P (λ) can be ordered by
the value of min(σ). We denote this ordering σ1, σ2, . . . .

Let C = C({1, . . . , r}) and M be the relative weight filtration of W and N for
any N ∈ C. By a theorem of Kashiwara, M is well defined independent of the
choice of N . Furthermore, (F,M) is a mixed Hodge structure relative to which
each Nj is (−1,−1)-morphism.

More generally, let J be a subset of {1, . . . , r} and C(J) be the open facet of the
closure of C defined by positive linear combinations

∑
j∈J ajNj . Then, the relative

weight filtration M(C(J),W ) is well defined, and

M(C(I),M(C(J),W )) = M(C(I ∪ J),W )

Furthermore, if J ′ denotes the complement of J in {1, . . . , r} then

θJ = (exp(
∑
j∈J′

zjNj).F,M(C(J),W ))

is an admissible nilpotent orbit.

Remark 1.4. Let (F,W ) denote a mixed Hodge structure with underlying vector
space V . Cattani, Kaplan and Schmid associate to (F,W ) a canonically defined
Hodge structure (F̂ ,W ) which is split over R. The filtration F̂ is related to the
SL2-orbit theorem and is denoted by the symbol F̃0 in [6, (3.31)]. It is called the
canonical splitting in [12, §1.2], but we call it the sl2-splitting in this paper. There
is a distinguished nilpotent element ξ ∈ EndVC such that F̂ = e−ξ ·F . In [12], this
ξ is denoted by the symbol ε or ε(W,F ). Occasionally in this paper, we will use the
notation that if (F,W ) is a mixed Hodge structure then Ŷ(F,W ) = Y(F̂ ,W ) where

(F̂ ,W ) is the sl2-splitting of (F,W ).

Let (N1, . . . , Nr;F,W ) define an admissible nilpotent orbit as above and let
W 0, . . . ,W r be the sequence of increasing filtrations defined by the requirement
that W 0 = W and W j = M(Nj ,W j−1). Then, by a theorem of Deligne [1, 8, 20],
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the data (N1, . . . , Nr, Y(F,W r)) defines a sequence of mutually commuting gradings
(in the notation of equation (3.3) of [1])

Y r = Y(F,M), Y r−1 = Y (Nr, Y r), . . . (1.5)

such that Y k grades W k. Furthermore, if (F,W r) is split over R this construction
gives the corresponding gradings of the SL2-orbit theorem. More precisely, let
(F̂ ,W r) denote the sl2-splitting of (F,W r), and {Ŷ j} be the corresponding system
of gradings. Let Ĥj = Ŷ j − Ŷ j−1 and N̂j denote the component of Nj with
eigenvalue zero with respect to ad Ŷj−1 for j = 1, . . . , r. Then, each pair (N̂j , Ĥj)
is an sl2-pair which commutes with (N̂k, Ĥk).

In the above discussion, the weight filtration W was arbitrary. We now restrict
to the case where W is of the type arising form a normal function.

We defer the proof of the next theorem until § 2.

Theorem 1.6. Let (iy1(m), . . . , iyr(m)) be an sl2-convergent sequence. Let P (λ)
denote the corresponding partition of {1, . . . , r}. Then,

Y ∗ = lim
m→∞

Y(θ(iy1(m),...,iyr(m)),W ) = Y (N(σ1), Y (N(σ2), · · · , Y(F̂ ,M))) (1.7)

Let V be an admissible variation of mixed Hodge structure over ∆∗r with unipo-
tent monodromy, with arbitrary weight filtration W . We assume that V is po-
larizable and fix polarizations on each of the graded pieces GrWi V. Let ϕ be the
associated period map and F : Ur → M be a lifting of ϕ to the r-fold product
of the upper half-plane relative to the covering map sj = e2πizj , j = 1, . . . , r. Let
V be any fiber of the variation V and let g denote the Lie subalgebra of EndV
consisting of all elements which preserve W and act by infinitesimal isometries on
GrWi V . Then, the limit mixed Hodge structure (F∞,M) defines a distinguished
vector space decomposition

gC = q⊕ gF∞C (1.8)

where
q =

⊕
r<0,s

gr,s(F∞,M).

Relative to this decomposition, we can write (cf. (6.11) [15])

F (z1, . . . , zr) = e
P
j zjNjeΓ(s1,...,sr).F∞ (1.9)

where Γ(s) is a q-valued holomorphic function which vanishes at the origin.
Given an admissible nilpotent orbit with monodromy logarithms N1, . . . , Nr and

a point x = (x1, . . . , xr) define

µ(x) =
∑
j

xjNj

Theorem 1.10. Let z(m) = x(m) + iy(m) be an sl2-convergent sequence of points
in Ur and F : Ur →M denote the lifting of the period map of an admissible normal
function over ∆∗r as above. Let P (λ) be the corresponding partition. Then, after
passage to a subsequence if necessary,

Y ∗ = lim
m→∞

e−µ(x(m)).Y(F (z(m),W ) = Y (N(σ1), Y (N(σ2), · · · , Y(F̂∞,M))) (1.11)
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Remark 1.12. This result has been obtained independently by Kato, Nakayama
and Usui [14] in their study of classifying spaces of degenerations of mixed Hodge
structure. In particular, as part of their study of log intermediate Jacobians [12],
they are able [14] to obtain an independent proof of Conjecture (1.1).

Recall that the zero locus Z of ν coincides with the set of points in ∆∗r where
Y(F (z),W ) is integral for some ( =⇒ any) lifting of s ∈ ∆∗r to Ur. In particular, in
order for the origin to be an accumulation point of Z,

YZ = eµ.Y ∗

must be an integral grading of W , for any sl2-convergent sequence of points on Z,
where

µ = lim
m→∞

µ(x(m)) (1.13)

Corollary 1.14. There exist only finitely many integral gradings of the form Y(F (z),W )

where z ∈ Ur is a point in the vertical strip associated to an interval I of finite
length.

Proof. Otherwise, we can find a sequence of points z(m) in the vertical strip such
that each Y(F (z(m)),W ) is integral and distinct from Y(F (z(m′),W ) for m 6= m′. After
reordering the variables, we can then pass to an sl2-convergent sequence to get a
convergent limit, which is a contradiction since the integral gradings are discrete.

�

Remark 1.15. Theorem (1.10) implies that Y(F (z),W ) remains bounded on any ver-
tical strip. Indeed, if this is false then we can find a sequence of points z(m) in the
vertical strip such that

||Y(F (z(m+1),W ) − Y(F (z(m)),W )|| > 1

with respect to a fixed norm on W−1gl(V ). Passage to an sl2-convergent subse-
quence then gives a contradiction.

In order to derive the local equations for Z near the origin, we now record the
following property of Deligne systems (1.5):

Lemma 1.16. Let (N1, . . . , Nr;F,W ) define an admissible nilpotent orbit. Then,

Y = Y (N1, Y (N2, . . . , Y (Nr, Y(F,M))))

preserves F , where M is the relative weight filtration of W and N1 + · · ·+Nr. More
generally, Y preserves the Deligne Ip,q’s of (F,M).

The proof of Lemma (1.16) is given in section 2. Granting this lemma and
Theorem (1.10), we now establish Conjecture (1.1) by verifying Theorem (1.2).

