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STEENROD OPERATIONS IN CHOW THEORY

PATRICK BROSNAN

Abstract. An action of the Steenrod algebra is constructed on the mod p

Chow theory of varieties over a field of characteristic different from p answering
a question posed in Fulton’s Intersection Theory. The action agrees with the

action of the Steenrod algebra used by Voevodsky in his proof of the Milnor
conjecture. However, the construction uses only basic functorial properties of
equivariant intersection theory.

1. Introduction

Let X be a complete complex algebraic variety, let HBM
∗ (X) denote its Borel-

Moore homology with coefficients in the field Fp, and let S• : HBM
∗ (X)→ HBM

∗ (X)
be the total Steenrod p-th power operation in Borel-Moore homology. In [4] (Ex-
ample 19.1.8), Fulton gives a short proof of a theorem of Kawai [6] which says that
S• preserves algebraic classes.

Fulton’s argument is as follows: Consider a subvariety V of X. By Hironaka,
there is a resolution of singularities π : M → V . If µM is the orientation class of
M , then the cycle class cl(V) is equal to π∗µM . Let ψ : H∗M → H∗(TM,TM − 0)
be the Thom isomorphism, and let S• be the total Steenrod operation in singular
cohomology. Let w(TM ) = ψ−1S•ψ(1). Fulton gives a formula

(1) S•(cl(V)) = π∗S•(µM) = π∗(w(TM)−1 ∩ µM).

As w can be expressed in terms of the Chern classes of TM [7], it is tempting to
use (1) as a definition of S• in the mod p Chow groups A∗X ⊗ Fp. The problem,
as Fulton notes, is whether π∗(w(TM )−1 ∩µM ) is independent of the resolution M .

In this paper, S• is defined for quasi-projective varieties over a field k of char-
acteristic not equal to p using the equivariant extension of Fulton-MacPherson
intersection theory developed by Edidin and Graham [3]. (The definition actually
works for any algebraic space over k with an injective morphism into a smooth
algebraic space, and we extend it to all varieties over k by using a Chow envelope
argument.) The construction loosely follows the construction of cohomology oper-
ations given by Steenrod and Epstein [8]. The definition is then shown to agree
with (1) proving that π∗(w(TM )−1 ∩ µM ) is indeed independent of M . The paper
ends with a demonstration of the Adem relations in the “algebraic Steenrod alge-
bra” generated by the graded components of S•. One aspect of our method that
may be interesting is that, while Fulton’s question definitely involves resolutions of
singularities, our construction of S• does not.

It should be noted that Voevodsky has defined similar operations in the context of
motivic cohomology [11, 10]. To the extent that motivic cohomology is an extension
of the Chow groups, Voevodsky’s operations are more general than the ones defined
here. However, the construction in this paper fits into the Fulton-MacPherson
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framework for intersection theory, and, thus, avoids the technicalities inherent in
any discussion of motivic cohomology.

1.1. Outline. I now describe the organization of this paper. Sections 2 and 3 col-
lect some generalities concerning equivariant intersection theory. Unfortunately, to
discuss some of the functorial properties of equivariant intersection theory that are
needed in the construction of Steenrod operations, it is convenient (if not necessary)
to reformulate the definition of the equivariant Chow groups given in [3]. Given this
more transparently functorial definition, the properties we need are straightforward
but tedious to prove. The reader willing to take these properties for granted may
want to skip or skim these two sections.

In section 4, the notion of the equivariant cycle class of an equivariant cycle is
defined. In section 5 this notion is applied to the class Z×p ∈ AS(p)

pk Xp where Z

is a dimension k cycle in a variety X and A
S(p)
pk Xp represents the dimension pk

equivariant Chow group of Xp with the symmetric group S(p) acting on Xp by
permutations. This equivariant cycle class and its restriction to the equivariant
Chow group A

C(p)
pk Xp (where C(p) is the cyclic group of order p) determine the

action of the Steenrod operations on the class of Z.
If X were smooth, we would proceed by pulling back the class Z×p ∈ AC(p)

pk Xp to

A
C(p)
∗ X (where here C(p) acts trivially on X) via the diagonal map ∆ : X → Xp.

This is essentially the step that was taken by Steenrod and Epstein [8]. However,
when X is not smooth, we can not generally pull back via the diagonal map on X.
Fulton-MacPherson intersection theory allows us to remedy the problem using the
following trick: Embed X in a smooth space W and form the diagram:

X //

��

Xp

��
W // W p.

We can then pull back from A
C(p)
pk Xp to AC(p)

∗ X via the refined Gysin map ∆!
W .

In section 6 this construction is described in detail.
To analyze the resulting pull-back class ∆!

WZ
×p ∈ AC(p)

∗ X, we need to under-
stand the equivariant Chow group AC(p)

∗ X. Fortunately, these are very simple. For
k = C, AC(p)

∗ X = A∗X ⊗ Fp[l]. In section 7 we state this result (which is given in
[9]) and make the appropriate modification for arbitrary fields k.

In section 8, we decompose ∆!
WZ

×p as a polynomial in Fp[l] with coefficients
in A∗X. Reindexing the coefficients, we arrive at a total Steenrod power SW• [Z].
The one defect of this power operation is that it depends on the smooth space W .
Fortunately, this dependence can be explicitly described in terms of Chern classes
of W . Thus, we can factor it out and obtain the class S•[Z] — the total Steenrod
operation in Chow theory.

In section 9, we study S• and show that it agrees with the topological S• on Borel-
Moore homology. Section 10 extends the definition of S• to varieties X which do
not admit an embedding X → W with W smooth. The Chow envelope argument
that allows us to do this is almost identical to an argument used by Fulton in [4]
in connection with the Grothendiek-Riemann-Roch. Finally, section 11 proves the
Adem relations.
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1.2. Conventions. If Λ is a commutative ring, the Chow group (resp. the Chow
ring) with coefficients in Λ is simply A∗X ⊗ Λ (resp. A∗X ⊗ Λ). Until section 8,
all work will be over an arbitrary ring Λ. Mention of Λ will however be suppressed
from the notation with A∗X written instead of A∗X ⊗ Λ. In section 8, a prime p
will be chosen and Λ will then be set to Fp.

All schemes (or algebraic spaces) will be assumed to be over a field k whose
spectrum will be written pt. We will use the notation |X| to denote the maximum
of the dimensions of the connected components of an algebraic space X.

1.3. Acknowledgments. Most of the work described in this paper was done at the
University of Chicago as part of my 1998 thesis. I would like to thank S. Bloch and
B. Totaro for guidance and encouragement there. I would also like to apologize for
the long delay in publishing the final version of this paper and to thank A. Merkurev
for catching an error in a previous version of this paper.

2. Equivariant Intersection Theory I

The goal of this section is to review the equivariant intersection theory of Totaro-
Edidin-Graham [9, 3] and to rephrase it slightly in a form more convenient for
studying issues of functoriality which arise in the construction of Steenrod powers.
Recall that the Borel construction defines the equivariant cohomology of a topolog-
ical space X with G-action as H∗(EG×X/G) where EG is a null-homotopic space
on which G acts freely and EG×X/G is the quotient of the diagonal G action on
EG×X.

The idea of Totaro [9] is to replace the the topologist’s EG by a suitable algebraic
analogue. Let G now denote a linear algebraic group over a field k and suppose that
V is a linear representation of G defined over k. Let U ⊂ V be a G-equivariant open
subset of V also defined over k on which G acts freely, and let S = V − U . Then,
as long as the codimension r of S in V is sufficiently large, U is an appropriate
replacement for EG. In fact, we have the following theorem which is Definition-
Proposition 1 of [3].
Theorem 2.1. Let X be an algebraic space with G action, and let G act diagonally
on the product U ×X. Then the groups

Ak+|U |−|G|(U ×X)/G

are independent of U up to isomorphism as long as r >> 0.
Edidin and Graham define the equivariant Chow group AGkX to be the group

Ak+|U |−|G|(U × X)/G of the theorem provided that the codimension of S in V
is sufficiently large. The inconvenient aspect of this definition for our purposes
is that it only defines the group AGkX as a group up to isomorphism. This is
not a serious mathematical problem, but it makes the discussion of maps between
equivariant cohomology groups somewhat awkward. Therefore, we intend to replace
this definition up to isomorphism with an equivalent definition of AG∗ X as a limit
along the lines of Totaro’s definition of A∗BG (see Theorem 1.3 of [9]). This new
definition will specify the set AG∗ X uniquely.

2.1. Algebraic Spaces. We need to recall a few results from [3] concerning alge-
braic spaces. Suppose that G is a linear algebraic group over a field k and X is an
algebraic space with a free G action. Let [X/G] be the functor whose sections over
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an algebraic space B are the principle G-bundles p : E → B together with an equi-
variant map f : E → X. By theorems of Artin, Deligne and Mumford [2, 1], there
is an algebraic space Y representing the functor [X/G]. Moreover the canonical
map π : X → Y is a principle G-bundle. (As a natural transformation of functors,
π sends a morphism h : B → X to the principle G-bundle p : G×B → B given by
projection on the second factor along with the G-equivariant map f : G×B → X
given by f(g, b) = gh(b).) The proof of the existence of Y and the fact that X → Y
is a principle G-bundle is sketched in [3].

We will use the notation XG to denote the algebraic space space Y . Note,
however, that this notation conflicts with that of [3] where XG is used to denote
the space [U ×X/G] for U as in Theorem 2.1.

2.2. Intersection Theory. In [3], Edidin and Graham also show how the intersec-
tion theory of Fulton [4] extends to the category of algebraic spaces. In particular,
they show that refined Gysin homomorphisms are defined for l.c.i. morphisms of
algebraic spaces.

Suppose that f : X → Y is a map between algebraic spaces with free G actions.
Let fG : XG → YG denote the map induced by f on the quotient spaces. Let P
be any one of the following properties: proper, flat, smooth, regular embedding, or
l.c.i. morphism. Then, if f has property P , so does fG. The proof is essentially the
same as the one used to establish Proposition 2.3.2 of [3]. Namely, note that the
morphism πY : Y → YG is faithfully flat and X ∼= XG ×YG Y . Thus by descent fG
has property P whenever f does.

Similarly, suppose X is an algebraic space with free G action and p : E → X
is a G-equivariant vector bundle morphism. (That is, E is the total space of a
G-equivariant vector bundle). Then pG : EG → XG is also a G-equivariant vector
bundle morphism. Again, the proof is identical to that of the analogous result
from [3], in this case Lemma 2.4.1: The map pG : EG → XG is an affine bundle
which is locally trivial in the étale topology because its smooth base change to
X is trivial. Since the transition functions are trivial when pulled back to X,
pG : EG → XG is a vector bundle.

2.3. Categorical Substitutes for EG. Let Univ = kN, a vector space on count-
ably many generators. For any linear algebraic group G over k, let RepG denote the
category of finite dimensional subspaces V ⊂ Univ together with homomorphisms
G→ Gl(V ). Morphisms are G-equivariant linear maps.

Let EG be the category whose objects are non-empty open subsets U ⊂ V for
V a representation in RepG such that G acts freely on U . The morphisms of EG
are G-equivariant maps of schemes. Let EGr denote the full subcategory of EG
consisting of all U such that the complement S = V − U has codimension ≥ r in
V . Remark 1.4 of [9] shows that EGr is never empty; that is, for any r we can find
a U ⊂ V such that V − U has codimension ≥ r in V .

