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Abstract. I generalize the standard notion of the composition g ◦ f of
correspondences f : X → Y and g : Y → Z to the case that X and Z are
arbitrary varieties but Y is smooth and projective. Using this notion, I
give a short self-contained proof of Rost’s “nilpotence theorem” and a
generalization of one important result used by Rost in his proof of the
nilpotence theorem.

1. Introduction

In an elegant four page preprint “A shortened construction of the Rost
motive,” N. Karpenko (see also [3]) gives a construction of Rost’s motive
Ma assuming the following result of Rost widely known as the “nilpotence
theorem.”

Theorem 1.1. Let Q be a smooth quadric over a field k with algebraic
closure k and let f ∈ EndM(Q) be an endomorphism of its integral Chow
motive. Then, if f ⊗ k = 0 in EndM(Q⊗ k), f is nilpotent.

For the proof, Karpenko refers the reader to a paper of Rost which proves
the theorem by invoking the fibration spectral sequence of the cycle module
of a product (also due to Rost [5]). (In [6], A. Vishik gives another proof of
Theorem 1.1 based on V. Voevodsky’s theory of motives.)

The existence of the Rost motive and the nilpotence theorem itself are
both essential to Voevodsky’s proof of the Milnor conjecture. It is, therefore,
desirable to have direct proofs of these fundamental results. The main goal
of this paper is to provide such a proof in the spirit of Karpenko’s preprint.
To accomplish this, I use a generalization to singular schemes of the notion
of composition of correspondences to obtain a proof of the theorem which
avoids the use of cycle modules.

Both Rost’s proof of Theorem 1.1 and the proof presented here involve
two principal ingredients: (1) a theorem concerning nilpotent operators on
Hom(M(B),M(X)) for B and X smooth projective varieties, (2) a decom-
position theorem for the motive M(Q) of a quadric Q with a k-rational point.
For (1), we obtain an extension of Rost’s results (Theorem 3.1) allowing the
motive of B to be Tate twisted. Moreover, the method of proof can be used
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to extend the result to arbitrary varieties B. For (2), the theorem stated
here (Theorem 4.1) is identical to Rost’s, but the proof is somewhat sim-
pler as we are able to perform computations with correspondences involving
possibly singular varieties.

V. Chernousov, S. Gille and A. Merkurjev have recently generalized The-
orem 1.1 to arbitrary homogeneous varieties. Their approach is to write
down a decomposition as in (2) for homogeneous varieties in terms of group
theory and then to use the extension to (1) given here to prove a nilpotence
result. I would like to thank Merkurjev for pointing out to me the usefulness
of this extension.

1.1. Notation. As the main tool used in this paper is the intersection the-
ory of Fulton-MacPherson, we use the notation of [1]. In particular, a scheme
will be a scheme of finite type over a field and a variety will be an irreducible
and reduced scheme. We use the notation Chowk for k a field to denote the
category of Chow motives whose definition is recalled below in Section 2.
For a scheme X, AjX will denote the Chow group of dimension j cycles on
X.

In section 3, we will use the notation H to denote the hyperbolic plane.
That is, H is the quadratic space consisting of k2 with quadratic form given
by q(x, y) = xy.

2. Refined Intersections

Let V and W be schemes over a field k, let {Vi}m
i=1 be the irreducible

components of V and write di = dim Vi. The group of degree r Chow
correspondences is defined as

(1) Corrr(V,W ) = ⊕Adi−r(Vi ×W ).

If X1, X2, X3 are smooth proper schemes, then it is well-known that there
is a composition

Corrr(X1, X2)⊗ Corrs(X2, X3) → Corrr+s(X1, X3)(2)
g ⊗ f 7→ f ◦ g

given by the formula

(3) f ◦ g = p13∗(p∗12g · p∗23f)

where the pij : X1 ×X2 ×X3 → Xi ×Xj are the obvious projection maps.
Using this formula, the category Chowk of Chow motives can be defined as
follows ([3], see also [2]): The objects are the triples (X, p, n) where X is a
smooth projective scheme over k, p ∈ Corr0(X, X) is a projector (that is,
p2 = p) and n is an integer. The morphisms are defined by the formula

(4) Hom((X, p, n), (Y, q,m)) = q Corrm−n(X, Y )p.