Proof of Theorem (1.2). We derive the local equations for Z. Let s(m) be a se-
quence of points in Z which accumulate to the origin. After passage to a subse-
quence as above, let λ = (λ1, . . . , λr) be the corresponding partition and YZ be the
associated integral grading of W appearing in (1.10). Let

Λ−1,−1 =
⊕
r,s<0

gr,s ⊂ gC
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with the respect to the bigrading of gC induced by the limit mixed Hodge structure
(F∞,M). Then, applying the above results to the nilpotent orbit defined by the
data (N(σ1), N(σ2), . . . ;F∞,W ) we see that

YZ = e−ξ̃.Y∞, ξ̃ ∈ Λ−1,−1
(F,M) ∩ (∩rj=1 ker(ad Nj))

where Y∞ = Y (N(σ1), Y (N(σ2), . . . , Y(F∞,M))) and ξ̃ = ξ − µ. On the other hand,
by Lemma (1.16) Y∞ preserves F∞, and hence there exists a section f(z) of gF∞C
such that

Y(F (z),W ) = e
P
j zjNjeΓ(s).(Y∞ + f(z)) (1.17)

By equation (1.17), it then follows that the local defining equation for the branch
of Z corresponding to YZ (on the given vertical strip) is

YZ = e−ξ̃.Y∞ = e
P
j zjNjeΓ(s).(Y∞ + f(z))

and hence
e−Γ(s)e−

P
j zjNje−ξ̃.Y∞ = Y∞ + f(z) (1.18)

In particular, since Γ(s), ξ̃ and N1, . . . , Nr belong to q whereas f(z) takes values
gF∞C and Y∞ preserves the Ip,q’s of (F,M) it follows that we can write (1.18) as

e−
P
j zjNj−ξ̃.Y∞ = eΓ(s).Y∞ (1.19)

since ξ̃ commutes with N1, . . . , Nr.
We remark that equation (1.19) is independent of the choice of vertical strip

since the factor
e−

P
j zjNj−ξ̃ = eµ−

P
j zjNje−ξ

is invariant under shifting I by ω ∈ R by virtue of equation (1.13).
Consider now the linear map L : Qr →W−1gQ defined by the rule

L(u1, . . . , ur) = [
∑
j

ujNj , YZ]

Then, we can find a matrix A in reduced row echelon form such that the rows of A
are a basis of ker(L). Let Ω ⊂ {1, . . . , r} index the non-pivot columns of A. Then,
there exist unique, rational, linear forms βj indexed by Ω such that

[
∑
j

zjNj , YZ] = [
∑
j∈Ω

βj(z1, . . . , zr)Nj , YZ].

Therefore, we can rewrite (1.19) as

e−
P
j∈Ω βj(z1,...,zr)Nj−ξ̃.Y∞ = eΓ(s).Y∞ (1.20)

Note that the coefficient of zj in βj is 1.
To continue, let α = α0 + α−1 denote the decomposition of α ∈ gC according to

the eigenvalues of ad Y∞ and define

L̃(u1, . . . , ur) = [
∑
j

ujNj , Y∞]

Then, since Y∞ = eξ̃.YZ and N1, . . . , Nr commute with ξ̃, it follows that ker(L̃) =
ker(L). In particular, the set {(Nj)−1 | j ∈ Ω} is linearly independent.

To continue, we rewrite equation (1.20) as

e−
P
j∈Ω βj(z1,...,zr)Nj−ξ̃e

P
j∈Ω βj(z1,...,zr)(Nj)0+(ξ̃)0 .Y∞ = eΓ(s).Y∞ (1.21)
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and observe that

eα = e−
P
j∈Ω βj(z1,...,zr)Nj−ξ̃e

P
j∈Ω βj(z1,...,zr)(Nj)0+(ξ̃)0 ∈ exp(W−1gC) (1.22)

Recall that exp(W−1gC) act simply transitively on the gradings of W . There-
fore, by the Campbell–Baker–Hausdorff formula, Lemma (1.16), and the fact that
N1, . . . , Nr and ζ belong to Λ−1,−1, it then follows that

lim
m→∞

ξ̃−1,−1
−1 +

∑
j∈Ω

βj(z1(m), . . . , zr(m))(Nj)−1 = 0 (1.23)

since limm→∞ Γ(s(m)) = 0, where ξ̃−1,−1
−1 is the component of ξ̃−1 in g−1,−1

(F∞,M).

Indeed, the left hand side of (1.23) is exactly the projection α to g−1,−1
(F∞,M). Conse-

quently, there exist complex numbers ηj indexed by j ∈ Ω such that

ξ̃−1,−1
−1 =

∑
j∈Ω

ηj(Nj)−1

Accordingly, the branch of Z corresponding to YZ we must have

βj(z1, . . . , zr) + ηj → 0 (1.24)

Let βj(z1, . . . , zr) =
∑
k bjkzk. Then, after multiplying equation (1.24) by 2πi and

taking the exponential, it follows that

Πk s
bjk
k ∼ e−2πiηj (1.25)

for each j ∈ Ω. By passage to a finite ramified cover, we can make all of the bjk
integral. Therefore, the local defining equation for the branch of Z corresponding
to YZ is

e−
P
j∈Ω

1
2πi log(Πk s

bjk
k )Nj−ξ̃.Y∞ = eΓ(s).Y∞ (1.26)

where each of the logarithmic terms is a finite, single valued holomorphic function
by virtue of (1.25).

Likewise, upon writing Γ(s) = Γ(s)0 + Γ(s)−1 with respect to ad Y∞ we have

e−
P
j∈Ω

1
2πi log(Πk s

bjk
k )Nj−ξ̃e

P
j∈Ω

1
2πi log(Πk s

bjk
k )(Nj)0+(ξ̃)0 .Y∞ = eΓ(s)e−Γ(s)0 .Y∞

(1.27)
Let eχ = eΓ(s)e−Γ(s)0 and χ−1,−1 be the component of χ ∈ g−1,−1

(F∞,M). Then, by the
Campbell–Baker–Hausdorff formula, it follows from equation (1.27) that the zero
locus is contained in the complex analytic subvariety

A = { s ∈ ∆r | χ−1,−1(s) ∈ ⊕j∈Ω C(Nj)−1 }
For a point s ∈ A, let

χ−1,−1(s) + ξ̃−1,−1
−1 =

∑
j

τj(s)(Nj)−1

Then, again only looking at (−1,−1) components, we see that on A, we must have

− 1
2πi

log(Πk s
bjk
k ) = τj(s)

Therefore, over ∆∗r, the branch of Z corresponding to YZ is given by the system
of complex analytic equations:

(a) s ∈ A;
(b) Πk s

bjk
k = exp(−2πiτj(s)) for each j ∈ Ω;



8 PATRICK BROSNAN AND GREGORY PEARLSTEIN

(c) e−
P
j∈Ω τj(s)Nj−ξ̃.Y∞ = eΓ(s).Y∞

�

2. Deligne systems

We now reduce the proof of Lemma (1.16) to a corollary of the following sequence
of lemmata:

Lemma 2.1. [8] If (N, F̂ ,W ) defines an admissible nilpotent orbit with limit mixed
Hodge structure split over R then (eiN .F̂ ,W ) is a mixed Hodge structure with sl2-
splitting

(eiN̂ .F̂ ,W )

in the notation of (1.5).

Suppose now that (N1, . . . , Nr; F̂r,W ) defines an admissible nilpotent orbit with
limit mixed Hodge structure split over R. Following the notation of (1.5), let
W 0, . . . ,W r be the associated system of weight filtrations. Recall that by [6] and
[11] that

(z1, . . . , zr−1) 7→ (e
P
j<r zjNjeiNr .F̂r,W

0)

is an admissible nilpotent orbit, and hence (eiNr .F̂r,W r−1) is a mixed Hodge struc-
ture. Accordingly,

(z1, . . . , zr−1) 7→ (e
P
k≤r−1 zkNk .F̂r−1,W

0)

is an admissible nilpotent orbit with limit mixed Hodge structure split over R, where
(F̂r−1,W

r−1) = (eiN̂r .F̂r,W r−1) is the sl2-splitting of (eiNr .F̂r,W r−1). Iterating
this construction, we obtain a sequence of mixed Hodge structures

(F̂j−1,W
j−1) = (eiN̂j .F̂j ,W j−1)

and associated nilpotent orbits (z1, . . . , zj) 7→ e
P
k≤j zkNk .Fj .

Lemma 2.2. [8][1] In the setting of Lemma (2.1),

Ŷ = Y (N,Y(F̂ ,M))

equals Y(eiN̂ .F̂ ,W ), and preserves F̂ .

In particular, given the data (N1, . . . , Nr; F̂r,W ) of an admissible nilpotent or-
bit with limit mixed Hodge structure split over R, the sequence of gradings Ŷ j

constructed in (1.5) is given by Ŷ j = Y(F̂j ,W j). Since N1, . . . , Nj are (−1,−1)-

morphisms of (F̂j ,W j), it follows that

[Nk, Ĥj ] = 0 (2.3)

for j > k where as in (1.5), Ĥj = Ŷ j − Ŷ j−1.