Let FSE/X G denote the category of all algebraic spaces E with free G-actions
equipped with a smooth morphism pE : E → X of fixed relative dimension nE . In
other words, we assume that the map pE : E → X is equidimensional. Morphisms
in FSE/X G are G-equivariant maps f : E → F such that pE = pF ◦ f .

Now let iX : EG→ FSE/X G be the functor sending U to U×X with the diagonal
G-action and with pU×X given by projection on the second factor. Clearly, if f is
a morphism having property P for P any of the properties in subsection 2.2, then
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iX(f) = f × id also has property P . Moreover, note that any morphism f : E → F
in FSE/X G is an l.c.i. morphism of codimension nF − nE . This is because the
graph morphism Gf : E → E ×X F is a regular embedding of codimension nF and
the projection p2 : E×X F → F is smooth of relative dimension nE . It follows then
from the results of subsection 2.2 that, for any morphism f : E → F in FSE/X G,
fG is an l.c.i. morphism, also of relative dimension nE − nF .

Since fG is an l.c.i. morphism, there is a pull-back morphism f !
G : AkFG →

Ak+nE−nFEG. To simplify the indices that we have to consider, we make the
following convention: For E an algebraic space in FSE/X G,

(2) CHG
k E := Ak+nE−|G|EG

where |G| is the dimension of G. Then for any morphism f : E → F in FSE/X G,
there is a corresponding Gysin morphism

(3) f !
G : CHG

k F → CHG
k E.

In other words, CHG
k is a contravariant functor from FSE/X G to the category of

abelian groups.
We intend to use the categories EG and FSE/X G as substitutes for the topol-

ogist’s space EG. The advantage of EG is that it is a small category and, thus,
limits over EG are well-defined sets. The advantage of FSE/X G is that it is large
enough to conveniently hold several important constructions.

If E and F are two spaces in FSE/X G, then E ×X F is naturally a space in
FSE/X G if we agree to let G act on the product diagonally. If U is in EG and E is
in FSE/X G, then U × E = iX(U)×X E with the diagonal action is also naturally
a space in FSE/X G.

Recall the convention that, if X is an algebraic space, then |X| denotes the
maximum of the dimensions of the irreducible components of X. We have the
following lemma.
Lemma 2.2. Let U be a scheme in EGr and let E be an algebraic space in FSE/X G.
Let π : U × E → E be the projection. Then

π!
G : CHG

k E → CHG
k U × E

is an isomorphism as long as r > |X| − k.

Proof. Let U ⊂ V with V a representation in RepG, and let q : V ×E → E be the
projection. This projection induces a vector bundle morphism qG : (V ×E)G → EG,
and it follows that q∗G : AjEG → Aj+|V |(V × E)G is an isomorphism for all j.
Therefore q!

G : CHG
∗ E → CHG

∗ V × E is an isomorphism.
Let i : U×E → V ×E be the inclusion. By our assumption on U , the complement

S of U in V has codimension ≥ r. Therefore |S × E| ≤ |V | − r + nE + |X| and,
since G acts freely on |S × E|,

|(S × E)G| ≤ |V | − r + nE + |X| − |G|.

It follows from the short exact sequence in Chow groups that

(4) i∗G : Aj(V × E)G → Aj(U × E)G

is an isomorphism as long as

j > |V | − r + nE + |X| − |G|.
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Therefore, by (2) and the fact that nU×E = |V |+ nE ,

(5) i!G : CHG
k V × E → CHG

k U × E
is an isomorphism whenever

k + |V |+ nE − |G| > |V | − r + nE + |X| − |G|.

After cancellation, we see that i!G : CHG
k V × E → CHG

k U × E is an isomorphism
whenever r > |X| − k.

Now, since CHG
k is a contravariant functor and π = q ◦ i, π!

G : CHG
k E →

CHG
k U × E is an isomorphism as long as r > |X| − k. �

For U and E as above, consider the diagram

(6) U ×X hE← U × E πE→ E

where hE = id × pE . By Lemma 2.2, as long as r > |X| − k, it makes sense to
define a map

(7) tU,E : CHG
k U ×X → CHG

k E

by setting tU,Eα = ((πE)!
G)−1(hE)!

Gα. In fact, as we will now see, tU,E is natural
in E.
Lemma 2.3. Suppose U is in EGr with r > |X| − k and f : E → F is a morphism
in FSE/X G. Then, for any α ∈ CHk U ×X,

(8) f !
GtU,F = tU,E .

Proof. The diagram

CHG
k U ×X

(hE)!
G // CHG

k U × E CHG
k E

(πE)!
Goo

CHG
k U ×X

(hF )!
G //

id

OO

CHG
k U × F

(id×f)!
G

OO

CHG
k F

(πF )!
Goo

f !
G

OO

is commutative by the functoriality of CHG
k . It is then a simple diagram chase to

verify the lemma.
�

We now state the main theorem of the section.
Theorem 2.4. Suppose U is in EGr. Let C be any subcategory of FSE/X G such
that

(i) U ×X is an object in C.
(ii) For any object E in C, U × E is an object in C.
(iii) The maps hE : U ×E → U ×X and πE : U ×E → E are morphisms in C.

Then, for k > |X| − r,

(9) lim
←−

E∈Cop

CHG
k E
∼= CHG

k U ×X.

Moreover, the isomorphism R : lim
←−

E∈Cop

CHG
k E → CHG

k U × X can be taken to be

the restriction morphism sending an assignment E  αE ∈ CHG
k E to the element

αU×X of CHG
k U ×X.
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Proof. By Lemma 2.3, the first statement of the theorem will be proved once we
show that for each assignment E  αE satisfying the condition that

(10) f !
GαF = αE for f : E → F a morphism in C

there is a unique α ∈ CHG
k U × X such that αE = tU,Eα. To prove the second

statement it then suffices to show that this unique α is in fact αU×E . We will prove
both statements simultaneously.

Let E  αE be an assignment satisfying condition (10). Then from the diagram

(11) CHG
k U ×X

h!
G−→ CHG

k U × E
π!
G←− CHG

k E

we see that h!
GαU×X = π!

GαE ; thus,

(12) αE = tU,EαU×X .

A particular case of (12) is that αU×X = tU,U×XαU×X . Suppose then that β is
any element of CHG

k U ×X such that tU,Eβ = αE for all E in C. Then

tU,U×X(αU×X − β) = 0.

However, tU,U×X is easily seen to be an isomorphism. Thus β = αU×X . �

Definition 2.5. If X is a G-equivariant algebraic space, then set

(13) AGkX = lim
←−

U∈EGop

CHG
k U ×X.

These groups are the G-equivariant Chow groups. By Theorem 2.4, they agree up
to isomorphism with the groups defined in [3].

Note that another consequence of Theorem 2.4 is a natural isomorphism

(14) AGkX
∼= lim

←−
E∈FSE/X Gop

CHG
k E.

It will be useful to introduce another category which can be thought of as lying
between EG and FSE/X G. For an algebraic group G, let CEG denote the category
of all smooth G-equivariant spaces with free G-actions. Morphisms in CEG are
G-equivariant morphisms. There is an inclusion of categories j : EG → CEG, and
for any G-space X, a functor ιX : CEG → FSE/X G sending U in CEG to U ×X
with G acting diagonally. Moreover the composition ιx ◦ j = iX , thus, we have a
chain of inclusions

(15) EG
j→ CEG

lX→ FSE/X G.

By Theorem 2.4, (15) induces a chain of isomorphisms

(16) lim
←−

E∈FSE/X Gop

CHG
k E
∼= lim

←−
U∈CEG

CHG
k U ×X ∼= AGkX.

We will use the isomorphism freely to identify the three groups.

3. Functorial Properties of Equivariant Intersection Theory

Following Edidin and Graham ([3] Proposition 2.3.3), we can now show that equi-
variant intersection theory enjoys essentially the same properties with respect to
pushforward and pullback as ordinary non-equivariant intersection theory. We will
also show that equivariant intersection has two “change-of-group” maps, restric-
tion and transfer, which are analogous to restriction and transfer in equivariant
cohomology.
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3.1. Pushforward and Pullback. Suppose that f : X → Y is a proper morphism
of G equivariant spaces. Then f induces a proper morphism

(17) (idU × f)G : (U ×X)G → (U × Y )G

for any U ∈ EG. Thus, from proper pushforward, we obtain morphisms

[(idU × f)G]∗ : CHk U ×X → CHk U × Y,

and, in the limit over all U in EG, these morphisms induce a map

(18) fG∗ : AGkX → AGk Y,

the equivariant proper pushforward.

3.1.1. The Refined Gysin Homomorphism. Suppose that f : X → Y is a G-
equivariant l.c.i. morphism and that

(19) X ′
f ′ //

��

Y ′

��
X

f // Y

is a pullback diagram with all morphisms G-equivariant. Then, given any U in EG,
the diagram

(20) (U ×X ′)G
(idU×f ′)G//

��

(U × Y ′)G

��
(U ×X)G

(idU×f)G// (U × Y )G

is also a pullback diagram and (idU × f)G is an l.c.i. morphism by the results of
Edidin-Graham quoted in section 2.2. Thus, from Fulton’s intersection theory, we
obtain a morphism

(21) (idU × f)!
G : CHk U × Y ′ → CHk−c U ×X ′

where c is the codimension of f as an l.c.i. morphism. Taking the limit over all U
in EG, we obtain a morphism

(22) f !
G : AGk Y

′ → AGk−cX
′,

the equivariant Gysin homomorphism.
Suppose that α ∈ AGk Y ′, and E is in FSE/X X

′. Using the identification (16),
we obtain a class (f !

Gα)E ∈ CHk−cE. Unfortunately we do not have a description
of this class except through the identification 16. However, if E = U × X ′ for
U ∈ CEG, then we obtain a diagram as in (20), and

(23) (f !
Gα)U×X′ = (idU × f)!

GαU×Y ′

where αU×Y ′ is the class in CHG
k U × Y ′ induced via from α via (16).
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3.2. Chern Classes. If π : V → X is a G-equivariant vector bundle and E is a
space in FSE/X G then p : V ×X E → E is also a G-equivariant vector bundle
with G acting diagonally on the factors. As noted in section 2.2, this implies
that pG : (V ×X E)G → EG is a vector bundle. We thus obtain Chern classes,
ci(V ×X E)G operating on A∗(EG). If f : E → F is a morphism in FSE/X G, then
V ×XE = f∗(V ×XF ). Thus, (V ×XE)G = f∗G(V ×XF )G. Therefore, if α ∈ AG∗ X,
then

ci(V ×X E)G ∩ αE = ci(V ×X E)G ∩ f !
GαF

= f !
G(ci(V ×X F )G ∩ αF ).

We can therefore define the equivariant Chern class cGi (V ) to be the operation on
AG∗ X that takes the assignment

E  αE

to the assignment
E  ci(V ×X E)G ∩ αE .

It is easy to see that this agrees with the definition made by Edidin and Graham
in [3].

3.3. Change of Groups. Suppose that ρ : H → G is a morphism of linear alge-
braic groups over k. By analogy with equivariant cohomology, we expect a mor-
phism ρ∗ : AGkX → AHk X where X is a G-equivariant space and H acts on X
through the morphism ρ. To define this morphism, we use the categories FSE/X H
and FSE/X G.