To fix notation, we remind the reader that the Tate twist of an object
M = (X, p, n) is the object M(k) = (X, p, n + k), and the objects Z(k) =
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(Spec k, id, k) are customarily called the Tate objects. It is clear from (4)
that

(5) Hom(Z(k),M(X)) = AkX, Hom(M(X), Z(k)) = AkX

where M(X) is the motive (X, id, 0) associated to the scheme X.

2.1. Refined correspondences. The main observation behind this paper
is that a composition generalizing that of (2) holds for arbitrary varieties X1

and X3 provided that X2 is smooth and proper. To define this composition
we use the the Gysin pullback through the regular embedding

X1 ×X2 ×X3
id×∆×id→ X1 ×X2 ×X2 ×X3.

We can then define the composition by the formula

(6) f ◦ g = p13∗((id×∆× id)!(g ⊗ f)).

We need to verify that the definition given in (6) agrees with that of
(3) and satisfies various functoriality properties needed to make it a useful
extension. To state these properties in their natural generality, it is helpful
to also consider (6) in a slightly different situation from that of (2). For X2

a smooth scheme and X1, X3 arbitrary schemes, we define a composition

Ar(X1 ×X2)⊗ Corrs(X2, X3) → Ar−s(X1 ×X3)(7)
g ⊗ f 7→ f ◦ g

where f ◦ g is defined as in (6). We consider (7) because ⊕i Corri(X1, X2) is
not necessarily equal to ⊕iAi(X1×X2) unless X1 is scheme with irreducible
connected components. Therefore, in the case that X1 does not have ir-
reducible connected components, Corr∗(X1, X2) is not a reindexing of the
Chow groups of X1 ×X2.

Proposition 2.1. Let Xi, i ∈ {1, 2, 3} be schemes with X2 smooth and
proper.

(a) If all Xi are smooth and X2 is proper, then the definition of f ◦ g for
g ∈ Corrr(X1, X2), f ∈ Corrs(X2, X3) given in (6) agrees with that of
(3).

(b) If π : X ′
1 → X1 is a proper morphism, then the diagram

Ar(X ′
1 ×X2)⊗ Corrs(X2, X3) //

π∗
��

Ar−s(X ′
1 ×X3)

π∗
��

Ar(X1 ×X2)⊗ Corrs(X2, X3) // Ar−s(X1 ×X3)

commutes. Here, for the vertical arrows, by π∗ we mean the morphism
induced by π∗ on the first factor and the identity on the other factors.
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(c) If φ : X ′
1 → X1 is flat of constant relative dimension e, then

Ar(X1 ×X2)⊗ Corrs(X2, X3) //

φ∗

��

Ar−s(X1 ×X3)

φ∗

��
Ar+e(X ′

1 ×X2)⊗ Corrs(X2, X3) // Ar+e−s(X ′
1 ×X3)

commutes.

Proof. First note that it suffices to prove the proposition for X2 irreducible
of dimension d2. This is because Corrs(X2, X3) and Ar(X1 ×X2) are both
direct sums over the irreducible components of X2 and all of the maps in
the theorem commute with these direct sum decompositions.

(a): Another formulation of (3) is that f ◦ g is given by

p13∗∆!
123(p

∗
12g ⊗ p∗23f)

where

∆123 : X1 ×X2 ×X3
∆123→ (X1 ×X2 ×X3)× (X1 ×X2 ×X3)

is the obvious diagonal.
Consider the sequence of maps

(8)
X1×X2×X3

∆123→ (X1×X2×X3)×(X1×X2×X3)
p12×p23→ X1×X2×X2×X3

with composition ∆2 : X1 ×X2 ×X3 → X1 ×X2 ×X2 ×X3.
Since all Xi are smooth, p12 × p23 is a smooth morphism. It follows from

([1] Proposition 6.5.b) that

∆!
2(g ⊗ f) = ∆!

123(p12 × p23)∗(g ⊗ f)

= ∆!
123(p

∗
12g ⊗ p∗23f).

(a) now follows by taking push-forwards.
(b): We have a fiber diagram

(9) X ′
1 ×X2 ×X3

∆′
2 //

��

X ′
1 ×X2 ×X2 ×X3

��
X1 ×X2 ×X3

∆2

// X1 ×X2 ×X2 ×X3

where ∆′
2 and ∆2 are both induced by the diagonal

X2 → X2 ×X2.