Lemma 2.4. Let (N1, . . . , Nr; F̂r,W ) define an admissible nilpotent orbit with lim-
iting mixed Hodge structure (F̂ ,M) split over R. Then,

Ŷ 0 = Y (N1, Y (N2, . . . , Y (Nr, Y(F̂ ,M))))

preserves F̂ .
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Proof. To begin, we recall[8][20] that (N̂1, Ĥ1), . . . , (N̂r, Ĥr) form a commuting sys-
tem of sl2-representations. Consequently,

[Ŷ j , N̂k] = 0 (2.5)

for j < k. Indeed, this is true by definition for j = k − 1. Suppose that j ≤ k − 2.
Then,

[Ŷ j , N̂k] = −[(Ŷ j+1 − Y j) + · · ·+ (Ŷ k−1 − Y k−2), N̂k]

= −[Ĥj+1 + · · ·+ Ĥk−1, N̂k] = 0

By the prior paragraphs, θ(z) = (ezN1 .F̂1,W ) is an admissible nilpotent orbit
with limit mixed Hodge structure split over R, and hence by Lemma (2.2),

Ŷ 0(F̂ p1 ) ⊆ F̂ p1

Using the identity F1 = e
P
j>1 iN̂j .F̂ and the fact that Ŷ 0 commutes with all N̂j , it

then follows from the previous equation that Ŷ 0 preserves F̂ . �

Lemma 2.6. Let (N1, . . . , Nr;F,W ) define an admissible nilpotent orbit with sl2-
splitting (F̂ ,W r) = (e−ξ.F,W r). Then,

Y (N1, Y (N2, . . . , Y (Nr, Y(F̂ ,M)))) = e−ξ.Y (N1, Y (N2, . . . , Y (Nr, Y(F,M))))

Proof. ξ commutes with N1, . . . , Nr since ξ is a universal Lie polynomial in the
Hodge components of Deligne’s δ-splitting (e−iδ.F,M) of (F,M) and δ commutes
with all (−1,−1)-morphisms of (F,M), and hence in particular with N1, . . . , Nr.
Furthermore, since

Y(e−ξ.F,M) = e−ξ.Y(F,M)

and ξ commutes with Nr, we have

Y (Nr, Y(F̂ ,M)) = e−ξ.Y (Nr, Y(F.M))

Iterating this process, we obtain,

Y (N1, Y (N2, . . . , Y (Nr, Y(F̂ ,M)))) = e−ξ.Y (N1, Y (N2, . . . , Y (Nr, Y(F,M))))

�

Lemma (1.16) now becomes:

Corollary 2.7. Let (N1, . . . , Nr;F,W ) define an admissible nilpotent orbit. Then,

Y = Y (N1, Y (N2, . . . , Y (Nr, Y(F,M))))

preserves F . More generally, Y preserves the Deligne Ip,q’s of (F,M).

Proof. Let Ŷ denote the analog of Y obtained by replacing (F,M) by the sl2-
splitting (F̂ ,M). Then, Ŷ is real and preserves both F̂ and M . Therefore, Ŷ
preserves

Ip,q
(F̂ ,M)

= F̂ p ∩ F̂ q ∩Mp+q

By Lemma (2.6), it then follows that Y preserves Ip,q(F,M). �
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Proof of Theorem 1.6. The theorem follows from the several variable SL2-orbit the-
orem of via dependence on parameters (cf. Proposition (10.8) in [12]), together
with with Deligne’s letter to Cattani and Kaplan[8]. Namely, via the theory of
polarized Hodge structures, it follows that any choice of monodromy logarithms
Ñ(σ1) ∈ N (σ1), Ñ(σ2) ∈ N (σ2), . . . will define a preadmissible nilpotent orbit

θ̃ = e
P

zjÑ(σj).F

i.e. θ̃ satisfies Griffiths horizontality and induces nilpotent orbits of pure Hodge
structure on GrW . It then follows from a theorem of Kashiwara that θ̃ is admissible.
By the stated hypothesis on the sequence (y1(m), . . . , yr(m)),

θ(iy1(m), . . . , iyr(m)) = θ̃(iy∗1(m), . . . , iy∗r (m))

where (iy∗1(m), . . . , iy∗r (m)) denote the projection of (y1(m), . . . , yr(m)) which only
keeps yj(m) if j = min(σk) for some k, and–for each m–θ̃ is defined by an ap-
propriate collection of monodromy logarithms Ñ(σj) which converge to N(σj) as
m → ∞. The limit in question is then Ŷ 0 for the orbit θ̃, and this is equal to
Y (N(σ1), Y (N(σ2), . . . , Y(F∞,M))). �

In [12], Kato, Nakayama and Usui associate to any admissible nilpotent orbit
with data (N1, . . . , Nr;F,W ) an associated semisimple endomorphism t(y). For use
in section 4, we now derive a formula for t(y) in terms of the gradings Ŷ j constructed
above. To this end, let us assume for the moment that (N1, . . . , Nr;F,W ) underlies
a nilpotent orbit of pure Hodge structure of weight k. Let (F̂r,W r) denote the sl2-
splitting of (F,W r), and recall that W r in this case is the monodromy weight
filtration W (N)[−k] for any element N in the cone of positive linear combinations
of N1, . . . , Nr. In particular, since any such N is a (−1,−1)-morphism of (F̂r,W r)
it follows that the pair (N, Ŷ(r)) where

Ŷ(r) = Ŷ r − k1

defines an sl2-pair. As above, we can iteratively define Ŷ(j) = Ŷ j − k1 using the
nilpotent orbit (N1, . . . , Nj ; F̂j). Define,

t̃(y) = Πr
j=1 t

1
2 Ŷ(j)
j = (Πr

j=1 t
− 1

2k1
j )(Πr

j=1 t
1̂
2Y

j

j )

where tj = yj+1/yj , and hence t1 . . . tr = yr+1/y1 = 1/yr. Accordingly,

t̃(y) = y
( 1

2k)1
1 Πr

j=1 t
1
2 Ŷ

j

j .

Remark 2.8. Along any sequence y(m), tj(m) = λj(m).

By Theorem (0.5) of [12], the mixed version of t(y) is to be constructed as follows:
If (N1, . . . , Nr;F,W ) defines an admissible nilpotent orbit then

Ŷ
(e

P
iyjNj .F,W )

→ Ŷ 0

provided that tj → 0 for all j. Let tk(y) denote the semisimple endomorphism t̃(y)
attached by the previous paragraph to the induced nilpotent orbit of pure Hodge
structure of weight k on GrWk . Then, t(y) is constructed by multiplying each tk(y)

by y
− 1

2k
1 and then lifting the resulting semisimple element to the ambient vector
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space via the grading Ŷ 0. Accordingly, since the gradings Ŷ 0, . . . , Ŷ r are mutually
commuting, it follows that

t(y) = Πr
j=1 t

1
2 Ŷ

j

j (2.9)

The following result appears in Proposition (10.4) of [12] with slightly different
notation:

Lemma 2.10. Let (N1, . . . , Nr;F,W ) define an admissible nilpotent orbit. Then,

Ad (t−1(y))e
P

j iyjNj = eP

where P is a polynomial in non-negative half integral powers of t1, . . . , tr with con-
stant term iN1 + i

∑
j>1 N̂j.

Proof. By (2.9),

Ad (t−1(y))ykNk = (Πj≤k−1 t−
1
2 Ŷj

j )(Πj≥kt−
1
2 Ŷj

j )ykNk

where Nk is (−1,−1)-morphism of (F̂j ,W j) for j = k, . . . , r, and hence [Nk, Ŷ j ] =
−2Nk. Consequently,

(Πj≥kt
− 1

2 Ŷ
j

j )ykNk = tk . . . trykNk = Nk

On the other hand, Nk preserves W j for j < k. Therefore,

(Πj<k t
− 1

2 Ŷ
j

j )Nk

is a polynomial in non-negative, half-integral powers of tj for j < k. Taking the limit
as t1, . . . , tr → 0 it then follows that the constant term of P is i

∑
k N

]
k where N ]

k is
the projection of Nk to ∩0<j<k ker(ad Ŷj) with respect to the mutually commuting
gradings Ŷ j . Accordingly, N ]

1 = N1, whereas for k > 1, we can first project onto
ker(ad Nk−1) to obtain N̂k. By (2.5), N̂k commutes with Ŷ j for j < k, and hence
N ]
k = N̂k. �

Remark 2.11. For nilpotent orbits of pure Hodge structure, this statement appears
in Lemma (4.5) of [5]; note however that in [5], tj is defined to be yj/yj+1 which is
reciprocal to our convention.