For a space E in FSE/X H, let G×H E denote the quotient of the space G×E
by the action of H given by

(24) h(g, e) = (gh−1, he)

where here h ∈ H(S), g ∈ G(S) and e ∈ E(S) for an arbitrary scheme S over
k. Then G acts on G ×H E on the left by the action: g1(g2, e) 7→ (g1g2, e), and
it is easy to see that this action is free. We equip G ×H E with a morphism
pG×HE : G ×H E → X given on points g ∈ G(S), e ∈ E(S) by (g, e) 7→ gpE(e).
This morphism is well-defined because, for h ∈ H(S),

pG×HE(gh−1, he) = gh−1pE(he) = gh−1hpE(e)
= gpE(e).

The morphism pG×HE is clearly G-equivariant, and it is not difficult to check that
it is a smooth morphism of relative dimension nE + |G| − |H| where nE is the
relative dimension of pE . Thus G×H E is an algebraic space in FSE/GX. In fact,
the association E  G ×H E is the map on objects of a functor ρ+ : FSE/H X →
FSE/GX defined by setting ρ+(f), for f : E → F a morphism in FSE/H X, equal
to the map induced by idG × f .

Now note that (G×H E)G ∼= EH . To see this, let pr2 : (G×H E)→ EH be the
map induced by the projection on the second factor. If g ∈ G(S), e ∈ E(S) and
h ∈ H(S) for some base scheme S, then pr2(gh−1, he) = he. Thus it is easy to see
that pr2 induces a map p2 : (G ×H E)G → EH . To define an inverse morphism,
let inc2 : E → (G ×H E)G be the map induced by the inclusion on the second
factor. Then inc2(he) = (1, he) = (h−1, e) = (1, e). Thus inc2 induces a morphism
i2 : EH → (G×H E)G. It is easy then easy to check that p2 and i2 are inverses.
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3.3.1. Restriction. It is also easy to check that the maps p2 and i2 are natural in
E. Thus the functors E  CHH

k E and E  CHG
k ρ+E are naturally isomorphic.

Explicitly p∗2 : CHH
k E → CHG

k ρ+E is an isomorphism with inverse i∗2. Keeping in
mind the natural isomorphism (14), we can thus define the restriction homomor-
phism ρ∗ : AGkX → AHk X via the composition

(25) lim
←−

E∈FSE/GXop

CHG
k E → lim

←−
E∈FSE/H Xop

CHG
k ρ+E

i∗2→ lim
←−

E∈FSE/H Xop

CHH
k E

where the first morphism is restriction.

3.3.2. Functoriality of restriction. To show that restriction is functorial, we need
to show (a) that id∗ = id when id : G → G is the identity morphism and (b) that
(ρ ◦ σ)∗ = σ∗ ◦ ρ∗ when σ : L→ H and ρ : H → G are two group homomorphisms
and X is a G-space. Before verifying (a) and (b) we prove a lemma.

Lemma 3.1. Let X be a G-space, ρ : H → G a homomorphism and E a space in
FSE/X G. Then then multiplication morphism m : G ×H E → E given on points
g ∈ G(S), e ∈ E(S) by m(g, e) = ge is a morphism in FSE/X G.

Proof. The morphism m is well-defined because

(26) m(gh−1, he) = ge = m(g, e).

It is clearly G-equivariant, and it commutes with the maps to X because

pE ◦m(g, e) = pE(ge) = gpE(e)
= pG×HE(g, e).

�

To prove statement (a), let X be a G-space, α ∈ AGkX, and E a space in
FSE/X G. Then, according to (25), (id∗α)E = i∗2αG×GE . Let m : G×G E → E be
the morphism of Lemma 3.1. Since it is a morphism in FSE/X G, αG×GE = m!

GαE .
Therefore,

(27) (id∗α)E = i∗2m
!
GαE = (mG ◦ i2)!αE .

Now, let e ∈ E(S) for a scheme S. Then

(28) mG ◦ i2(e) = mG(1, e) = e;

thus, mG ◦ i2 = id. It follows that (id∗α)E = αE . Thus id∗α = α.
(b). To check that (ρ ◦ σ)∗ = σ∗ ◦ ρ∗ , the important point to note is that the

functors ρ+ ◦ σ+ and (ρ ◦ σ)+ are naturally isomorphic.
Explicitly, let

ia : EL → (H ×L E)H , ib : EL → (G×L E)G,

and ic : (H ×L E)H → (G×H (H ×L E))G

be the isomorphisms induced by inclusion on the second factor. Let

inc13 : G×L E → G×H (H ×L E)
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be the inclusion on the first and third factors, an isomorphism in FSE/GX; and let
i13 = (inc13)G : (G×L E)G → (G×H (H ×L E))G be the induced isomorphism on
quotient spaces. Then we have a commutative diagram

(29) EL
ia //

ib

��

(H ×L E)H

ic

��
(G×L E)G i13

// (G×H (H ×L E))G.

Let α ∈ AGkX be an equivariant cycle and let E ∈ FSE/LX. Then, by (25),

(30) (σ∗ρ∗α)E = i∗ai
∗
cαG×H(H×LE),

and

(31) ((ρ ◦ σ)∗α)E = i∗bαG×LE .

However, since inc13 is a G-space morphism,

(32) αG×LE = i∗13αG×H(H×LE).

Therefore,

((ρ ◦ σ)∗α)E = i∗b i
∗
13αG×H(H×LE)

= i∗ai
∗
cαG×H(H×LE)

= (σ∗ρ∗α)E

by commutativity of diagram (29).

3.4. Transfer. Suppose now that ρ : H → G is an inclusion of linear algebraic
groups such that the quotient space G/H is proper of dimension d. Then, if X is a
G-space, there is a homomorphism trGH : AHk X → AGk+dX (or ρ∗ : AHk X → AGk+dX)
called the transfer.

To define the transfer, first note that, since ρ is an inclusion, there is a restriction
functor ρ+ : FSE/GX → FSE/H X given by viewing a space E ∈ FSE/GX as an
H-equivariant space via ρ. If E ∈ FSE/GX, then the quotient map q : EH → EG
is proper of relative dimension d. Thus proper pushforward induces a map q∗ :
AkEH → AkEG. Taking into account the re-indexing of the Chow groups of (2),
we see that the same proper pushforward induces a map

(33) tGH : CHH
k E → CHG

k+dE.

We can thus define the transfer through the composite

(34) lim
←−

E∈FSE/H Xop

CHH
k E → lim

←−
E∈FSE/GXop

CHH
k ρ

+E
tGH→ lim

←−
E∈FSE/GXop

CHG
k+dE.

It is an easy exercise to show that the transfer is functorial. That is, if L ⊂ H ⊂ G
is a sequence of inclusions of groups such that H/L and G/H are both proper, then
trGL = trGH ◦ trHL .
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3.5. Relations between Functors. There are several relations between the func-
tors of proper pushforward, l.c.i. pullback, the restriction homomorphism and trans-
fer. The most important for our purposes is the relation between restriction and
transfer when H ⊂ G is a subgroup of finite index. To deduce this relation, we first
prove a more general lemma.
Lemma 3.2. Suppose ρ : H → G is an injection, and let α ∈ AGkX be given by
the assignment E  αE for E ∈ FSE/X G. Then, for each E, the quotient map
qE : EH → EG is flat, and the restriction map is given in terms of qE by the
equation

(35) (ρ∗α)ρ+E = q∗EαE .

Proof. The map qE : EH → EG is flat because its pullback to E through the
faithfully flat morphism pE : E → EG is a product. That is, EH×EGE ∼= G/H×E.
The map pE is faithfully flat because it is locally a product in the étale topology.

Consider the commutative diagram

(36) EH
i2 //

qE

��

(G×H E)G

p2

��
EG EHqE

oo

where i2 is the isomorphism given by inclusion of the second factor, and p2 is its
inverse, the projection on the second factor.

By definition (25), (ρ∗α)ρ+E = i!2αG×Hρ+E . On the other hand, the multiplica-
tion map m : G×H E → E of Lemma 3.1 is a morphism in FSE/X G. Thus, since
G×H E = G×H ρ+E, αG×Hρ+E = m!αE . It thus follows that

(37) (ρ∗α)ρ+E = i!2m
!αE .

We now claim that mG = qE ◦ p2. To see this, we compute: qE ◦ p2(g, e) =
e (modulo G) while mG(g, e) = ge (module G); thus, qE ◦ p2(g, e) = mG(g, e).
Therefore

(38) (ρ∗α)ρ+E = i!2p
∗
2q
∗
EαE = q∗EαE

by the commutativity of (36). �

Proposition 3.3. Suppose X is a G-space and ρ : H → G is the inclusion mor-
phism of a subgroup of index N. Then, for α ∈ AHk X, ρ∗ trGH α = Nα.

Proof. Let α ∈ AHk X be a class given be the assignment F  αF with F ∈
FSE/H X. Then trGH α is given by the assignment E  qE∗αρ+E for E in FSE/GX.
It follows then from Lemma 3.2 that, for E in FSE/GX,

(39) (ρ∗ trGH α)ρ+E = q∗E(trGH α)E = q∗EqE∗αρ+E .

Since H has index N in G, qE is a degree N morphism. Thus

(40) q∗EqE∗αρ+E = Nαρ+E .

Therefore (ρ∗ trGH α)ρ+E = Nαρ+E for all E in FSE/GX.
Now take E = U ×X where U ∈ EGr for r > |X| − k. After restriction of the

G-action to H, U is in EHr. Thus

AHk X = CHH
k U ×X = CHH

k ρ
+E.
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Thus, by (40), ρ∗ trGH αF = NαF for all F in FSE/H X, and the proposition follows.
�

3.5.1. Restriction and Pull-back. Suppose that f : X → Y is an l.c.i. morphism
equivariant for the action of a linear algebraic group G, and let ρ : H → G be a
homomorphism of algebraic groups. Then, if

(41) X ′
f ′ //

��

Y ′

��
X

f // Y

is a G-equivariant pullback diagram, the diagram

(42) AG∗ Y
′ f !

G //

ρ∗

��

AG∗ X
′

ρ∗

��
AH∗ Y

′
f !
H

// AH∗ Y
′

commutes.
To see this, let α ∈ AG∗ Y ′ and let U be a space in CEG.

(43) (ρ∗f !
Gα)U×X′ = i∗2(f !

Gα)G×H(U×X′).

Now there is an isomorphism

(44) s(X) : G×H (U ×X ′)→ (G×H U)×X ′

of spaces in FSE/X′ G given on the points g ∈ G(S), u ∈ U(S), x ∈ X ′(S) for S a
k-scheme by

(45) (g, u, x) 7→ (g, u, gx).

Thus

(ρ∗f !
Gα)U×X′ = i∗2s(X

′)!
G(f !

Gα)(G×HU)×X′

= i∗2s(X
′)!
G(id× f)!

Gα(G×HU)×Y ′(46)

where for the last equation we have used the fact that G×H U is a space in CEG
and thus (23) holds.

On the other hand,

(f !
Hρ
∗α)U×X′ = (id× f)!

