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Abstract. We generalize the theorem of E. Cattani, P. Deligne, and A. Ka-

plan to admissible variations of mixed Hodge structure.

1. Introduction

The purpose of this note is to prove the following generalization of the famous
theorem of Cattani, Deligne, and Kaplan [2].

Theorem 1. Let S be a Zariski-open subset of a complex manifold S̄, and let V
be a variation of mixed Hodge structure on S. Suppose that V is defined over Z,
graded polarized, and admissible with respect to S̄. Let Hdg(V ) denote the locus of
Hodge classes in V . Then each component of Hdg(V ) extends to an analytic space,
finite and proper over S̄.

As in the original paper, Chow’s theorem implies that the locus of Hodge classes
consists of algebraic varieties if S is algebraic.

Corollary 2. In the situation of Theorem 1, suppose that S is quasi-projective.
Then each component of Hdg(V ) is a quasi-projective algebraic variety.

We remind the reader of a few basic definitions. Given a mixed Hodge struc-
ture V defined over Z, a Hodge class in V is an element of VZ ∩W0VC ∩ F 0VC, or
equivalently, a morphism of mixed Hodge structures Z(0) → V . Given a variation
of mixed Hodge structure V on a complex manifold S, let VZ denote the under-
lying integral local system. Its étalé space T (VZ) is a covering space of S with
countably many connected components; it naturally embeds into the holomorphic
vector bundle E(VO). The locus of Hodge classes in V can then be described as
the intersection

Hdg(V ) = T (VZ) ∩ E
(
F 0VO

)
∩ E

(
W0VO

)
.

We deduce Theorem 1 from the original result by Cattani, Deligne, and Kaplan
with the help of the following difficult theorem; it is the main result of [1], and can
also be proved by the methods of [7]. (A similar result has also been announced by
Kato, Nakayama, and Usui in [5].) Either proof relies on the SL(2)-orbit theorem
of Kato, Nakayama, and Usui [4].

Theorem 3. Let ν be an admissible higher normal function on S, that is, an
admissible extension of Z(0) by a polarized variation of Hodge structure of negative
weight. Let Z(ν) = {s ∈ S : ν(s) = 0} denote the zero locus of ν. (C.f. the
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discussion at the beginning of Section 3.) Then the closure of Z(ν) in S̄ is an
analytic subset.

Note that this result includes the case of classical normal functions (where the
Hodge structure has weight −1). Theorem 3 in itself is most interesting when S is a
quasi-projective complex manifold; we may then take S̄ to be any smooth projective
compactification, since the notion of admissibility is independent of the particular
choice.

Corollary 4. Suppose that ν is an admissible higher normal function on S, that is,
an extension of Z(0) by a polarized variation of Hodge structure of negative weight.
Then the zero locus Z(ν) is an algebraic subset of S.

One source for higher normal functions is through families of higher Chow cycles.
Let π : X → S be a family of complex projective manifolds with S smooth. Then
the regulator map from motivic cohomology Hp

M
(
X,Z(q)

)
' CHq(X, 2q − p) to

Deligne cohomology Hp
D
(
X,Z(q)

)
induces a homomorphism

CHq(X, 2q − p)⊗Q→
⊕
k∈Z

Extp−k
MHM(S)

(
Q(0), Rkπ∗Q(q)

)
,

using the decomposition theorem; MHM(S) is the category of mixed Hodge mod-
ules on S. In particular, a higher Chow cycle on X determines an element in
Ext1MHM(S)

(
Q, Rp−1π∗Q(q)

)
; some multiple is an admissible higher normal func-

tion for the variation of Hodge structure Rp−1π∗Z(q) of weight p− 2q − 1 < 0.
The same methods can be used to describe the locus of points s ∈ S where

Vs splits over Z (we say that a mixed Hodge structure V splits over Z if V '⊕
m GrW

m V in MHS).

Theorem 5. Let V be an admissible variation of mixed Hodge structure on S.
Then the set of points s ∈ S where the mixed Hodge structure Vs splits over Z is
an algebraic subset of S.

Since Vs splits over Z iff there is a Hodge class in End(Vs) that induces a splitting
of the underlying integral lattice, this result may also be viewed as a special case
of Theorem 1.

2. Admissibility

Let V be a variation of Z-mixed Hodge structure on a Zariski-open subset S of a
complex manifold S̄. We call V admissible with respect to S̄ if V ⊗Q is admissible
in the sense of Kashiwara [3] (where admissibility is defined by a curve test). It is
clear from this definition that admissibility is preserved under holomorphic maps
f : S̄′ → S̄ with the property that f−1(S) is dense in S̄′. Moreover, duals and tensor
products of admissible variations of mixed Hodge structure are again admissible;
this is proved in the appendix to [8].

By work of Saito [6], admissibility can also be phrased in terms of mixed Hodge
modules: V ⊗Q defines a mixed Hodge module on S, and is admissible if and only
if that mixed Hodge module can be extended to S̄.