3. Surface case

Let z(m) = (z1(m), . . . , zr(m)) be an sl2-convergent sequence with limiting ratios
λ = (0, . . . , 0). Then, for an index j ≤ r, the sequence z(m) is said to have non-
polynomial growth with respect to zj(m) if for each positive integer d > 1 it follows
that

ydj+1(m)
yj(m)

→ 0 (3.1)

after passage to a suitable subsequence [which may depend on d]. In particular, by
our convention that yr+1(m) = 1, it follows that z(m) always has non-polynomial
growth with respect to zr(m), and hence there is a smallest integer ι with respect
to which z(m) has non-polynomial growth. Furthermore, negating the definition of
non-polynomial growth, it follows that for each j < ι there exists an integer dj > 1
such that

y
dj
j+1(m) ≥ yj(m) (3.2)
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Remark 3.3. We only have to define the notion of non-polynomial growth in the
case where λ = (0, . . . , 0), since otherwise we can group the variables with λj 6= 0
together as in the proof of Theorem (1.6)

In this section, we prove Conjecture (1.1) in the case where S is a surface, i.e.
we prove Theorem (1.10) for r = 2. Given an sl2-convergent sequence z(m) the
possible limiting ratios are λ = (λ1, 0) with λ1 6= 0 and λ = (0, 0).

Theorem 3.4. Theorem (1.10) holds for sl2-convergent sequences z(m) = (z1(m), z2(m))
with limiting ratios λ = (λ1, 0) with λ1 6= 0.

Proof. Mutatis mutandis, this follows from the proof of Theorem (3.9) of [1] (see
also [2]). More precisely, by the SL2-orbit theorem of [16] if (ezN .F∞,W ) is a
nilpotent orbit arising from an admissible normal function then

eiyN .F∞ = g(y)y−
1
2H .F̂∞

where the coefficients of the GR-valued function

g(y) = 1 + g1y
−1 + g2y

−2 + · · · (3.5)

are given by universal Lie polynomials in the Hodge components of the Deligne (or
sl2)-splitting of (F∞,M(N,W )) and ad N+

0 where (N0, H,N
+
0 ) is the associated sl2-

triple. Accordingly, given a two variable admissible nilpotent orbit ez1N1+z2N2 .F∞,W )
with W as above, we have

eiy(N1+τN2).F∞ = gτ (y)eiy(N1+τN2).F̂∞

where the coefficients gk(τ) of gτ (y) are real analytic functions of τ . In particular,
If λ1 6= 0 then

eiy1N1+iy2N2 .F∞ = eiy1(N1+y2/y1N2).F∞

where N1 + y2/y1N2 → N1 + λ1N2. Using this observation, the proof of Theorem
(1.10) now proceeds as in Theorem (3.9) of [1] using the local normal form of the
period map (1.9) and the fact that λ1 6= 0 also implies that ynj sk → 0. �

Remark 3.6. In [16], the function g(y) does not have leading coefficient 1 (cf. (3.5))
because the construction of [16] is done with respect to Deligne’s δ-splitting of
the limit mixed Hodge structure. As explained in [2], we can renormalize g(y) to
have leading coefficient 1 by basing the construction at the sl2-splitting of the limit
mixed Hodge structure. We make this renormalization throughout this article. For
a comparison of the results of [16] and [12] see section 11 of [12].

Remark 3.7. The analytic dependence of the coefficients of gτ (y) on τ also appears
in 10.8 of [12].

Returning now to our sl2-convergent sequence z(m) = (z1(m), z2(m)), the case
λ = (0, 0) can be subdivided according to the value of ι. Suppose therefore that
ι = 2. Then, z(m) has polynomial growth with respect to z1(m) and hence there
exists an integer ` such that

y2(m) ≤ y1(m) ≤ y`2(m) (3.8)

Let V → ∆∗2 be an admissible variation of graded-polarized mixed Hodge structure
with unipotent monodromy, and local normal form

F (z1, z2) = ez1N1+z2N2eΓ(s1,s2).F∞ (3.9)
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Assume the weight filtration W has only two non-zero graded quotients which are
adjacent. Define

F̃ (z) = e−µ(x).F (z) = e−x1N1−x2N2 .F (z)

and note hat (F̃ (z),W ) is split over R due to the short length of W = W 0.
Let ez1N1+z2N2 .F∞ be the associated nilpotent orbit of F (z). Following the

conventions of section 2, let (F̂2,W
2) be the sl2-splitting of (F∞,W 2) and r = F̂0.

Then, by the several variable SL2-orbit theorem of [12]

eiy1N1+iy2N2 .F∞ = t(y)eg(y).r

where eg(y) is a GR-valued function which has a convergent series expansion in

terms of the variables t
1
2
j with leading coefficient 1, where tj = yj+1/yj . Therefore,

Y(F̃ (z),W ) = Y((Ad (eiy1N1+iy2N2 )eΓ(s1,s2))eiy1N1+iy2N2 .F∞,W)

= Y((Ad (eiy1N1+iy2N2 )eΓ(s1,s2))eg(y)t(y).r,W)

= t(y)eg(y).Y((Ad (eg−1(y)t−1(y)eiy1N1+iy2N2 )eΓ(s1,s2)).r,W)

= t(y)eg(y).Y(eu.r,W )

where
eu = Ad (eg−1(y)t−1(y)eiy1N1+iy2N2)eΓ(s1,s2)

In particular, since the function Γ(s1, s2) is holomorphic and vanishes at (0, 0), it
follows by (3.8) that u→ 0 along such a sequence (y1(m), y2(m)). Indeed,

Ad (t−1(y)eiy1N1+iy2N2)Γ(s1, s2) ∈ I[y
1
2
1 , y

− 1
2

1 , y
1
2
2 , y

− 1
2

2 ]

where I is the ideal of gC-valued functions which vanish at (0, 0). Therefore, by
(3.8) and the fact that qje−q → 0 as q → ∞, the previous statement implies that
u→ 0, since eg(y) is bounded as (y1, y2)→∞ with y2/y1 → 0. Accordingly,

Y(F̃ (z),W ) = t(y)eg(y)gR(y).Y(r,W )

where gR(y) = eγ such that |γ| can be bounded by the norm of an element of

I[y
1
2
1 , y

− 1
2

1 , y
1
2
2 , y

− 1
2

2 ] with |sj | = e−2πyj . By [12][8], t(y) is at worst a polynomial in
half integral powers of y1 and y2 and fixes Y(r,W ), while eg(y) ∼ 1 for y2/y1 ∼ 0.
Therefore,

Y(F̃ (z(m)),W ) → Y(r,W )

under (3.8). Again, comparing Deligne’s construction [8] to [12], it follows that

Y(r,W ) = Y (N1, Y (N2, Y(F̂∞,M)))

where (F̂∞,M) is the sl2-splitting of (F∞,M).

Remark 3.10. Mutatis mutandis, the same argument works for any number of
variables r provided that ι = r.

Suppose now that z(m) = (z1(m), z2(m)) is an sl2-convergent sequence with
non-polynomial growth with respect to z1(m). Define

F∞(z2) = eiy2N2eΓ(0,s2).F∞ (3.11)

Then, for any fixed value of z2,

θz2(z1) = ez1N1 .F∞(z2) (3.12)
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pairs with the weight filtration W 0 of V to define an admissible nilpotent orbit.
Furthermore,

z2 7→ ex2N2 .F∞(z2) = ez2N2eΓ(0,s2).F∞ (3.13)
pairs with W 1 = M(N2,W

0) to define the lifted period map of an admissible
variation of mixed Hodge structure over ∆∗.

Lemma 3.14. Let δ(z2) denote the δ-splitting of (F∞(z2),W 1). Then, the Hodge
components of δ(z2) are bounded by polynomials in y2.

Proof. Let z = x+ iy. Then, by application application of Corollary (12.8) of [12]
to the period map z 7→ exN2 .F∞(z), it follows that

t(y)−1.Y(F∞(z),W 1) → Y(eε0 .r,W 1)

(see [12] for notation). Therefore,

Y(F∞(z),W 1) ∼ t(y).Y(eε0 .r,W 1)

for sufficiently large values of y. �

Remark 3.15. Mutatis mutandis, this lemma and its proof remain valid in several
variables. Also, the pair (eε0 .r,W 1) is a mixed Hodge structure since (r,W 1) is a
mixed Hodge structure and ε0 is derived from the sl2-splitting operation and hence
acts trivially on GrW

1
.