H(ρ∗α)U×Y ′

= (id× f)!
H i
∗
2αG×H(U×Y ′)

= (id× f)!
H i
∗
2s(Y

′)!
Gα(G×HU)×Y ′ .(47)

Using the functoriality of the refined Gysin homomorphism ([4] Theorem 6.5),
we can commute the terms in (46) and (47) to show that (42) commutes.

The commutativity of (42) leads us to define a category of pairs (G, Y ) consisting
of a linear algebraic group acting on a space Y . A morphism φ : (H,X)→ (G, Y )
in the category of pairs is a pair (ρ, f) consisting of a homomorphism ρ : H → G
and a map f : X → Y such that, for any space S and points h ∈ H(S), x ∈ X(S),

(48) f(gx) = ρ(g)f(x).

We say that φ is an l.c.i. morphism if f is.
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If φ is l.c.i., we define φ! : AG∗ (Y )→ AH∗ (X) by setting

(49) φ! = f !
H ◦ ρ∗ = ρ∗ ◦ f !

G.

If ψ = (σ, g) : (G, Y )→ (K,Z) is another l.c.i. morphism of pairs, then, using (42),
it is easy to see that (ψ ◦ φ)! = φ! ◦ ψ!. In fact,

(ψ ◦ φ)! = (g ◦ f)!
H ◦ (σ ◦ ρ)∗

= f !
H ◦ g!

H ◦ ρ∗ ◦ σ∗

= f !
H ◦ ρ∗ ◦ g!

G ◦ σ∗

= φ! ◦ ψ!.

Thus (G,X)  AG∗ (X) is a contravariant functor from the category of pairs with
l.c.i. morphisms to the category of abelian groups.

3.6. Transfer and Pullback. If ρ : H → G is an inclusion of linear algebraic
groups such that G/H is proper of dimension d and f : X → Y is an l.c.i.morphism,
then it is easy to see that

(50) f !
G ◦ trGH = trGH ◦f !

H .

This follows from the fact that pullback through an l.c.i.morphism commutes with
pushforward through a proper morphism ([4] Theorem 6.2 (a) and Proposition 1.7).

3.6.1. Restriction and Chern Classes. Let ρ : H → G be a homomorphism of linear
algebraic groups, and let V be a G-equivariant vector bundle over X. Let ρ∗(V )
denote V viewed as an H-equivariant bundle through the homomorphism ρ. Then,
for α ∈ AG∗ X,

(51) ρ∗(cGi (V ) ∩ α) = cHi (ρ∗(V ) ∩ α).

The proof of this is similar to the proof of the commutativity of (42).

3.7. Automorphisms. An automorphism of a pair (G,X) is a morphism φ =
(ρ, f) : (G,X)→ (G,X) which has an inverse. We say that φ is inner if there is an
h ∈ G(k) such that, for any k-space S and any two S-valued points g ∈ G(S) and
x ∈ X(S),

(52) ρ(g) = hSgh
−1
S , f(x) = hSx.

Note that inner automorphisms are always l.c.i. morphisms.
Proposition 3.4. If φ : (G,X) → (G,X) is an inner automorphism of a pair
(G,X), then φ! : AGkX → AGkX is the identity.

Proof. It suffices to show that (φ!α)U = αU for any α ∈ AGkX and any U ∈ EG.
Let φ = (ρ, f) and let h ∈ G(k) be the group element such that f is multiplication
by h. Let G ×G U denote the quotient of G × U by the diagonal action given on
S-points by

(53) g1(g2, u) = (g2hSg
−1
1 h−1

S , g1u)

for g1, g2 ∈ G(S). Let i2 : UG → (G ×G U)G denote the isomorphism induced
by inclusion on the second factor. Then, since φ! = ρ∗ ◦ f !, we have (φ!α)U =
i!2((f !α)G×GU ). Pulling out the f , we have

(54) (φ!α)U = f !
Gi

!
2(αG×GU ).
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To prove the proposition, we want to compute αG×GU in terms of αU . To do
this, we define a G-equivariant morphism l : G×GU → U given on scheme-theoretic
points g ∈ G(S), u ∈ U(S) by

(55) l(g, u) = ghSu.

Since G acts on the right on G×G U , it is obvious that l is G-equivariant provided
that it is well-defined. That this is so can be easily checked using (53).

Since l is G-equivariant, αG×GU = l!GαU . We thus have

(φ!α)U = f !
Gi

!
2l

!
GαU .

Now consider the composition r in the diagram

(56) U ×X id×f→ U ×X i2×id→ (G×G U)×X l×id→ U ×X.
For u ∈ U(S), x ∈ X(S) two S-valued points, r is given by (u, x) 7→ (hSu, hSx).
Thus rG = id. It follows that

f !
Gi

!
2l

!
GαU = r!

GαU = id.

�

4. Equivariant Cycle Class

In this section, a few general results on Chow groups necessary for the construc-
tion of S• are collected. There are two main goals: (i) to explain why equivariant
cycles give classes in equivariant Chow groups (this fact is mentioned in the proof
of [3] Proposition 1), and (ii) to show that two equivariant cycles are equivalent if
they belong to the same equivariant rational family.
Definition 4.1. The group Zk(X|P1; Λ) is the subgroup of (k+1)-dimensional
cycles

∑
i λi[Vi] in X ×P1 such that all Vi map dominantly to P1.

Following the Conventions of (1.2), the ring Λ will be suppressed in the notation,
and the group of Λ- cycles Zk(X; Λ) = ZkX ⊗ Λ will be written as ZkX.

Following the notation in [4], for P ∈ P1 and V a variety mapping dominantly
to P1, let V (P ) denote the fiber above P . The definition is extended to Z∗(X|P1)
by linearity.

Both Zk( ) and Zk( |P1) can be viewed as presheaves in the étale topology.
That Zk( ) is actually a sheaf in the étale topology is proved in [5] (page 211) for
Λ = Z. The argument is easily extended to the case of arbitrary ring Λ. It is also
easily extended to show that Zk( |P1) is sheaf.
Proposition 4.2. Two cycles α0 and α∞ in ZkX are rationally equivalent⇔ there
is a cycle β ∈ Zk(X|P1) with β(0) = α0 and β(∞) = α∞.

Proof. First consider the case Λ = Z. By [4] Example 1.6.2, α0 and α∞ are
equivalent if and only if there is a positive cycle Z ∈ Zk(X|P1) and a positive
cycle γ on X with

Z(0) = α0 + γ Z(∞) = α∞ + γ.

To prove (⇒), set β = Z − γ × [P1]. To prove (⇐), write β as β+ − β− where
each term either positive or 0. Then, setting Z = β+, shows that α0 + β−(0) ∼
α∞ + β−(∞). This shows that α0 and α∞ are equivalent.

For arbitrary Λ, the proposition is equivalent to the statement that the sequence

Zk(X|P1)→ ZkX → AkX → 0
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is exact with the first map given by β 7→ β(∞)− β(0). Thus, since the proposition
holds for Λ = Z, it holds for arbitrary Λ by the right exactness of ⊗. �

Suppose a linear algebraic group G acts on X with action map a : G×X → X.
Let p2 : G×X → X be the projection. Note that both p2 and the action map are
automatically flat morphisms.

4.3. If F is a G-equivariant presheaf of abelian groups in the étale topology, then
a∗F = p∗2F and the fixed sections of F are defined as

FG = ker(F (X)
a∗−p∗2→ F (G×X)).

In particular, we can consider the groups Z∗(X)G and Z∗(X|P1)G. Now assume
that G acts freely on X. Then there is a quotient Y . Moreover, the quotient
morphism π : X → Y is flat. Thus we have flat pullback maps π∗ : Zk(Y ) →
Zk(X)G and π∗ : Z∗(Y |P1)→ Z∗(X|P1)G.

Now assume that G is finite and étale as a group scheme over the base field. It
follows then that the quotient π : X → Y is an étale morphism. This implies that
π∗ : ZkY → Zk(X)G and π∗ : Zk(Y |P1) → Zk(X|P1)G are in fact isomorphisms.
When Λ = Z, we can easily give the inverse map. Note that if G is finite and étale,
π∗π

∗ is multiplication by the order #G. Thus 1
#Gπ∗ restricted to (ZkX)G (resp.

to Zk(X|P1)G) is inverse to π∗.

Proposition 4.4. Let G be a finite, étale group scheme acting freely on X. Two
cycles α0 and α∞ in (Z∗X)G determine the same class in A∗(X/G) if there is a
cycle β ∈ Z∗(X|P1)G such that β(0) = α0 and β(∞) = α∞

Proof. This is simply a matter of noticing that the diagram

Zk(Y |P1) π∗ //

σ

��

Zk(X|P1)G

σ

��
ZkY

π∗ // (ZkX)G

commutes where σ is either β 7→ β(0) or β 7→ β(∞). �

4.5. Now assume that G acts properly, but not necessarily freely, on X. Let α be a
cycle in (ZkX)G (resp. Zk(X|P1)G). For any U ∈ EG of dimension d, α 7→ [U ]×α
gives a map (ZkX)G → Zk+d(U ×X)G (resp. Zk(X|P1)G → Zk+d(U ×X|P1)G).
But, since the action of G on U ×X is free, (Z∗U ×X)G ∼= Z∗((U ×X)G) (resp.
(Z∗U × X|P1)G ∼= Z∗((U × X)G|P1)). Thus, to every α ∈ Zk(X)G, we have a
class (π∗)−1([U ]×α) ∈ Zk+d(U ×X)G. In the limit, these classes give a cycle class
clG(α) ∈ AG

k X.

4.6. It follows from Proposition 4.4, that if β ∈ Zk(X|P1)G, then [U ] × β(0) and
[U ]×β(∞) represent the same class in Ak+d(X×U)G and thus in AGkX. This implies
that two equivariant cycles α0 and α∞ in (ZkX)G have the sameG-equivariant cycle
class if there is a cycle β ∈ Zk(X|P1)G with β(0) = α0 and β(∞) = α∞. In other
words, equivariant rational equivalences induce equivalences in AG∗ X.

We will need the following basic proposition to prove that Steenrod operations
are additive.
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Proposition 4.7. Let G be a finite, constant group scheme over k. If Z ∈ ZkX,
then

(57) trG1 cl1(Z) = clG(
∑
g∈G

[gZ]).

Here we write 1 for the trivial group.

Proof. Let U be any object in EG. Since G is finite and constant, it is étale. Thus
the map π : U ×X → (U ×X)G is étale and induces an isomorphism

π∗ : Z∗(U ×X)G → (Z∗(U ×X))G.

By definition (trG1 cl1(Z))U×X is the class in CHG
k (U ×X) of

(58) π∗[U × Z] ∈ Zk+|U |(U ×X)G.

The right-hand side of (57) is the class in CHG
k (U ×X) of

(59) (π∗)−1
∑
g∈G

[U × gZ] ∈ Zk+|U |(U ×X)G.

The proposition follows by applying π∗ to (58) and (59) and noting the equality of
the results. �

Remark 4.8. The proof above uses the fact that the result of applying π∗ to (58)
is equal to the result of applying π∗ to (59) before passing to rational equivalence.
In fact, the proof makes essential use of the fact that π∗ : ZkY → (ZkX)G is an
isomorphism when Y = X/G for G a finite, étale group scheme acting freely on X.
However, it is not in general true that π∗ : AkY → (AkX)G is an isomorphism in
this situation. For example, if E is an elliptic curve over C and G is the group of
2-torsion points, then E/G = E with π : E → E represented by the multiplication-
by-two map. If we take Λ = Z/2, then π∗ : A0E → (A0E)G is trivial.