Since ∆2 and ∆′
2 are both regular of codimension d2, it follows from ([1],

Proposition 6.2.c) that both morphisms induce the same Gysin pullback on
the top row of the diagram.
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By ([1], 6.2 (a)), proper push-forward and Gysin pull-back through a
regular embedding commute. Applying this fact to (9), we have

π∗(f ◦ g) = (π × id3)∗p13∗∆!
2(g ⊗ f)

= p13∗(π × id2× id3)∗∆!
2(g ⊗ f)

= p13∗∆!
2(π × id2× id2× id3)∗(g ⊗ f)

= p13∗∆!
2((π × id)∗g ⊗ f))

= f ◦ (π∗g).

(c) Here the argument is very similar to the one for (b): We have a
pullback diagram

X ′
1 ×X2 ×X3

φ×id2 × id3 //

p′13
��

X1 ×X2 ×X3

p13

��
X ′

1 ×X3
φ×id3

// X1 ×X3.

Since the vertical arrows are proper and the horizontal arrows are flat, it
follows from ([1], 1.7) that

(10) p′13∗(φ× id2× id3)∗ = (φ× id3)∗p13∗

We then consider the pullback

X ′
1 ×X2 ×X3

∆′
2 //

φ

��

X ′
1 ×X2 ×X2 ×X3

φ

��
X1 ×X2 ×X3

∆2

// X1 ×X2 ×X2 ×X3

in which the vertical arrow are flat and the horizontal arrow are regular
embeddings both of codimension d2. By ([1], 6.2 (c)) it follows that the flat
pullbacks commutes with the Gysin pullbacks; thus,

φ∗(f ◦ g) = (φ× id3)∗p′13∗∆
!
2(g ⊗ f)

= p13∗(φ× id2× id3)∗∆!
2(g × f)

= p13∗∆!
2((φ

∗g)⊗ f))
= f ◦ (φ∗g).

�

Remark 2.2. If X1 and X3 are taken to be schemes with irreducible con-
nected components, then in (b) and (c), we can replace A∗(X1 ×X2) with
Corr∗(X1, X2) after a shift in the indices. Then the roles of X1 and X3 in
the theorem can also be interchanged by the symmetry of Corr∗(X, Y ).

The fact that morphisms in Corr∗( , ) are not in general composable is
mitigated somewhat by the following result.
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Proposition 2.3. Let {Xi}4
i=1 be schemes with X2 and X3 smooth and

proper.
(a) If ∆ ∈ Corr0(X2 ×X2) is the class of the diagonal then, the morphism

Ar(X1 ×X2) → Ar(X1 ×X2) given by f 7→ ∆ ◦ f is the identity.
(b) If f1 ∈ Ar(X1 ×X2) and fi ∈ Corrri(Xi, Xi+1) for i = 2, 3, then

(f3 ◦ f2) ◦ f1 = f3 ◦ (f2 ◦ f1).

In other words, composition is associative.

Proof. (a) can be easily checked on the level of cycles in Zr(X1 ×X2). For
(b), the important point is the commutativity of the diagram

(11) X1 ×X2 ×X3 ×X4
//

��

∆23

++WWWWWWWWWWWWWWWWWWWWW X1 ×X2 ×X2 ×X3 ×X4

��
X1 ×X2 ×X3 ×X3 ×X4

// X1 ×X2 ×X2 ×X3 ×X3 ×X4

where the arrows are the obvious diagonal morphisms. Both compositions
in (b) can be computed as p14∗∆!

23(f3 ⊗ f2 ⊗ f1). �

3. Rost’s Correspondence Theorem

If X and Y are smooth projective varieties and f : M(X) → M(Y ) is
a morphism, we obtain a morphism f∗ : Ar(X) → Ar(Y ) induced by the
composition

Z(r) → M(X)
f→ M(Y )

using (5). Similarly, for a smooth projective variety B and an integer a, we
obtain a morphism f∗ : Hom(M(B)(a),M(X)) → Hom(M(B)(a),M(Y ))
given by

(12) g 7→ f ◦ g

with g ∈ Hom(M(B)(a),M(X)) = Corr−a(B,X).
Rost’s nilpotence theorem is a consequence of the following more general

theorem concerning correspondences between smooth varieties.