Corollary 3.16. Let (F̂∞(z2),W 1) = (e−ε(z2).F∞(z2),W 1) denote the sl2-splitting
of (F∞(z2),W 1). Then, the Hodge components of ε(z2) are bounded by polynomials
in y2 with respect to any fixed basis of gC as y2 → ∞ (and x2 restricted to an
interval of finite length). Likewise, the components of the grading Y(F̂∞(z2),W 1) with
respect to any basis of gl(VC) are bounded by polynomials in y2.

In addition to [12], we have an another proof of the 1-variable SL2-orbit theorem
[16]. Following [16], fix z2 and let

θz2(iy1) = gz2(y1)eiy1N1 .F̂∞(z2) (3.17)

be the asymptotic SL2-orbit expansion of θz2(iy) for y1 > a(z2), normalized so that

gz2(y1) = 1 + g1(z2)y−1
1 + g2(z2)y−2

1 + · · · (3.18)

i.e. (F̂∞(z2),W 1) is the sl2-splitting of (F∞(z2),W 1) and not the δ-splitting which
appears in [16].

To continue, recall that by a theorem of Deligne [8][10], the sl2-representation
attached to the nilpotent orbit θz2(z1) is constructed as follows: Let

H1(z2) = Y(F̂∞(z2),W 1) − Y (N1, Y(F̂∞(z2),W 1)) (3.19)

where Y (N1, Y(F̂∞(z2),W 1)) = Y(r,W 0) Then, (N1, H1(z2)) is an sl2-pair. Moreover,
due to the short length of W 0, in this case we have

Y (N1, Y(F̂∞(z2),W 1)) = Y(Fo(z2),W 0)

where Fo(z2) = eiN1 .F̂∞(z2).

Corollary 3.20. Let (N1, H1(z2), N+
1 (z2)) be the sl2-triple associated to (N1, H1(z2)).

Then H1(z2) and N+
1 (z2) are bounded by polynomials in y2 as y2 →∞ with x2 re-

stricted to an interval of finite length.
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By [16], gj(z2) is given by universal Lie polynomials in the Hodge components
of Deligne’s δ-splitting of (F∞(z2),W 1) and ad N+

1 (z2). By, Lemma (3.14) and
Corollary (3.20), both of these ingredients are bounded by polynomials of y2.

To continue, observe that since z(m) has non-polynomial growth with respect to
z1(m), given a positive integer `, it follows that after passage to a subsequence, we
can assume that

y1(m) ≥ y`2(m) (3.21)
for all m sufficiently large. The arguments below will produce many quantities
which are of polynomial growth with respect to y2(m). Therefore, by taking `
sufficiently large and passage to a subsequence, we will be able to ensure that all
of these quantities vanish when paired against y1(m)−1 as m→∞.

Theorem 3.22. Let z(m) = (z1(m), z2(m)) be an sl2-convergent sequence with
non-polynomial growth with respect to z1(m). Then, upon passage to a subsequence,
for m sufficiently large, y1(m) > a(z2(m)) and

lim
m→∞

gz2(m)(y1(m)) = 1

Proof. Recall the proof of the 1-variable SL2-orbit theorem in [16]. On page 62
there is a formula for a quantity

C`+1 = i
∑

p,q≥1,p+q≥`+1

b`−1
p−1,q−1η

−p,−q

in terms of the Hodge components of a quantity η and the constants btr,s defined by

(1− x)r(1 + x)s =
∑
t

btr,sx
t

Let

C`+1 =
(−i)`

`!
(ad N)`B`+1 (3.23)

Then, by Corollary (8.30) of [16], the coefficient gk appearing in the SL2-orbit ex-
pansion can be expressed as a universal non-commutative polynomial of degree k in
B2, . . . , Bk+1 where Bj is assigned degree j− 1. By [16], η is bounded by a polyno-
mial of degree d in y2 since δ(z2) is bounded by a polynomial in y2. Therefore, Bj
is also bounded by a polynomial of degree d in y2, and hence gk will be bounded by
a polynomial of degree kd in y2. Therefore, gky−k1 will be bounded by a polynomial
of degree k in (yd2)/y1. By condition (3.21), yd2/y1 → 0 along our sequence, and
hence we can make (yd2/y1) as small as we please. Accordingly, by a comparison
test, we obtain the convergence of gz2(y1)→ 1 along our sequence. �

Remark 3.24. By equation (8.29) of [16] paper, if we decompose B`+1 into isotyp-
ical components with respect to the associated sl2-representation, we see that the
factor ad (N)` appearing in equation (3.23) does not kill any components of B`+1.
Therefore, the degree of B`+1 in y2 is equal to the degree of C`+1 in y2.

Returning to (3.9) let µ(x) = x1N1 + x2N2. Then,

Y(F (z1,z2),W 0) = eµ(x).Y(eiy1N1+iy2N2eΓ(s1,s2).F∞,W 0)

= eµ(x).Y((Ad (eiy1N1+iy2N2 )(eΓ(s1,s2)e−Γ(0,s2))).θz2 (iy1),W0) (3.25)

= eµ(x).Y((Ad (eiy1N1+iy2N2 )(eΓ̃(s1,s2)).θz2 (iy1),W0)
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where
eΓ̃(s1,s2) = eΓ(s1,s2)e−Γ(0,s2)

Observe that since Γ(s1, s2) is a holomorphic functions of s1 and s2 which van-
ishes at (0, 0), it follows from the defining equation of Γ̃ and the Baker–Campbell–
Hausdorff formula that s1|Γ̃ in O(∆2). Furthermore, if we temporarily view s1,
s2, y1, y2 as independent variables, then since ad N1 and ad N2 are nilpotent and
preserve the subalgebra q in which Γ(s1, s2) assumes its values, we have

Ad (eiy1N1+iy2N2)eΓ̃(s1,s2) ∈ I[y1, y2]⊗ q

where I is the ideal of holomorphic functions on ∆2 which are divisible by s1.
Let Fo(z2) = eiN1 .F̂∞(z2) and H1(z2) be the semisimple element (3.19). Then,

via the SL2-orbit theorem, we have

Y(F (z1,z2),W 0) = eµ(x).Y
(evgz2 (y1)y−

1
2H1(z2).F0(z2),W 0)

(3.26)

where
ev = (Ad (eiy1N1+iy2N2)(eΓ̃(s1,s2))

To continue, observe that since y1 ≥ y2 implies

|y
1
2 j
1 y

1
2k
2 s1| = (y

1
2 j
1 |s1|

1
2 )(y

1
2k
2 |s1|

1
2 )

≤ (y
1
2 j
1 |s1|

1
2 )(y

1
2k
2 |s2|

1
2 ) = (y

1
2 j
1 e−πy1)(y

1
2k
2 e−πy2) (3.27)

for any non-negative integers j and k. Taking the limit as ` → ∞, it then follows
that

|y
1
2 j
1 (m)y

1
2k
2 (m)s1(m)| = 0 (3.28)

Returning to (3.26), we have

Y(F (z1,z2),W 0) = eµ(x).Y
(gz2 (y1)g−1

z2 (y1)evgz2 (y1)y
− 1

2H1(z2)
1 .F0(z2),W 0)

= eµ(x)gz2(y1).Y
((Ad (g−1

z2 (y1))ev)y−
1
2 H1(z2).F0(z2),W0)

= eµ(x)gz2(y1)y−
1
2H1(z2)

1 .Y
((Ad (y

1
2 H1(z2)
1 g−1

z2 (y1))(ev).F0(z2),W0)

By Corollary (3.20), H1(z2) is bounded by polynomials in y2. Consequently, since
s1|Γ̃(s1, s2), it follows from equations (3.27), (3.28) and Theorem (3.22) that

eu = (Ad (y
1
2 H1(z2)
1 g−1

z2
(y1))ev → 1 (3.29)

and more strongly, by the boundedness of gz2(y1), the left hand side of (3.29) is
bounded by a polynomial in half integral powers of y1 and y2 – arising from the
y
H1(z2)
1 and eiy1N1+iy2N2 – and an element of I coming from Γ̃(s1, s2). In particular,

since (Deligne [10]), H1(z2) preserves Y(F0(z2),W 0) it follows that

Y(F (z1,z2),W 0) = eµ(x)evgz2(y1)Ad (y−
1
2 H1(z2)

1 e−ϕ(u)).Y(F0(z2),W0) (3.30)

where
eu = gR(u)eϕ(u)

with gR(u) ∈ GR and ϕ(u) ∈ Lie(GF0(z2)
C ) such that

ϕ̄(u)0,0 = −ϕ(u)0,0

[Hodge components with respect to (F0(z2),W 0)]. Again, because of the form of
Fo(z2), the projection operators onto Hodge components with respect to Fo(z2) are
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bounded by polynomials in y2. Therefore, since ϕ(u) is given by universal Lie series
in the Hodge components of u, ū, etc., the fact u is bounded by polynomials in half
integral powers of y1, y2 times elements of I forces

Ad (y−
1
2 H1(z1)

1 )e−ϕ(u) → 1

along a sequence (z1(m), z2(m)) which satisfies condition (3.21). Likewise, along
such a sequence,

(Ad (eiy1N1+iy2N2)(eΓ̃(s1,s2)))→ 1
by (3.27), while gz2(y1)→ 1 by (3.22).