We also remark that, by the obvious identification of A1
kX with AkX, cl1(Z) is

simply the cycle class [Z] ∈ AkX.

5. The Fundamental Operation

Let S(n) denote the symmetric group on n letters and C(n) denote the cyclic
group with n elements viewed as a subgroup in the obvious way. Let R̃ denote
the standard S(n)-representations on kn and let R denote the reduced regular
representation, i.e., the cokernel of the map 1→ R̃ from the trivial representation.
One can view these representations as bundles over BS(n).

For a cycle α ∈ ZkX let α×n ∈ ZnkXn denote its n-fold exterior product with
itself ([4] 1.10). As α×n is S(n) invariant, it defines a class [α×n] ∈ (ZnkXn)G for
any G ≤ S(n).
5.1. If [V ] ∈ Zi(X|P1) and [W ] ∈ Zj(Y |P1) are two classes corresponding to
subvarieties V and W , then V and W are both flat over P1. This implies that
V ×P1 W is flat over P1. Thus every component of V ×P1 W maps dominantly to
P1. Consequently [V ×P1 W ] ∈ Zi+j(X × Y |P1). And linearity gives a product

Zi(X|P1)⊗ Zj(Y |P1)→ Zi+j(X × Y |P1)

written β ⊗ γ 7→ β ×P1 γ. In particular, any β ∈ Zk(X|P1) can be crossed with
itself to obtain a class β×nP1 ∈ Znk(Xn|P1).
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Proposition 5.2. The map α 7→ α×n factors through rational equivalence to give
a map PnG : AkX → AGnkX

n for any G ≤ S(n).

Proof. Two cycles α0 and α∞ are equivalent iff there a cycle β ∈ Zk(X|P1) with
β(0) = α0 and β∞ = α∞. In this case, β×nP1 is a cycle in Znk(Xn|P1)G, with
β×nP1 (0) = α×n0 and β×nP1 (∞) = α×n∞ . �

Proposition 5.3. Consider a morphism f : X → Y and a cycle α ∈ AkY . Let
f×nG denote the obvious G-equivariant morphism from Xn

G to Y nG .
(i) For f proper, f×nG is also proper, and (f×nG )∗PnG(α) = PnG(f∗α).
(ii) For f is flat, f×nG is also flat, and (f×nG )∗PnG(α) = PnG(f∗α).
(iii) For f a regular embedding (resp. l.c.i. morphism), f×nG is also a regular

embedding (resp. lci. morphism), and (f×nG )!PnG(α) = PnG(f !α). (Here f !

is Fulton’s refined Gysin homomorphism [4].)

Proof. (i) is easy as it is true on the level of cycles, that is, in Znk(Xn). (ii): If f is
flat then it is easy to see that f×n is also. Thus f×nG is also flat by the results of [3]
recalled in section 2.2. It is easy to see that the required commutativity actually
holds on the level of cycles.

Once (iii) is proved for regular embeddings, the statement for l.c.i. morphisms
will be a consequence of (ii). So assume f is a regular embedding of codimension
d. Let N be the normal bundle, and let

X ′ //

��

Y ′

��
X

f // Y

be a pull-back diagram. Let N ′ = N|X′ .
The refined Gysin homomorphism of [4], f ! : AkY ′ → Ak−dX

′, is constructed as
the composition of the specialization homomorphism σ : AkY ′ → AkN

′ with the
isomorphism (π∗)−1 : AkN ′ → Ak−dX

′.
The map σ is defined on the level of cycles by the rule σ[V ] = [CV ∩XV ]. (Here

[CV ∩XV ] is the normal cone of V ∩X in V — a subscheme of N ′.) One then sees
that σ commutes with PnG on the level of cycles, i.e., the diagram

ZkY
′ //

��

ZnkY
′n

��
ZkN

′ // ZnkN ′
n

commutes.
On the other hand, the isomorphism π∗ : Ak−dX ′ → AkN

′ is simply a flat
pull-back. Thus the diagram

Ak−dX
′ //

��

An(k−d)X
′n

��
AkN

′ // AnkN ′
n

also commutes by (ii). The result then follows by splicing the two diagrams together.
�
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If V → X is a vector bundle of rank r, let PnG(V ) denote the product of n-copies
of V over n copies of X as a G-equivariant bundle.

Corollary 5.4. Let α ∈ A∗X and let ctop(V ) denote the top Chern class class cr(V )
of V , that is, the top Chern class of V . Then PnG(α∩ctop(V )) = PnG(α)∩ctop(PnGV ).

Proof. Let i : X → V be the inclusion of the 0-section. Then α ∩ ctop(V ) = i∗i∗α.
The corollary then follows from the successive application of (ii) and (iii) of the
previous proposition. �

6. Construction

Consider a pair (W,X) where X → W is an embedding of X into a smooth
connected algebraic space W of dimension d. Set m = (n − 1)d, and form the
S(n)-equivariant pull-back diagram

X //

��

Xn

��
W

∆ // Wn

where S(n) is acting on Wn and on Xn by permuting the factors. We let S(n) act
trivially on W and on X, and we take ∆ to be the diagonal embedding.

Definition 6.1. For G ≤ S(n), dWG : AGkX
n → AGk−mX is the map given by

dWG (α) = ∆!
Gα. We will write DW

G for dWG ◦ PnG.

Remark 6.2. One way to keep track of the degrees in the definition is to reindex
the groups. For a pair (W,X), define AkG[W,X] = AGd−kX. Then the re-indexed
map dWG : AkG[Wn, Xn]→ AkG[W,X] preserves the degree, and DW

G maps Ak[W,X]
to AnkG [W,X]. This is useful for proving the Adem relations but for most of this
paper we prefer to keep the usual grading.

The next proposition allows us to control the dependence of dWG on the smooth
space W . Eventually, we will be able to use it to “factor out” the W dependence
from our definition of the Steenrod operation S•.

Proposition 6.3. Let ji : X →Wi be two embeddings of X into two smooth spaces
Wi. Then

(60) ctop(R⊗ TW2|X) ∩ dW1
G = ctop(R⊗ TW1|X) ∩ dW2

G .

Proof. For i = 1, 2, we have diagrams

(61) X
∆X //

ji

��

Xn

j×ni
��

Wi
∆Wi

// Wn
i .

Since R⊗ TWi|X = j∗iNWi
W×ni , we need to show that

(62) ctopj
∗
1NW1W

×n
1 ∩∆!

W2
= ctopj

∗
2NW2W

×n
2 ∩∆!

W1
.

This equality is a special case of the following lemma. �
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Lemma 6.4. Let X and Y be two G-equivariant spaces and, for i = 1, 2, let

X
f //

gi

��

Y

hi
��

Xi
fi

// Yi

be G-equivariant pullback diagrams with the maps fi : Xi → Yi regular embeddings.
Let Ni = g∗iNXiYi, and let ni = rk Ni. Then

(63) cn1N1 ∩ f !
2α = cn2N2 ∩ f !

1α

for any class α ∈ AG∗ Y .

Proof. The proof uses the notion of an excess normal bundle and Fulton’s Excess
Intersection formula ([4] Theorem 6.3).

Form the diagram

(64) X
idX //

(g1,g2)

��

X
f //

(g1,f2◦g2)

��

Y

(h1,h2)

��
X1 ×X2

idX1×f2

// X1 × Y2
f1×idY2

//

pr1

��

Y1 × Y2

pr1

��
X1

f1

// Y1.

The squares in (64) are pullbacks. For the two squares on the right side, this is
automatic. For the one on the left, we need to use the fact that f is an embedding
and this follows from the assumption that the fi are embeddings.

Now let α be a class in AG∗ Y . Since f1× idY2 and f1 are both regular embeddings
of the same codimension (namely n1), the excess intersection bundle for the right
two squares is trivial. Thus

(65) (f1 × idY2)!α = f !
1α.

On the other hand, note that the left hand side of (64) fits into a larger couple
of pullback diagrams

(66) X
idX //

(g1,g2)

��

X

(g1,f2◦g2)

��
X1 ×X2

idX1×f2

//

pr2

��

X1 × Y2

pr2

��
X2

f2

// Y2

where again the excess intersection bundle for the bottom square is trivial. More-
over, the top horizontal arrow of (66), idX , is a regular embedding. Thus, for
β ∈ A∗(X),

(67) (idX1 × f2)!β = f !
2β = cn2N2 ∩ β.
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The last equality follows from the excess intersection formula applied to the top
and bottom rows of the diagram.

Finally consider the diagram

(68) X
f //

(g1,g2)

��

Y

(h1,h2)

��
X1 ×X2

f1×f2

// Y1 × Y2.

This is the composition of the top two squares of (64); thus,

(f1 × f2)!α = (idX1 × f2)!(f1 × idY2)!α

= cn2N2 ∩ f !
1α.(69)

The first equality follows from the functoriality theorem for the refined Gysin
(Theorem 6.5 of [4]), and the second follows by combining equations (65) and (67).

Now we can interchange the roles of f1 and f2 in the proof of equation (69), and,
when we do, we see that

(70) (f1 × f2)!α = cn1N1 ∩ f !
2α.

Thus we obtain the desired result, equation (63), by equating the right hand sides
of equations (69) and (70). �

Proposition 6.5. Let

U
j //

��

X

��
V // W

be a commutative diagram of injective maps with the horizontal maps open embed-
dings and with W (and thus V ) smooth.

(i) For α ∈ AG∗ Xn, j×n∗(dWG α) = dVG(j×n∗α).
(ii) For α ∈ A∗X, j∗(DW

G α) = DV
G(j∗α).

Proof. (i) implies (ii) by Proposition 5.3. In the case V = W , (i) follows from
Theorem 6.2 (a) of [4] — the commutativity of flat pull-back with the refined Gysin.
The general case then follows from Theorem 6.3 of [4] (the Excess Intersection
Formula). �

7. Chow Theory of Cyclic Groups

Let n be an integer not divisible by char (k), and let µn be the linear algebraic
group of n-th roots of unity. (As an algebraic variety, this is Spec k[t]/(tn − 1).)
The canonical one-dimensional representation of µn gives rise to an equivariant line
bundle L over ptk. Set l = c1(L) ∈ A1Bµn. The following result is given in [9] for
k = C. Here we give a proof of the (certainly well-known) general case.

Theorem 7.1. (i) A∗Bµn = Λ[l]/(nl). (ii) If X is an algebraic space with trivial
µn action, then Aµn∗ X = A∗X ⊗A∗Bµn.
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Proof. Let E = Ar+1 − {0} with the diagonal action of µn. Write B = E/µn, and
note that Pr = E/Gm. Now let Gm act on A1 × E on the right by the formula:
(a, x)λ = (λna, λx). The resulting quotient (A1 × E)/Gm is then the total space
of the line bundle O(n) on Pr. The space B embeds as an open subset of O(n)
via the map j : e 7→ (1, e). The complement of j(B) is the 0-section which we will
simply write as Pr. For any X we then have an exact sequence of groups

Ai(Pr ×X)→ Ai(O(n)×X)→ Ai(B ×X)→ 0.