3. The locus of Hodge classes

We now turn to the proof of Theorem 1. Throughout, we let V be a variation of
mixed Hodge structure over S, admissible with respect to S̄. We assume that V is
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graded polarized, and that the local systems WmV making up the weight filtration
are defined over Z, with GrW

m V torsion free.
To begin with, we can replace V by W0V , and assume without loss of generality

that V is of weight ≤ 0. We then have

Hdg(V ) = T (VZ) ∩ E(F 0VO).

The next step is to prove a more general version of Theorem 3. Recall that
a generalized normal function ν is an extension, in the category of variations
of mixed Hodge structure, of Z(0) by a variation of mixed Hodge structure H ,
all of whose weights are ≤ −1. It is said to be admissible if the corresponding
variation is admissible. At each point s ∈ S, the extension determines a point
ν(s) ∈ Ext1MHS

(
Z(0), Hs

)
; the zero locus Z(ν) of the generalized normal function

is by definition the set of points where ν(s) = 0. We let

NF(S,H ) = Ext1VMHS(S)

(
Z(0),H

)
denote the group of generalized normal functions.

Proposition 6. Let ν be an admissible generalized normal function on S. Then
the closure of Z(ν) in S̄ is an analytic subset.

Proof. Let V be the corresponding admissible variation of mixed Hodge structure,
and H = W−1V . If H is pure, then the result follows from Theorem 3. Otherwise,
we let m ≤ −1 be the smallest integer for which GrW

m V 6= 0. Define V ′ = V /WmV ,
and let ν0 be the corresponding generalized normal function induced on V ′ by ν.
Note that we have Z(ν) ⊆ Z(ν0).

Let S0 denote the regular locus of an irreducible component of Z(ν0). By in-
duction, we know that the closure of S0 inside of S̄ is analytic; let π : S̄0 → S̄ be
a resolution of singularities of the closure that is an isomorphism over S0. Since π
is proper, we are allowed to replace S̄ by S̄0 and ν by its pullback to S0; we may
therefore assume from the beginning that ν0 = 0. Now the exact sequence

0 - NF
(
S,WmH

)
- NF(S,H ) - NF

(
S,H /WmH

)
shows that ν induces a generalized normal function ν′ ∈ NF

(
S,WmH

)
. Since

WmH is pure of weight m, we conclude from Theorem 3 that Z(ν′) has an analytic
closure inside S̄; but clearly Z(ν) = Z(ν′), and so the assertion follows. �

We are now ready to prove Theorem 1 in general.

Proof of Theorem 1. Let V be the admissible variation of mixed Hodge structure;
as explained above, we may suppose that it has weights ≤ 0. For any point s ∈ S,
let Vs be the corresponding mixed Hodge structure; then we have an exact sequence

(1) 0 - Hdg(Vs) - Hdg
(
GrW

0 Vs

)
- Ext1MHS

(
Z(0),W−1Vs

)
.

It follows that the locus of Hodge classes for V is embedded into that for GrW
0 V .

Let Z be an irreducible component of Hdg(V ), and let Y be the irreducible com-
ponent of Hdg

(
GrW

0 V
)

containing Z. By the theorem of Cattani, Deligne, and
Kaplan [2], Y can be extended to an analytic space Ȳ that is proper and finite
over S̄. Let µ : Ȳ ′ → Ȳ be a resolution of singularities of the analytic space Ȳ and
denote by V ′ the pullback of V to Y .

By construction, we have a section Z(0) → GrW
0 V ′. It induces a generalized

normal function ν′ ∈ NF(Y,H ′), where H ′ = W−1V ′. Moreover, it is clear from
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(1) that Z = Z(ν′). Since ν′ is easily seen to be admissible with respect to Ȳ ′, we
conclude from Proposition 6 that the closure of Z(ν′) in Ȳ ′ is analytic. Because µ
is proper, it follows that Z has an analytic closure inside of Ȳ ; this completes the
proof. �

4. The split locus

The proof of Theorem 5 is similar to that of Theorem 1.

Proof. It suffices to prove the statement with coefficients in Q. So let V be an
admissible variation of mixed Hodge structure on S, where S is Zariski-open in
a complex manifold S̄. Let m be the largest integer for which GrW

m V 6= 0. By
induction, we know that the locus of points s ∈ S where Wm−1Vs splits over Q has
an analytic closure inside of S̄. Arguing as before, we may therefore assume from
the beginning that Wm−1V is split. Now V determines an element of

Ext1VMHS(S)

(
GrW

m V ,Wm−1V
)
'
⊕
k<m

Ext1VMHS(S)

(
GrW

m V ,GrW
k V

)
'
⊕
k<m

Ext1VMHS(S)

(
Q(0), (GrW

m V )∨ ⊗GrW
k V

)
.

Since admissibility is preserved under tensor products, the problem is reduced to
the case of admissible higher normal functions; applying Theorem 3 completes the
proof. �
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