Corollary 3.31. Let z(m) = (z1(m), z2(m)) be an sl2-convergent sequence with
non-polynomial growth with respect to z1(m). Then,

Y(F (z(m)),W ) → eµ.Ŷ 0

as required to finish the proof Theorem (1.10) in dimension two provided that

Y(Fo(z2),W ) = Y (N1, Y(F̂ (z2),W 1))→ Ŷ 0

Equivalently,
Y(F̂ (z2),W 1) → Ŷ 1 = Y (N2, Ŷ(F̂∞,W 2)) (3.32)

For the remainder of this section, we drop the assumption that our weight filtra-
tion has only two non-zero graded-quotients and prove the following result, which
contains (3.32) as a special case.

Theorem 3.33. Let F : U →M be the lifting of the period map of an admissible
variation of mixed Hodge structure V → ∆∗ with unipotent monodromy to the upper
half-plane. Let z(m) = x(m) + iy(m) be an sl2-convergent sequence. Then, after
passage to a subsequence,

lim
m→∞

Ŷ(F (z),W ) = lim
m→∞

Y
( ̂F (z),W )

= eµ.Y(r,W ) (3.34)

where µ = limm→∞, x(m)N .

By way of preliminary discussions, let (F,W ) be a mixed Hodge structure and
recall that Deligne’s δ-splitting [6] is defined to be the unique real element δ of
Λ−1,−1

(F,W ) such that
Ȳ(F,W ) = e−2iδ.Y(F,W )

and hence (e−iδ.F,W ) is split over R.

Lemma 3.35. Let (F,W ) be a mixed Hodge structure and λ ∈ Λ−1,−1
(F,W ). Let δ(λ)

be Deligne’s δ-splitting for (eλ.F,W ). Then,

e−2iδ(λ) = eλ̄e−2iδ(0)e−λ

Proof. On the one hand,

Ȳ(eλ.F,W ) = eλ.Y(F,W ) = eλ̄.Ȳ(F,W ) = eλ̄e−2iδ(0).Y(F,W )

On the other hand,

Ȳ(eλ.F,W ) = e−2iδ(λ).Y(eλ.F,W ) = e−2iδ(λ)eλ.Y(F,W )

Comparing these two equations and taking note of the fact that Λ−1,−1
(F,W ) ⊂W−1gC,

it follows that
e−2iδ(λ) = eλ̄e−2iδ(0)e−λ
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as required. �

We also recall (see [12]) that Deligne’s δ-splitting e−iδ.F and the sl2-splitting
e−ε.F of (F,W ) are related by formula

δ =
i

2
H(ε,−ε̄) (3.36)

where eH(a,b) = eaeb is the Baker–Campbell–Hausdorff formula.
Let

F (z) = ezNeΓ(s).F∞

be the local normal form of the period map appearing in Theorem (3.33).
Let F̃ (z) = e−xN .F (z). Recall that by [12]

eiyN .F∞ = t(y)eg(y)eε(y).r

Accordingly,

Ŷ(F̃ (z),W ) = Ŷ(eiyNeΓ(s).F∞,W )

= Ŷ((Ad (eiyN)eΓ(s))eiyN.F∞,W) (3.37)

= Ŷ((Ad (eiyN)eΓ(s))t(y)eg(y)eε(y).r,W1)

= t(y)eg(y).Ŷ((Ad (eg−1(y)t−1(y)eiyN)eΓ(s))eε(y).r,W)

Let I denotes the ideal of holomorphic functions of s which vanish at s = 0 and

eu = Ad (eg−1(y)t−1(y)eiyN)eΓ(s)

For the moment, let us view y and s as independent variables. Then, u(s, y) is a real
analytic function of s and y−

1
2 , and polynomial in y

1
2 . Furthermore, there exists

an element j(s, y) ∈ I[y
1
2 , y−

1
2 ] such that |u(s, y)| < |j(s, y)| for all s sufficiently

close to 0 ∈ ∆ and y sufficiently large. Indeed,

Ad (t−1(y)eiyN)eΓ = exp(α)

for some α ∈ gC ⊗ I[y
1
2 , y−

1
2 ]. Therefore, since eg(y) is real-analytic in y−

1
2 , it is a

bounded operator as y →∞, and hence we can find an element j(s, y) ∈ I[y
1
2 , y−

1
2 ]

which bounds u(s, y) as y → ∞ and s → 0. In particular, if s → 0 and y → ∞
along a sequence such that |s| = e−2πy then u(s, y)→ 0 at a rate which is given by
a constant times y

1
2ne−2πy for some integer n.

Next, we recall that if (F,W ) is a graded-polarized mixed Hodge structure and
u ∈ gC is sufficiently small, then there is a distinguished decomposition

eu = gR(u)eλ(u)f(u) (3.38)

where gR(u) ∈ GR, λ(u) ∈ Λ−1,−1
(F,W ) and f(u) ∈ GFC are given by universal Lie series

in u, ū, and their Hodge components with respect to (F,W ). More generally, if F
depends real-analytically on a real parameter t ∼ 0 then the decomposition

eu = gR(u, t)eλ(u,t)f(u, t)

with respect to (F (t),W ) will be given by Lie universal series in u, ū and their
Hodge components with respect to (F (t),W ). Accordingly, since we can express
the Hodge components with respect to (F (t),W ) as real analytic functions of t in
the Hodge components with respect to (F (0),W ) it follows that gR(u, t) etc. will be
given by Lie series in u, ū and their Hodge components with respect to (F (0),W )
with real-analytic coefficients. The norms of these real-analytic functions will be
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determined by the coefficients of the universal series for gR(u) etc. determined by
(3.38) and real-analytic functions which give projection onto Hodge components
with respect to (F (t),W ) in terms of projection onto Hodge components with re-
spect to (F (0),W ). In particular, since ε(y) is real-analytic in y−

1
2 the operations

of taking Hodge components with respect to eε(y).r are also real-analytic in y−
1
2 .

Therefore, if we let gR(u, y) etc. denote the decomposition of eu with respect to
eε(y).r then gR(u, y) etc. will be given by Lie series in u, ū and their Hodge com-
ponents with respect to (r,W ) with real-analytic functions of y−

1
2 as coefficients.

Returning now to (3.37), we have

Ŷ(F̃ (z),W ) = t(y)eg(y).Ŷ(eu(s,y)eε(y).r,W )

= t(y)eg(y)gR(u(s, y), y)..Ŷ(eλ(u(s,y),y)eε(y).r,W ) (3.39)

Accordingly, by Lemma (3.35) and the Baker–Campbell–Hausdorff formula, if δ(y)
is the δ-splitting of (eε(y).r,W ) and δ(λ, y) is the δ-splitting of (eλeε(y).r,W ) where
λ = λ(u(s, y), y) then

δ(λ, y) = δ(y) + β(λ, y)

where β(λ, y) is given by a universal Lie series in λ, λ̄ and δ(y) such that every
term of β(λ, y) contains either λ or λ̄. By equation (3.36), it then follows that

ε(λ, y) = ε(y) + γ(λ, y)

[the sl2-splitting of (eλeε(y).r,W )] where γ(λ, y) is a universal series in λ, λ̄, ε(y),
ε̄(y) and their Hodge components with respect to (r,W ) such that every term of
γ(λ, y) contains either a Hodge component of λ or λ̄. [Recall:

Λ−1,−1
(eλeε.r,W )

= Λ−1,−1
(eε.r,W )

since λ ∈ Λ−1,−1
(eε.r,W ), and that in solving for ε in terms of δ using (3.36), we only use

the bigraded structure ⊕r,s<0 gr,s of Λ−1,−1]. Consequently,

( ̂eλeε(y).r,W ) = (e−ε−γ(λ,y)eλeε(y).r,W )

= (e−ε(y)−γ(λ,y)eε(y)e−ε(y)eλeε(y).r,W ) (3.40)

= (eσ(λ,ε).r,W )

where all of the Hodge components of σ(λ, ε) are given by universal series which
contain at least one Hodge component of λ or λ̄.