For X = pt the theorem follows from the elementary computation of the map
on the left hand side: Both of the groups are Λ for i ∈ [0, r] and the maps are
multiplication by n. The generating class h ∈ ArO(n) is the first Chern class of
the pull-back of the canonical line bundle from Pr. Since the representation of Gm

restricts to the canonical representation of µn, h restricted to B is l. This proves
(i).

For X arbitrary, there are Kunneth formulas A∗(Pr ×X) = A∗Pr ⊗ A∗X and
A∗(O(n)×X) = A∗O(n)⊗A∗X. (ii) follows from (i) and the application of these
formulas. �

7.2. We now make two assumptions that will be in force for the rest of the pa-
per. Pick a prime p not equal to the characteristic of k, and set Λ = Fp. Chow
groups written without explicit coefficients will thus be taken modulo p. Now, if
k× contains the group µp(k) then C(p) ∼= µp. But of course the two groups are not
naturally isomorphic. The isomorphisms themselves are in correspondence with the
primitive p-th roots of unity. Therefore let us assume that such a primitive root ζ
as been chosen in k. We can then write A∗BC(p)k = Fp[l].

Remark 7.3. Note that even without choosing ζ there is a natural correspondence
between one-dimensional representations of C(p) and µp. The first Chern class
then gives a correspondence between µp and A1BC(p). In other words, over a
field containing the p-th roots of unity, A1BC(p) = Z/p(1). This implies that
AkBC(p) = Z/p(k).

Proposition 7.4. Let r = [k(µp) : k] be the index of the extension obtained by
adjoining the p-th roots of unity to k. Then A∗BC(p) ∼= Fp[ε] where ε is the top
Chern class of an r-dimensional C(p) representation.

Proof. Let M = k(µp) and set G = Gal(M/k). The action of G on µp gives an
identification of G with a subgroup of (Z/p)×.

The representation R splits over M into a direct sum ⊕p−1
i=1L

⊗i — here L is the
one-dimensional representation associated to ζ. Under the natural identification of
A1BC(p)M with µp, c1(L⊗i) = ζi. Let S be a coset of (Z/p)× modulo G. The
r-dimensional representation V = ⊗i∈SL⊗i is defined over k as it is fixed by G. All
of the Chern classes of VS vanish except for the top class which is nontrivial and
thus a generator of ArBC(p). We claim that ε = ctop(V ) generates A∗BC(p).

Let ρ : A∗BC(p)k → A∗BC(p)M be the pull-back, and let N : A∗BC(p)M →
A∗BC(p)k be the norm map. Then N ◦ ρ is simply multiplication by r. As r
is relatively prime to p, ρ is a split injection. We use this injection to consider
A∗BC(p) as a subgroup of A∗BC(p)M . Clearly ε maps to some non-zero multiple
of lr. Thus to prove the proposition it is enough to show that A∗BC(p) ⊂ Fp[lr].



STEENROD OPERATIONS IN CHOW THEORY 23

Now, under the identification of G with an order r subgroup of (Z/p)×, the
action of an element α on li ∈ AiBC(p)M is simply multiplication by αi. It follows
that (A∗BC(p)M )G = Fp[lr]. Thus A∗BC(p) ⊂ Fp[lr]. �

Remark 7.5. If X is a space on which C(p) acts trivially, AC(p)
∗ X is a direct sum-

mand of AC(p)
∗ XM . This follows from the same norm argument used in the proof

of the proposition.
Let V be a vector bundle on X and assume that both V and X have trivial C(p)

actions. Let λ1, · · · , λd be the Chern roots of V , and let c∗(V ) =
∏

(1 + λi). (We
will employ the standard abuses of the splitting principle here and in the sequel.)

Set w(V ) =
d∏
i=1

(1 + λp−1
i ). This corresponds to the class w of the introduction.

In order to keep track of the degrees, we also consider the polynomial w(V, t) =∏d
i=1(1 + tλp−1

i ).
It is convenient to localize the Chow ring A∗BC(p) by inverting the element ε.

Note that, as ε is a non-zero divisor, A∗BC(p) injects into (A∗Bµp)ε. Under the
assumption that X has trivial C(p) action, ε is also a non-zero divisor on A

C(p)
∗ X.

Let η denote the top Chern class ctop(R). By Wilson’s Theorem, it follows that
η = −lp−1. Note that localizing by η always has the same effect as localizing by
ε. As it is generally harmless, we will sometimes write a formula in the localized
groups without mentioning explicitly which group we are working in.
Proposition 7.6. With V and X be as above,

ctop(R⊗ V ) = ηdw(V, 1/η).

Proof. The Chern roots of R are simply l, 2l, . . . , (p− 1)l. Therefore,

ctop(R⊗ V ) =
d∏
i=1

p−1∏
a=1

(λi + al)

=
d∏
i=1

(λp−1
i − lp−1)

=
d∏
i=1

(λp−1
i + ctop(R))

= ctop(R)dw(V, ctop(R)−1).

�

In the sequel, let ctop(R⊗V )(t) be the (unique) polynomial in t with coefficients
in A∗X such that ctop(R⊗ V )(η) = ctop(R⊗ V ).

8. Definition and Basic Properties

In what follows, we will write C for C(p) considered as a subgroup of S = S(p)
in the obvious way. We will also write DW for DW

C . Note that, if C ≤ G ≤ S(p),
the restriction map AG∗ X → AC∗ X is a split injection. (The splitting is given up to
a factor of [G : C] by the transfer). Thus to compute DG for all such G it suffices
to compute DW .
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We first show that DW is a group homomorphism, beginning with the Chow
group analogue of a lemma of Steenrod. Here and for the remainder of the paper,
X will be a space with trivial C action and S(p) will act on Xp via permutations.
Lemma 8.1. Let T : AC∗ X

p → A∗X
p be the transfer. Then ∆!

CT = 0.

Proof. By (50), there is a commutative diagram

A∗X
p T //

∆!

��

AC∗ X
p

∆!
C

��
AC∗ X

ρ∗ // A∗X
T // AC∗ X

It follows from the computation of AC∗ X that ρ∗ is surjective. However Tρ∗ = 0
(because it is multiplication by p). Therefore the T on the bottom row is 0. The
result then follows from the commutativity of the diagram. �

Theorem 8.2. DW is a group homomorphism.

Proof. Let Z0 and Z1 be two cycles.

(Z0 + Z1)×p = Z×p0 + Z×p1 + Γ

where Γ lies in the image of T (by Proposition 4.7). Therefore

∆!
C((Z0 + Z1)×p) = ∆!

C(Z×p0 ) + ∆!
C(Z×p1 )

by the lemma. The theorem then follows from the definition of DW . �

Now we can view DW (α) as a polynomial
∑
bil

i in the variable l with coefficients
in A∗X. We can do this even if k does not contain all of the p-th roots of unity
because AC∗ X ⊂ AC∗ Xk. Following Steenrod, we have the following

Theorem 8.3. All terms of bili of DW (α) with i not divisible by p− 1 are 0.

Proof. Let G be the normalizer of C in S. Then G ∼= C(p− 1)n C with C(p− 1)
acting through the identification C(p− 1) ∼= (Z/p)∗. Thus C(p− 1) acts on A∗BC.
Under the above identification, with k ∈ (Z/p)∗, k∗l = kl. Thus k∗li = kili. This
gives the action of C(p− 1) on AiBC. Note that the action is only trivial if i is a
multiple of p− 1.

Now recall that dWC = ∆!
Cα
×p is the restriction of ∆!

Gα
×p. Therefore C(p − 1)

must act trivially on DW
C (α) (by Proposition 3.4). Hence, all terms bili with i not

a multiple of p− 1 must be 0. �

8.4. Now DW (α) can be viewed as a polynomial in the top Chern class class
η = ctop(R). To better keep track of degrees, we let DW (α, t) be the polynomial in
A∗X ⊗ Fp[t] such that DW (α, η) = DW (α).
Definition 8.5. The total Steenrod operation series of the pair (W,X) is the
Laurent series (with finitely many terms)

SW• α(t) = td−kDWα(1/t).

with d = dimW and α ∈ AkX. We simply write SW• α for SW• α(1). This is the
total Steenrod operation. We define individual operations SWi by setting SW• α(t) =∑
SWi (α)ti. Note that SWi lowers the degree of α by (p− 1)i.
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Remark 8.6. To agree with the topological notation, we define PWi α = SWi α for
p 6= 2. For p = 2, we define SqW2i α = SWi . The odd order operations obviously do
not exist in the context of Chow groups (although they definitely do exist in the
context of motivic cohomology) because the cycle class map sends Chow groups to
even dimensional cohomology.
Remark 8.7. Since DWα is a polynomial in t, SWi α = 0 for i > d− k.
Remark 8.8. We can also formulate the definition for α ∈ Ak[W,X] by follow-
ing through the reindexing. We write S•Wα(t) = tkDWα(1/t) and set S•Wα(t) =∑

SiW t
i. Then, of course, SiWα ∈ Ak+(p−1)i[W,X].

From Proposition 6.5, we have
Proposition 8.9. If j : U → X is an inclusion of a Zariski open set, then
j∗(SW• α) = SW• (j∗α).
Proposition 8.10. If W1 and W2 are two smooth spaces containing X, then

SW1
• α ∩ w(TW2) = SW2

• α ∩ w(TW1)

Proof. The proposition follows by applying successively Proposition 6.3, Proposi-
tion 7.6, and the definitions. �

Definition 8.11. If X is smooth, let S•α denote SX• α. It is natural to consider
this as an operation on A∗X so that Si raises degrees by (p− 1)i.
Remark 8.12. Suppose f : X → Y is a morphism of smooth varieties. Then
from Proposition 5.3 and the functoriality of the Gysin it follows that f !DY (α) =
DX(f !α) for α ∈ A∗Y . Therefore,

(71) f !S•α = S•f !α

Definition 8.13. For any X embedded in any smooth W , define

S•α(t) = SW• α(t) ∩ w(TW, t)−1.

It follows from Proposition 8.10 that S•α is independent of W .

9. Functorialities

Let i : X → Y be a closed embedding with Y embedded in a smooth variety
W . Then DW

G (i∗(α)) = i∗(DW
G (α)). This follows from [4], Theorem 6.2. Thus

SW• (i∗α) = i∗(SW• α). From the projection formula, it follows easily that S•(i∗α) =
i∗(S•α).
Lemma 9.1. If X → U and Y → V are embeddings of X and Y into smooth
varieties, then

DU×V (α× β) = DUα×DV β.

Proof. This follows directly from Example 6.5.2 of [4]. �

Theorem 9.2 (Cartan Formula). If α ∈ A∗X and β ∈ A∗Y then

SU×V• (α× β) = SU• α× SV• β,
S•(α× β) = S•α× S•β.

Proof. The first equation follows directly from the lemma. The second is a conse-
quence of the multiplicative property of w: w(T (U × V )) = w(TU) ∪ w(TV ). �
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Applying Remark 8.12 to the embedding X → X × X, we have the following
theorem as a corollary.
Theorem 9.3 (Cartan Formula). For X smooth, DX(α ∪ β) = DX(α) ∪DX(β),
and S•(α ∪ β) = S•α ∪ S•β.
Proposition 9.4. Let X be a smooth space contained in a smooth space W with
normal bundle N = (TW|X)/TX. Let α ∈ AkX.

(i) DX
G [X] = [X] for any group G ≤ S(n).