Theorem 3.1. Let B and X be smooth projective varieties over a field k
with dim B = d. For any b ∈ B, let Xb denote the fiber of the projection
π : B ×X → B. If f ∈ End(M(X)) is a morphism such that f∗Ar(Xb) = 0
for all b and all 0 ≤ r ≤ d + a, then

(13) fd+1
∗ Hom(M(B)(a),M(X)) = 0.

In the case a = 0, the theorem is due to Rost ([4], Proposition 1). Our
proof of the theorem is based on Rost’s proof, but uses the results of Sec-
tion 2 in place of Rost’s cycle module spectral sequence. Note that, while the
hypotheses of the theorem assume that B is smooth, the the proof is essen-
tially an induction on all subvarieties (smooth or otherwise) of B. Moreover,
the result holds with a slight change of notation (which we describe after
the proof) for arbitrary B.

http://www.math.ohio-state.edu/~rost/motive.html
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Proof of Theorem 3.1. Let Zk(B × X) denote the group of k-dimensional
cycles on B × X, and let FpZk(B × X) denote the subgroup of Zk(B ×
X) generated by subvarieties V of dimension k such that dim π(V ) ≤ p.
Let FpAk(B × X) denote the image of FpZk(B × X) under the rational
equivalence quotient map.

To prove the theorem, it is clearly sufficient to show that

(14) f∗FpAd+a(B ×X) ⊂ Fp−1Ad+a(B ×X)

since F−1Ad+a(B × X) = 0. Therefore, it is sufficient to show that, for
V a (d + a)-dimensional subvariety of B × X such that dim π(V ) = p,
f∗[V ] ∈ Fp−1Ad+a(B ×X).

Let Y = π(V ). By the hypotheses of the theorem, there is a nonempty
open set U ⊂ Y such that f∗[VU ] = 0. (Here we write VU for the fiber
product V ×Y U .) Let W = Y − U , and consider the short exact sequence
of Chow groups

(15) Ad+aW ×X
i∗→ Ad+aY ×X

j∗→ Ad+aU ×X → 0.

By the results of Section 2, f∗[VU ] = j∗f∗[V ] where f∗[V ] is the composition
f ◦ [V ] of f with [V ] viewed as an element of Corrp−d−a Y ×X. It follows
that f∗[V ] lies in the image of the first morphism in (15). Thus f∗[V ] ∈
Fp−1Ad+aB ×X. �

Remark 3.2. Using the associativity of composition (Proposition 2.3), it
is easy to see that the above proof generalizes to the case where B is
arbitrary. The statement of the theorem remains the same, except that
Hom(M(B)(a),M(X)) is replaced with Corr−a(B,X).

4. Rost Nilpotence

If M = (Y, p, n) is a motive in Chowk and X is an arbitrary scheme, we
define

Corr(X, M) = p Corrn(X, Y ).
Since Y is smooth and projective, this definition makes sense by what
we have seen in Section 2. If j : U → X is flat we obtain a pullback
Corr(X, M) → Corr(U,M) and, if p : X ′ → X is proper, we obtain a push-
forward Corr(X ′,M) → Corr(X, M). This follows from Proposition 2.1.
Similarly, by Remark 2.2 we can define Corr(M,X).

Using this observation, we can easily obtain a result of Rost’s on the
decomposition of the motive of a quadric. To state the theorem, we must
first recall a fact about quadrics with points.

Suppose Q is the projective quadric corresponding to a non-degenerate
quadratic form q; that is, Q = V (q). As we are discussing quadrics and
quadratic forms, we will assume for the remainder of the paper that the
field k over which Q and q are defined has characteristic not equal to 2.
Suppose further that Q has a point over k. Then the quadratic form q splits
as an orthogonal direct sum q = H ⊥ q′. (This is a standard fact about
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quadratic forms which is also an easy excercise). Let Q′ denote the (clearly
smooth) quadric associated to q′.

Theorem 4.1 (Rost decomposition). If Q has a point over k then M(Q) =
Z⊕M(Q′)(1)⊕ Z(d) where d = dim Q and Q′ is the smooth quadric of the
proceeding paragraph.