Proof of Theorem (3.33). Inserting (3.40) into (3.39), it follows that

Ŷ(F̃ (z),W ) = t(y)eg(y)gRe
σ(λ,ε).Y(r,W ) (3.41)

where gR = gR(u(s, y), y), λ = λ(u(s, y), y) and ε = ε(y). Moreover, t(y) fixes Y(r,W )

(by construction), t(y)eg(y) = g(y)t(y) and Ad (t(y))γR, Ad (t(y))σ(λ, ε)→ 1 along
any sequence (y(`), s(`)) such that |s(`)| = e−2πy, since |u(s, y)| can be bounded by
the norm of an element of J [y

1
2 , y−

1
2 ]. Recall that g(y) = u(y)g̃(y) where u(y)→ 1.

Likewise, g̃(y)GrW → 1 by construction [6] and hence g̃(y) → 1. Inserting these
limits into (3.41), yields

lim
m→∞

Ŷ(F (z),W ) = eµ.Y(r,W ) (3.42)

�
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4. Higher dimensional case

In this section we prove the following generalization of Theorem (1.10) by induc-
tion on dimension using the ideas developed in our study of the surface case:

Theorem 4.1. Let z(m) be an sl2-convergent sequence of points in Ur and F :
Ur → M denote the lifting of the period map of an admissible variation of mixed
Hodge structure over ∆∗r with unipotent monodromy and weight filtration W = W 0.
Let P (λ) be the corresponding partition. Then, after passage to a subsequence if
necessary,

Y ∗ = lim
m→∞

e−µ(x(m)).Ŷ(F (z(m),W ) = Y (N(σ1), Y (N(σ2), · · · , Y(F̂∞,M))) (4.2)

where Ŷ(F (z(m),W ) is the grading of the sl2-splitting of (F (z(m),W ) and (F̂∞,M)
is the sl2-splitting of the limit mixed Hodge structure of (F (z),W ).

For r = 1, this is Theorem (3.33). Furthermore, as in the proof of Theorem (1.6)
and (3.4), by grouping variables together it is sufficient to consider sl2-convergent
sequences z(m) = (z1(m), . . . , zr(m)) with limiting ratios λ = (0, . . . , 0). Accord-
ingly, as in the surface case, we consider the smallest index ι with respect to which
z(m) has non-polynomial growth with respect to zι(m). Then, since by (3.2) the
variables yj for j ≤ ι share mutual polynomial bounds, it follows as in (3.30) that

||Ŷ(F (z(m),W ) − Ŷ(Fι(z(m)),W )|| → 0

for any fixed norm on W−1q, where Fι(z1, . . . , zr) is the nilpotent orbit in z1, . . . , zι
obtained by degenerating z1, . . . , zι in F (z), i.e.

Fι(z1, . . . , zr) = e
P
j zjNjeΓ[ι] .F∞ (4.3)

where Γ[ι] is obtained from the local normal form (1.9) of F (z) by taking Γ(s) and
setting sj = 0 for j ≤ ι. Consequently, it is sufficient to prove Theorem (4.1) for
period maps of the form (4.3).

Heuristically, the proof of Theorem (4.1) now reduces to the inductive application
of Theorem (0.5) of [12] to Fι, viewed as a nilpotent orbit in z1, . . . , zι with base
point

F∞(zι+1, . . . , zr) = e
P
j>ι zjNjeΓ[ι] .F∞

However, since this base point need not be contained in a bounded set we can not
directly apply [12]. We can however observe that the pair (F∞(zι+1, . . . , zr),W ι) is
an admissible variation of mixed Hodge structure with associated nilpotent orbit θι
defined by (Nι+1, . . . , Nr;F∞,W ι). Let tι(y) be the associated semisimple operator
appearing the several variable SL2-orbit theorem of [12]. Then, by Theorem (12.8)
of [12],

t−1
ι (y)F∞(zι+1, . . . , zr)→ F] := exp(ε0).F̂ι

Furthermore, specializing to the case where F∞(zι+1, . . . , zr) is in fact a nilpotent
orbit and comparing Proposition (10.4) of [12] with Lemma (2.10), it follows that

exp(ε0) = eiNι+1e−iN̂ι+1 , F] = ePι(0).F̂∞

where Ad (t−1(y))ei
P

j>ι yjNj = ePι(t) as in Lemma (2.10).
Likewise, via the method of Theorem (12.8) of [12],

Ad (t−1
ι (y))Γ[ι] → 1
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it follows that as yι+1, . . . , yr → ∞ in such a way that tι+1, . . . , tr → 0. Similarly,
let (eε̃.F∞,W r) denote the sl2-splitting of (F∞,W r). Then, since ε̃ preserves each
W j and ε̃ ∈ Λ−1,−1

(F̂∞,W r)
it follows that

ε̃(t) = Ad (t−1
ι (y))ε̃

is a polynomial in tι+1, . . . , tr with constant term 0 where tj = yj+1/yj .
To continue, note that

tι(y) = Πj>ι y
1
2 Ŷ

j

j = y
− 1

2 Ŷ
ι+1

ι+1 Πj>ι y
Ĥj
j (4.4)

Using the above remarks, we can now rewrite (4.3) as

Fι(z1, . . . , zr) = e
P
j zjNjeΓ[ι] .F∞

= eµ(x)e
P
j iyjNjeΓ[ι] .F∞ (4.5)

= eµ(x)e
P
j≤ι iyjNje

P
j>ι iyjNjeΓ[ι] .F∞

= eµ(x)e
P
j≤ι iyjNj tι(y)t−1

ι (y)e
P
j>ι iyjNjeΓ[ι] .F∞

In particular, since [Nk, Ĥj ] = 0 for j > k by (2.3) it follows by (4.4) that

Ad (t−1
ι (y))ei

P
k≤ι ykNk = Ad (y

1
2 Ŷι+1

ι+1 )Πj>ι Ad (y−Ĥj
j )ei

P
k≤ι ykNk

= Ad (y
1
2 Ŷι+1

ι+1 )ei
P

k≤ι ykNk (4.6)

= ei
P
k≤ι (yk/yι+1)Nk (4.7)

Note that properties of non-polynomial growth with respect to zι(m) remain un-
changed by replacing yk by yk/yι+1. Accordingly, (4.5) becomes

Fι(z1, . . . , zr) = eµ(x)tι(y)ei
P
k≤ι (yk/yι+1)Nkt−1

ι (y)e
P
j>ι iyjNjeΓ[ι] .F∞ (4.8)

Similarly,

t−1
ι (y)e

P
j>ι iyjNjeΓ[ι] .F∞ = (Ad (t−1

ι )e
P

j>ι iyjNj)(Ad (t−1
ι )eΓ[ι])eε̃(t).F̂∞ (4.9)

Lemma 4.10. If k ≤ j and α ∈ ker(ad Nk) then each eigencomponent of α with
respect to ad Ŷj belongs to ker(ad Nk).

Proof. By the Jacobi identity,

[Nk, [Ŷ j , α]] = [[Nk, Ŷ j ], α] + [Ŷ j , [Nk, α]] = [2Nk, α] = 0

since [Nk, Ŷ j ] = 2Nk. Consequently, each eigencomponent of α must also belong
to ker(ad Nk) since ad Nk decreases eigenvalues with respect to ad Ŷj by 2. �

Corollary 4.11. If α commutes with N1, . . . , Nι then so does Ad (t−1
ι (y))α.