(ii) S•[X] = [X].
(iii) SW• [X] = [X] ∩ w(N) and S•[X] = [X] ∩ w(TX)−1.

(iv) Siα =
{
αp : i = k

0 : i > k.

Proof. (i) is a direct consequence of the following fact: If j : A → B is a regular
embedding of smooth varieties, then j![B] = A. (i)⇒(ii) by the definition of S•

and (ii)⇒ (iii) by Proposition 8.10.
The second line of (iv) follows from Remark 8.7. For the first line, note that

Skα is simply the constant coefficient in DX(α, t), that is, Skα = DX
C (α, 0) where

C is the cyclic group with p elements. From the functoriality of DX
G as a functor

of the group G under the restriction map, it follows that DX
C (α, 0) = DX

{1}(α). But
DX
{1}(α) = αp. �

Remark 9.5. A consequence of (iv) of the above is that, if α ∈ A1X and X is
smooth, S•(α) = α+ αp. This implies that DX(α) = α(η + αp−1).
Corollary 9.6. For any X embedded in a smooth space W of dimension d and
α ∈ AkX, SWi α = 0 for i 6∈ [0, d− k] and SW0 is the identity.

Proof. That SWi α vanishes for i > d − k is Remark 8.7. To prove the rest of the
corollary, first note that by linearity it suffices to consider the case α = [V ] for V an
irreducible subspace. Let Vsing be the singular locus of V and let Wsm = W −Vsing

(resp. Vsm = V − Vsing, Xsm = X − Vsing).
The smoothness of Vsm and Proposition 9.4 together imply that the corollary

holds for SWsm
i [Vsm] considered as an element of A∗Vsm. Then the covariant func-

toriality of SWsm
• shows that the corollary holds for SWsm

i [Vsm] considered to be in
A∗Xsm.

Let j : Xsm → X be the inclusion. Then by Proposition 6.5, SWsm
i [Vsm] =

j∗(SWi [V ]). The result then follows from the fact that, for r ≥ k, ArX = ArXsm.
�

Lemma 9.7. Let V be a vector bundle on X of rank r and let α ∈ A∗X. Then
SW• (α ∩ ctop(V )) = SW• (α) ∩ ctop(V )w(V ).

Proof. Let P = PnC . By Corollary 5.4, P (α ∩ ctop(V )) = P (α) ∩ ctop(P (V )). It
follows from the compatibility of the refined Gysin with pull-back of vector bundles
([4] Proposition 6.3) that DW (α ∩ ctop(V )) = DW (α) ∩ ctop(V ⊗ R̃). But, now,
ctop(V ⊗ R̃) = ctop(V )ctop(V ⊗ R), and this is just ctop(V )ηrw(V, 1/η). By the
definition of SW• , we thus have SW• (α ∩ ctop(V ))(t) = SW• (α) ∩ ctop(V )w(V, t) as
desired. �

Remark 9.8. For a line bundle L with c = c1(L), this reduces to the statement that
SW• (α ∩ c) = SW• (α) ∩ (c+ cp).
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In the next lemma and what follows, we use the usual convention that(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!

for n ∈ Z and k ≥ 0.

Lemma 9.9.
(
−1− (p− 1)k

k

)
= 0 modulo p unless k = 0.

Proof.
(
−1− (p− 1)k

k

)
= (−1)k

(
pk

k

)
. �

For a cycle α ∈ A∗X, we write [α]k for the component in degree k.
Lemma 9.10. (S•[Pn])0 = 0 for n 6= 0.

Proof. S•[Pn](t) = [Pn] ∩ w(TPn, t)−1. And w(TPn, t) = (1 + thp−1)n+1. Thus,
clearly, (S•[Pn])0 = 0 unless n = (p − 1)k for some integer k. And, in this case,
(S•[Pn])0 =

(−n−1
k

)
. The result then follows from Lemma 9.9. �

Proposition 9.11. Suppose f : X → Y factors as a closed embedding g : X →
Pn × Y followed by the projection p2 : Pn × Y → Y . Then S•(f∗α) = f∗(S•α).

Proof. Since we know that S• is covariantly functorial for closed embeddings, we
need only show that S• commutes with p2∗. Let α ∈ Ak(Y × Pn). We can write
α =

∑
i+j=k βi ⊗ [Pj ]. Then p2∗(α) = βk. Using the Lemma and the Cartan

formula, it is easy to see that p2∗(S•α) = S•βk. �

Corollary 9.12. When k = C, the definition of S• agrees with the topological
definition given in the introduction.

Proof. Let π : M → X be a resolution of singularities, in particular, a projective
map with M smooth. Then the functoriality of S• for projective morphisms and
the computation of Proposition 9.4 shows that S•[X] = π∗([M ] ∩ w(TM)−1). �

Of course, the proof also shows that π∗([M ] ∩ w(TM)−1) is independent of M .

10. Chow Envelopes

We now have S• defined for any scheme X which can be embedded in a smooth
scheme. In particular, it is defined for any quasi-projective scheme. Moreover, by
Proposition 9.11, S• is covariant for projective morphisms. To extend the definition
of S• to all schemes and show that the extension is covariant for proper morphisms,
we use a Chow envelope argument essentially identical to the one used by Fulton [4]
to extend the Grothendiek-Riemann-Roch theorem from quasi-projective varieties
to arbitrary schemes.

We begin by reviewing the facts of Chow envelopes referring the reader to section
18.3 of [4] for details. If X is a scheme, an envelope of X is a proper morphism
p : X ′ → X such that, for any irreducible subscheme V of X, there is an irreducible
subscheme V ′ of X ′ such that p maps V ′ birationally onto V . It follows that
p∗ : A∗X ′ → A∗X is surjective. An envelope X ′ is a Chow envelope if X ′ is quasi-
projective. By Lemma 18.3 of [4], for any scheme X there is a Chow envelope
p : X ′ → X and a closed subscheme Y such that X − Y is dense and p maps
X ′ − p−1Y isomorphically onto X − Y .
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Suppose that p : X ′ → X is a Chow envelope and that α ∈ AkX is a cycle class.
Since we can find an α′ ∈ AkX ′ such that p∗α′ = α, the natural inclination is to
simply define

(72) S•α = p∗S•α
′.

However, we must first prove that this definition is independent of the choice of α′

and the choice of X ′. Following Fulton, we will says that a map S : A∗X → A∗X
is compatible with p if

(73) Sp∗α
′ = p∗S•α

′

for any α′ ∈ A∗X ′. Since p : X ′ → X is an envelope, there can be at most one map
S compatible with a given p.
Lemma 10.1. If S : A∗X → A∗X is compatible with a Chow envelope p then, for
any proper morphism f : Y → X with Y quasi-projective, the diagram

A∗Y
S• //

f∗

��

A∗Y

f∗

��
A∗X

S // A∗X

commutes. In particular, S is compatible with any other Chow envelope.

Proof. By Lemma 18.3 (4) of [4], we can find a Chow envelope q : Y ′ → Y and
a proper morphism f ′ : Y ′ → X ′ such that pf ′ = fq. Let α ∈ AkY . Since Y ′ is
an envelope, we have α = q∗α

′ for some α′ ∈ AkY ′. Then f∗S•α = f∗S•q∗α
′ =

f∗q∗S•α
′ since q is projective. The fact that S is compatible with p then implies

that f∗q∗S•α = p∗f
′
∗S•α

′ = Sp∗f
′
∗α
′ = Sf∗α. �

Proposition 10.2. For any scheme X, there is an S : A∗X → A∗X compatible
with all Chow envelopes.

Proof. We prove the proposition by Noetherian induction on X. When the dimen-
sion of X is 0, the proposition is trivial. Therefore, assume the proposition holds
for all schemes of dimension less than that of X. By Lemma 10.1, it suffices to find
a specific envelope p and construct an S compatible with p. We can thus assume
that p : X ′ → X is a Chow envelope equipped with a closed subscheme Y such that
X − Y is dense and p maps X ′ − p−1Y isomorphically onto X − Y .

We then have a fiber square

Y ′
j //

q

��

X ′

p

��
Y

i // X.

Note that q : Y ′ → Y is also a Chow envelope by Lemma 18.3 (2) of [4].
By [4] Example 1.8.1, the sequence

(74) AkY
′ a→ AkY ⊕AkX ′

b→ AkX → 0

is exact, where a(γ) = (q∗γ,−j∗γ) and b(α, β) = i∗α+ p∗β.
From the induction hypothesis, there is a map S : A∗Y → A∗Y compatible

with q. We can now define S(i∗α + p∗β) = i∗S(α) + p∗S•(β). This is well-defined
because, for γ ∈ AkY ′, i∗S(q∗γ)− p∗S•(j∗γ) = i∗q∗S•γ − p∗j∗S•γ = 0. �
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We can thus define S• : A∗X → A∗X to be given by the (necessarily unique)
S compatible with all Chow envelopes. By the Lemma 10.1, we know that S•
commutes with proper push-forward from projective schemes. If f : Y → X is an
arbitrary proper morphism, we can (as in the proof of the proposition) find a Chow
envelopes q : Y ′ → Y and p : X ′ → X, and a proper map f ′ : Y ′ → X ′ such
that pf ′ = fq. Then, if α ∈ AkY is a class, we can find an α′ ∈ AkY ′ such that
q∗α
′ = α. It follows then that f∗S•α = f∗S•q∗α

′ = p∗f
′
∗S•α

′ = S•p∗f
′
∗α
′ = S•f∗α.

We thus have the following
Proposition 10.3. If f : Y → X is a proper morphism, then f∗S• = S•f∗.

Note that the above proposition together with Proposition 9.4 (iii) characterizes
the action of S• on any variety X which admits an envelope f : Y → X with
Y smooth. In particular, in characteristic 0 where resolution of singularities is
available, S• is characterized by commutativity with proper morphisms and the
fact that S•[Y ] = [Y ] ∩ w(TY )−1 for smooth Y .
Proposition 10.4. Let X and Y be schemes.

(i) For α, β ∈ AkX, S•(α+ β) = S•α+ S•β.
(ii) For α ∈ AkX and β ∈ AjY , S•(α× β) = S•α× S•β.

Proof. To verify (i) chose a Chow envelope p : X ′ → X and let α′, β′ ∈ AkX ′ be
classes such that p∗α′ = α and p∗β

′ = β. Then

S•(α+ β) = p∗S•(α′ + β′) = p∗S•α
′ + p∗S•β

′

= S•α+ S•β.

For (ii), let p : X ′ → X and q : Y ′ → Y be two Chow envelopes and let
α′ ∈ AkX

′ and β′ ∈ AjY
′ be chosen such that p∗α′ = α and q∗β

′ = β. Then
p× q : X ′ × Y ′ → X × Y is a proper morphism and (p× q)∗α′ × β′ = α× β. Thus,
by proposition 10.3 and Theorem 9.2,

S•(α× β) = S•(p∗α′ × q∗β′) = (p× q)∗S•(α′ × β′)
= (p× q)∗S•α′ × S•β′ = p∗S•α

′ × p∗S•β′ = S•α× S•β.

�

11. Adem Relations

In the topological setting, the Steenrod powers along with the Bockstein ele-
ment β generate an Fp-algebra A(p) known as the Steenrod algebra. This highly
non-commutative algebra is the free non-commutative algebra on the Steenrod op-
erations (along with the Bockstein element) modulo the two-sided ideal generated
by certain (somewhat complicated) relations known as the Adem relations. The
fact that the cohomology H∗(X,Fp) of a topological space X is a module over the
Steenrod algebra A(p) has profound consequences for algebraic topology.