Proof. For the proof, we use Rost’s methods and notation ([4], Proposition
2) with some simplifications coming from our results in the previous sections.
‘ We can write q = xy + q′(z) where z denotes a d-dimensional variable. Let
Q1 denote the closed subvariety V (x) and let p denote the closed point
on Q1 corresponding to the locus x = z = 0, y = 1. Note that U1 :=
Q − Q1 is isomorphic to Ad. Moreover, Q1 − {p} is an A1-bundle over Q′

via the morphism (y, z) 7→ z. For any motive M , we thus obtain short exact
sequences

Corr(M,Q1) → Corr(M,Q) � Corr(M, Ad),(16)
Corr(M,p) → Corr(M,Q1) � Corr(M(−1), Q′).(17)

Here Q1 is, in general, a singular quadric. However, by Theorem 2.3,
each of the entries of (16) and (17) can each be interpreted as presheaves
on the category of Chow motives given, for example, by the association
M  Corr(M,Q1). Moreover, by Proposition 2.1, the morphisms in (16)
and (17) induce maps of presheaves, i.e., they are functorial in M .

In fact, in both sequences the first morphism is an injection and the second
morphism is a split surjection. To see this we construct splittings for the
first morphism in each sequence.

For (17), let π : Q1 → p denote the projection to a point. Then π∗ :
Corr(M,Q1) → Corr(M,p) induces a splitting. Again, by Proposition 2.1,
this map is functorial in M .

For (16), let r denote the point corresponding to x = 1, y = z = 0, and
let U denote the open subset Q − {r} in Q. Then there is a morphism
φ◦ : U → Q1 given by (x, y, z) 7→ (y, z). Let φ denote the closure of
the graph of φ◦ in Corr(Q,Q1). By the results of section 2, φ induces a
morphism φ∗ : Corr(M,Q) → Corr(M,Q1). We claim that φ∗ splits (16)
and is functorial in M . (This is not hard to check on the level of cycles.)

Since the push-forward on the second factor induces an isomorphism

Corr(M, Ad)
∼=→ Hom(M, Z(d)),

we have a decomposition
(18)
Hom(M,M(Q)) = Hom(M, Z(d))⊕Hom(M, Z)⊕Hom(M,M(Q′)(−1)).

The decomposition of the theorem the follows from Yoneda’s lemma which
applies in this case because of the functoriality of the decomposition with
respect to M .

�
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We are now prepared to prove Rost nilpotence, Theorem 1.1. The proof
is essentially identical to Rost’s, but I include it for the convenience of the
reader.

We first note that, due to the inductive structure of the proof, it is actually
helpful to strengthen the conclusion of the theorem slightly. We therefore
restate the theorem with the stronger conclusion.

Theorem 4.2 (Rost [4], Proposition 2). For each d ∈ N, there is a number
N(d) such that, if Q is a smooth quadric of dimension d over a field k and
f ∈ End(M(Q)) such that f ⊗ k = 0, then fN(d) = 0.

Proof. If d = 0, Q either consists either of two points defined over k or
of one point defined over a quadratic extension of k. In the first case,
End(M(Q)) = End(Z ⊕ Z) and in the second End(M(Q)) is isomorphic to
the rank 2 subring of End(M(Q⊗k)) consisting of matrices invariant under
conjugation by

(
0 1
1 0

)
. The theorem, therefore, holds trivially with N(0) = 1.

We then induct on d. Suppose Q is a rank d > 0 quadric with a point
over k. Then M(Q) splits as in Rost’s decomposition theorem. In fact, we
also have a splitting

(19) End(M(Q)) = End(Z(d))⊕ End(Z)⊕ End(M(Q′)).

This follows from the fact that the six cross terms (e.g. Hom(Z, Z(d)),
Hom(Z,M(Q′)) and Hom(M(Q′), Z)) are all zero for dimension reasons. As
End(Z(j)) = Z, we have

End(M(Q)) = Z⊕ Z⊕ End(M(Q′))

and fN(d−2) = 0 by the induction hypothesis applied to Q′.
If Q does not have a point over k, then Q ⊗ k(x) does have a point

(trivially) over the residue field of any point x. Therefore fN(d−2) ⊗ k(x) =
0 for every such point x by the induction hypothesis. (For this to hold
for dim Q = 1, we have to set N(−1) = 1.) Now apply Theorem 3.1 to
fN(d−2). We obtain the conclusion that f (d+1)N(d−2) = 0. Thus we can take
N(d) = (d + 1)N(d− 2) and the theorem is proved. �

Remark 4.3. The proof shows that we can take N(d) = (d + 1)!! in the
theorem.
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