Proof. Decompose α with respect to Ŷ ι+1, . . . , Ŷ r and apply the previous lemma.
�

In particular, both Pι(t) and ε̃(t) commute with N1, . . . , Nι. Furthermore, as in
Proposition (2.6) of [5], it follows via equation (6.10) of [15] that

Γ[ι] ∈ ker(ad N1) ∩ · · · ∩ ker(ad Nι)

and hence Ad (t−1
ι (y))Γ[ι] inherits this property as well. Define

eβ = e−Pι(0)ePι(t)(Ad (t−1
ι )eΓ[ι])eε̃(t)
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and note that by the above β commutes with N1, . . . , Nι and goes to zero as
yι+1, . . . , yr → ∞ in such a way that tι+1, . . . , tr → 0. Furthermore, β ∈ q (cf.
(1.8)). Accordingly, we can rewrite (4.8) as

Fι(z1, . . . , zr) = eµ(x)tι(y)ei
P
k≤ι (yk/yι+1)Nk(Ad (ePι(0))eβ).F] (4.12)

To continue, we note that (N1, . . . , Nι;F],W ) defines an admissible nilpotent
orbit. Returning to (1.8), note that both (F∞,W r) and (F̂∞,W r) define the same
subalgebra q since

ε̃ ∈ Λ−1,−1
(F∞,W r) ⊆ q

Applying applying Ad (ePι(0)) to both sides of (1.8) for (F̂∞,W r) it follows that

gC = g
F]
C ⊕ q]

where1 q] = Ad (ePι(0))q. Let

v = q] ∩ ker(ad N1) ∩ · · · ker(ad Nι)

Then, for any element v ∈ v, the map

(z1, . . . , zι) 7→ e
P
j≤ι zjNjev.F] (4.13)

is horizontal. It therefore follows from the theory of polarized mixed Hodge struc-
tures (cf. Theorem (2.3), [5] and [4][15]) and the results of Kashiwara [11] that
there is a neighborhood vo of 0 ∈ v such that v ∈ vo implies that (4.13) is an
admissible nilpotent orbit. In particular,

ev = Ad (ePι(0))eβ (4.14)

will satisfy v ∈ vo as yι+1, . . . , yr →∞ in such a way that tι+1, . . . , tr → 0.
Setting aside (4.14) for the moment, given v ∈ vo define

Ŷ (v) = Y (N1, . . . , Y (Nι, Ŷ(ev.F],W ι)))

to be the limiting grading of

Ŷ
(e

P
j≤ι iyjNj ev.F].W )

as y1, . . . , yι → ∞ in such a way that t1, . . . , tι → 0. Then, by Theorem (0.5) of
[12],

Ŷ
(e

P
j≤ι iyjNj ev.F].W )

= exp(u(τ ; v)).Ŷ (v) (4.15)

where u(τ ; v) has a convergent series expansion

u(τ ; v) =
∑
m

um(v)Πr
j=1τ

m(j)
j

in τ1 = y2/y1, . . . , τι = 1/yι with constant term 0. Furthermore, by Theorem (10.8)
of [12], the coefficients um(v) are analytic functions of v ∈ vo. For future reference,
note that τj = tj for j < ι.

Combining the above, we obtain

Ŷ(Fι(z1,...,zr),W ) = eµ(x)tι(y)eu(t1,...,tι;v).Ŷ (v) (4.16)

where we have now reimposed condition (4.14). In particular, if ι = 1 it follows
from the definition of non-polynomial growth that

Ad (tι(y))eu(t1;v) → 0

1In fact q] = q since Nι+1, . . . , Nr are (−1,−1)-morphisms of F̂∞, W r) whereas Ŷ ι+1, . . . , Ŷ r

are of type (0, 0) with respect to (F̂∞, W r) by Lemma (1.16).



ZERO LOCUS 23

along an appropriate subsequence of z(m) since the action of Ad (tι(y)) on gC is
bounded by a polynomial in y2 and we can arrange for

yd+1
2 (m)/y1(m) = t1(m)yd2(m)→ 0

It therefore remains to consider (in this case)

t(y).Ŷ (v) = t(y).Y (N1, . . . , Y (Nι, Ŷ(ev.F],W ι))) (4.17)

By definition [8], the right hand side of equation (4.17) is invariant under rescaling
Nk 7→ αNk for k = 1, . . . , ι. It therefore follows from (4.4) and (4.17) that

t(y).Ŷ (v) = Y (N1, . . . , Y (Nι, Ŷ(t(y)ev.F],W ι)))

= Y (N1, . . . , Y (Nι, Ŷ(e
P
j>ι iyjNj e

Γ[ι] ,W ι)
))

Using our induction hypothesis, we now obtain Theorem (4.1).
Suppose now that ι > 1 and let us again temporarily set aside (4.14). Let

u1 = u(t1, . . . , tι; v)− u(t1, . . . , tι−1, 0; v), u2 = u(t1, . . . , tι−1, 0; v)

Then, exp(u(t1, . . . , tι; v)) = exp(u1 + u2) where u1 is divisible by tι in the ring of
real-analytic functions of t1, . . . , tι. Therefore,

Ad (tι(y)) exp(u(t1, . . . , tι; v)) = Ad (tι(y))(eu1+u2e−u2)Ad (tι(y))eu2 (4.18)

where eu1+u2e−u2 = eu3 with u3 again divisible by tι in the ring of real-analytic
functions in t1, . . . , tι. Consequently, as above, it follows that

Ad (tι(y))(eu1+u2e−u2)→ 1 (4.19)

along some subsequence of z(m) [i.e., any subsequence along which tι dominates
the action of Ad (tι(y)) on W−1gC].

Accordingly, by the previous paragraph it follows that

tι(y)eu(t1,...,tι;v).Ŷ (v)→ tι(y)eu2 .Ŷ (v)

along a suitable subsequence of z(m) once we reimpose (4.14) provided that tι(y)eu2 .Ŷ (v)
is convergent along this sequence. To establish this, we need a formula for tι(y)eu2 .Ŷ (v).
For this purpose, we once again drop (4.14) and fix v ∈ vo and τ1, . . . , τι−1 > 0.
Then, by equation (4.15) it follows that

eu2 .Ŷ (v) = lim
y→∞

Ŷ
(e

(
P
j≤ι αjNj)y

ev.F],W )

= Y (
∑
j≤ι

αjNj , Ŷ(ev.F],W ι))

where αj = yj/yι = Πj≤ι−1 t
−1
j . Reimposing (4.14), it then follows that

tι(y)eu2 .Ŷ (v) = Y (
∑
j≤ι

αjNj , Ŷ(e
P
j>ι iyjNj e

Γ[ι](s).F∞,W ι)
) (4.20)

By our induction hypothesis,

Ŷ
(e

P
j>ι iyjNj e

Γ[ι](s).F∞,W ι)
→ Ŷ ι = Y(F̂ι,W ι) (4.21)

(after passage to a to a subsequence of z(m)), and hence there exists a unique
function W ι

−1gl(V )-valued function γ such that

Ŷ
(e

P
j>ι iyjNj e

Γ[ι](s).F∞,W ι)
= eγ(zι+1,...,zr).Ŷ ι
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with eγ → 1 along any subsequence for which (4.21) holds. Furthermore, because
eγ .Ŷ ι arises from the sl2-splitting of the limit mixed Hodge structure of a nilpotent
orbit with monodromy logarithms N1, . . . , Nι and weight filtration W = W 0 it
follows that:

(a) [eγ .Ŷ ι] = −2Nj for j ≤ ι;
(b) eγ .Ŷ ι preserves W 0.

By the same reasoning, conditions (a) and (b) also hold for Ŷ ι in place of eγ .Ŷ ι. In
particular, by virtue of the fact that W ι

−1gl(V ) is a nilpotent graded ideal of gl(V )
which acts simply transitively on the gradings of W ι, it follows from property (a)
for eγ .Ŷ ι and Ŷ ι that [γ,Nj ] = 0. Likewise, it follows from property (b) for eγ .Ŷ ι

and Ŷ ι that γ preserves W 0. Invoking the functoriality of Deligne’s construction,
it then follows from (4.20) that

tι(y)eu2 .Ŷ (v) = eγ .Y (
∑
j≤ι

αjNj , Ŷ
ι)

= eγ .Ŷ
(e

P
j≤ι αjNj .F̂ι,W 0)

(4.22)

In particular, since the limit mixed Hodge structure (F̂ι,W ι) of the nilpotent orbit
defined by (

∑
j≤ι αjNj ; F̂ι,W

0) is split over R,

Y
(e

P
j≤ι αjNj .F̂ι,W 0)

= Y
(e

P
j≤ι yιαjNj .F̂ι,W 0)

= Y
(e

P
j≤ι yjNj .F̂ι,W 0)

By Theorem (1.7) and the results of section 2,

Y
(e

P
j≤ι yjNj .F̂ι,W 0)

→ Ŷ 0

along a subsequence of z(m). Combining this observation with (4.22) and the fact
that eγ → 1, it then follows that tι(y)eu2 .Ŷ (v)→ Ŷ 0.
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