In our algebraic setting, we will not have an analogue of the Bockstein element
acting on Chow theory because β increases topological degree by 1. (Note however
that, in the setting of motivic cohomology, β exists and plays essentially the same
role as the Bockstein element in algebraic topology.) Thus we should expect that
A(p) modulo the two-sided ideal generated by β will act on the Chow groups. To
prove this we must check the Adem relations.
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In this section, we verify that the Adem relations (given in equation (76)) hold
both for the SWi and for the Si. Most of the proof is formal and some of it is
tedious. In general, the proof is very similar to the one given by Steenrod in [8].
I have; therefore, sketched certain arguments referring the reader to Steenrod for
the details.

In order to unify the presentation, we use the reindexing of Remarks 6.2 and
8.8. Therefore, we will be considering throughout the groups Ak[W,X] and the
operations S•W = tkDWα(1/t). We will also use the symbol ∞ to stand for an
“infinite” W. In practice, this means that we will write Ak[∞, X] = A−kX and
S•∞(α) for the reindexed S•(α). We will say that W is “finite” if it is not∞. When
X is smooth, D written without a superscript will mean DX .

For W finite and α ∈ Ak[W,X], we have DW (α) = ηkS•Wα(1/η). We gener-
alize this formula by defining D∞(α) = ηkS•∞α(1/η). Note that, while DW (α) ∈
A∗C [W,X] for W finite, D∞(α) may only live in the localized module A∗C [W,X]η.

Now let C1 and C2 be two copies of the group C(p) and suppose that Ei ∈ ECi
for i = 1, 2 over an algebraically closed field k. (In proving the Adem relations,
we can work over an algebraically closed field without loss of generality.) Let
Bi = Ei/Ci for i = 1, 2. We suppose that a large integer N has been chosen and
that AkBi = AkBCi for k ≤ N . Let us write A∗BCi = F[li]. We will also write
ηi = −lp−1

i . Let R′i be the subalgebra of A∗BCi generated by ηi. In general, we
write R′ for the subalgebra of A∗BC(p) generated by η.

We want to compute the map D : AkB1 → A∗B1 ⊗ A∗BC2. By Remark 9.5,
D(l1) = l1(η2 + lp−1

1 ) = l1(η2 − η1). As D is an algebra homomorphism, this
computes D completely. In particular, D(η1) = η1(η2−η1)p−1. These two formulas
hold for the varieties Bi. There is then an induced algebra map D : A∗BC →
A∗BC ⊗A∗BC given by D(l) = l ⊗ 1(lp−1 ⊗ 1− 1⊗ lp−1).

Now for any space X embedded in a smooth (finite) space W there is a sequence

Ak[W,X]→ Apk[W ×B1, X ×B1]→ Ap
2k[W ×B1 ×B2, X ×B1 ×B2]

obtained by applying DW and then DW×B1 in succession. By taking N > p2k, this
defines a map D2 : A∗[W,X]→ A∗[W,X]⊗F[l1]⊗F[l2]. Let s be the automorphism
of R′ ⊗R′ which switches the factors, i.e., s(l1) = l2, s(l2) = l1.
Theorem 11.1. For W finite, D2 = s(D2).

Sketch. Let C2 be the product of C1 and C2 and let sw be the automorphism of C2

which switches the factors. Then D2 can be thought of as a map D2 : A∗[W,X]→
A∗C2 [W,X]. Then sw∗(D2) = D2. This is shown in the topological context on pages
116 and 117 of [8]. The proof in the context of equivariant intersection theory uses
the same reasoning and the same commutative diagrams. (All of the necessary
functorial properties of equivariant intersection theory are at our disposal.) I will
omit it.

What is left is to show that sw∗ = s. But this is clear from the way sw acts on
one-dimensional representations. �

Let m : R′ ⊗R′ → R′ be the multiplication map. Let R = R′η. Then R inherits
a grading from A∗BC(p) so that η has degree p − 1. Extend D, m, and s to R.
Then since D(η1) = η1(η2 − η1)p−1, the extension of D to R takes values in the
ring (R⊗R)η2−η1 . (Here we write η1 for η⊗ 1, η2 for 1⊗ η.) Write M = A∗[W,X]
and DM = DW . The Cartan formula shows us that D2 can be computed as the
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composition

M
DM−→ M ⊗R′ DM⊗D−→ M ⊗R′ ⊗R′ ⊗R′(75)

1⊗s⊗1−→ M ⊗R′ ⊗R′ ⊗R′ 1⊗1⊗m−→ M ⊗R′ ⊗R′.
We can then extend this to a map D2 : M → (M ⊗ R ⊗ R)η2−η1 by extending D
to R.
11.2. Let ι be the involution on R taking η to 1/η. Let M be any graded Abelian
group with a map DM : M → M ⊗ R multiplying degrees by p. We write
DM (α)(1/η) for (id ⊗ ι) ◦ DM (α). Define SM (α) = ηkDM (α)(1/η) and write
SM (α) =

∑
i S

i
M (α)ηi. Note that this implies that DM (α) = ηkSM (α)(1/η). De-

fine D2 : M →M ⊗ (R⊗R)(η2−η1) as in (75).
The Adem relations will follow from the following

Theorem 11.3. With the M as above, suppose that
(i) For any α, SiM (α) = 0 for i < 0,
(ii) s(D2) = D2.

Then the SiM satisfy the Adem relations. That is, for 0 < b < pc,

(76) SbMS
c
M =

[b/p]∑
i=0

(−1)b+i
(

(p− 1)(c− i)− 1
b− pi

)
Sb+c−iM SiM .

Proof. We will write u for the generator of the first factor of R and v for the other
so that R ⊗ R = F[u, v, u−1, v−1]. In other words, we write u for η1 and v for η2.
We will simply write S for SM . Note that Si raises degrees by (p− 1)i.

We then compute

D2(α) = D(ukS(α)(1/u))

= D(uk
∑
i≥0

Si(α)u−i)

=
∑
i≥0

D(Si(α))D(uk−i)

=
∑
i≥0

vk+(p−1)i
∑
j≥0

SjSi(α)v−jD(uk−i)

=
∑
i,j≥0

SjSi(α)vk+(p−1)i−juk−i(v − u)(p−1)(k−i).

Note that the sums here are finite by the assumption that D : M →M ⊗R.
By assumption (ii), we have that∑

i,j≥0

SjSi(α)(v − u)(p−1)(k−i)[vk+(p−1)i−juk−i − uk+(p−1)i−jvk−i] = 0.

We reduce this by dividing through by (v − u)(p−1)kvkuk to obtain the equation∑
i,j≥0

SjSi(α)(v − u)−(p−1)i[v(p−1)i−ju−i − u(p−1)i−jv−i] = 0.

We then change variables, writing the equation in terms of a = u/v and v, to obtain∑
i,j≥0

SjSi(α)v−i−j(1− a)−(p−1)i[a−i − api−i−j ] = 0.
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Thus, with m = b+ c,∑
i+j=m

SjSi(α)(1− a)−(p−1)i[a−i − api−m] = 0.

Multiplying through by am, we have∑
i+j=m

SjSi(α)(1− a)−(p−1)i[aj − api] = 0.

In other words,∑
i+j=m

SjSi(α)(1− a)−(p−1)iaj =
∑

i+j=m

SjSi(α)(1− a)−(p−1)iapi.

Now, multiply both sides through by (1− a)(p−1)c−1a−b to get∑
i+j=m

SjSi(α)(1− a)(p−1)(c−i)−1aj−b =

∑
i+j=m

SjSi(α)(1− a)(p−1)(c−i)−1api−b.

The Adem relations follow from considering the constant coefficient of each side
of the equation expanded out as a formal power series in a.

On the left side, the coefficient is simply SbSc. This follows from Lemma 9.9.
Note that on the right the coefficient will be 0 unless pi ≤ b. Since 0 < b < pc, this
implies that i < c. At any rate, the coefficient is∑

i+j=m

SjSi(−1)b−pi
(

(p− 1)(c− i)− 1
b− pi

)
.

�

The Theorem directly implies the Adem relations for finite W . For W =∞, one
needs to know the following

Proposition 11.4. If DW satisfies the conditions of Theorem 11.3 for any finite
W , then D∞ does also.

Proof. Hypothesis (i) of Theorem 11.3 holds automatically since Siα vanishes for
i < 0. (This is implied by the vanishing of SWi α for i < 0.) The proof of (ii) is a
combinatorial game with the Chern roots of TW . Writing them as λi, we have

(77) w(TM) =
d∏
i=1

(1 + λp−1
i ).

Now, DWα = ηkS•Wα(1/η) for α ∈ Ak[W,X]. If λ is the first Chern class of a
line bundle L, it follows that from Remark 9.8 that

DW (α ∩ λ) = DW (α) ∩D(λ)

with D(λ) = λ(η + λp−1).
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Now suppose that α ∈ Ak[W,X] = Ad−kX = Ak−d[∞, X]. From the definition
of S• (taking into account the gradings), it follows that

D∞α = ηk−dS•Wα(1/η) ∩
d∏
i=1

(1 + η−1λp−1
i )−1

= DWα ∩
d∏
i=1

(η + λp−1
i )−1.(78)

From the fact that DW is a homomorphism, we then have

D∞D∞α = DW (DWα ∩
d∏
i=1

(η1 + λp−1
i )−1) ∩

d∏
i=1

(η2 + λp−1
i )−1

= DWDWα ∩D(
d∏
i=1

(η1 + λp−1
i )−1) ∩

d∏
i=1

(η2 + λp−1
i )−1.(79)

Assuming that (ii) holds for W , we know that DWDWα is symmetric in η1, η2.
Therefore it will suffice to show that the expression

D(
d∏
i=1

(η1 + λp−1
i )−1) ∩

d∏
i=1

(η2 + λp−1
i )−1

is symmetric in η1, η2. Moreover, since DW is an algebra homomorphism, we can
assume that d = 1 so that there is only one λ = λ1 and we can remove the inverses.
That is, we only need to show that

D(η1 + λp−1)(η2 + λp−1)

is symmetric for λ a first Chern class.
We compute

D(η1 + λp−1)(η2 + λp−1)(80)
= [η1(η2 − η1)p−1 + λp−1(λp−1 + η2)p−1][η2 + λp−1]
= η1(η2 − η1)p−1(η2 + λp−1) + λp−1(λp−1 + η2)p

=
η1(ηp2 − η

p
1)(η2 + λp−1) + λp−1(η2 − η1)(λp(p−1) + ηp2)

η2 − η1

=
η1η2(ηp2 − η

p
1) + (ηp+1

2 − ηp+1
1 )λp−1 + (η2 − η1)λp

2−1

η2 − η1

Since both the numerator and the denominator of the last expression are both
odd functions of η2 − η1, (80) is symmetric. �

As a corollary, we obtain

Theorem 11.5. Let A(p) be the Steenrod Algebra at the prime p, and let β be the
Bockstein element. Then A(p) modulo the two-sided ideal generated by β acts on
A∗[W,X] for W either a smooth algebraic space in which X is embedded or W =∞.
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