
PERVERSE OBSTRUCTIONS TO FLAT REGULAR COMPACTIFICATIONS

PATRICK BROSNAN

ABSTRACT. Suppose π : W → S is a smooth, surjective, proper morphism to a variety S contained
as a Zariski open subset in a smooth, complex variety S̄. The goal of this note is to consider the
question of when π admits a regular, flat compactification. In other words, when does there exists
a flat, proper morphism π̄ : W → S̄ extending π with W regular? One interesting recent example
of this occurs in the preprint [11] of Laza, Saccà and Voisin where π is a family of abelian 5-folds
over a Zariski open subset S of S̄ = P5. In that paper, the authors construct W using the theory
of compactified Prym varieties and show that it is a holomorphic symplectic manifold (deformation
equivalent to O’Grady’s 10-dimensional example).

In this note I observe that non-vanishing of the local intersection cohomology of R1π∗Q in degree
at least 2 provides an obstruction to finding a π̄. Moreover, non-vanishing in degree 1 provides an
obstruction to finding a π̄ with irreducible fibers. Then I observe that, in some cases of interest, results
of Brylinski, Beilinson and Schnell can be used to compute the intersection cohomology [1, 4, 15]. I
also give examples involving cubic 4-folds motivated by [11] and ask a question about palindromicity
of hyperplane sections.

1. INTRODUCTION

Let S̄ denote a smooth, quasi-projective, complex (irreducible) variety of dimension d, and let S
denote a non-empty Zariski open subset of S̄. Suppose π : W → S is a smooth, surjective, proper
morphism of complex varieties with n := dim W−dim S. I will call an irreducible, regular scheme
W equipped with a proper morphism π̄ : W → S̄ a regular compactification of π if

(i) W contains W as a Zariski dense open subset;
(ii) the restriction of π̄ to W is π.

Question 1.1. Under what conditions can we find a regular compactification π̄ : W → S̄ of π which is
flat over S̄. Also, under what conditions can we find a π̄ : W → S̄ as above with irreducible fibers?

Remarks 1.2. (a) Mainly for the sake of brevity, I use the word “compactification” in this paper for
what many people would call a “partial compactification.” In other words, I do not assume that S̄
or W̄ is compact.

(b) If π̄ : W̄ → S̄ is a morphism between smooth, quasi-projective varieties of relative dimension
n as above, then π̄ is flat near a point s ∈ S̄ if and only if the dimension, dim W̄s, of the fiber over
s is n. This follow, for example, from [8, Ex. III.10.9].

(c) If d = 1, then the first part of Question 1.1 always has a positive answer. In other words, we
can always find a regular, flat compactification π̄ : W̄ → S̄. To prove this, we can assume that S̄ is
compact. Using Hironaka [9] and Nagata [12], we can find a smooth, proper variety Ŵ containing
W as a Zariski open subset. From π, we get a rational map Ŵ 99K S̄. Then, using Hironaka again,
we can resolve the indeterminacy of this rational map to get a morphism π̄ : W̄ → S̄ as desired
with W̄ smooth. And, since W̄ is irreducible and S̄ is a curve, π̄ is flat.

My goal in this note is to write down some necessary conditions for the existence of a π̄ as in
Question 1.1 in terms of local intersection cohomology. For this, let j : S→ S̄ denote the inclusion
of S in S̄. Pick an integer k and set L = Rkπ∗Q. Then the intersection complex IC L is a polarizable
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Hodge module on S̄ with underlying perverse sheaf given by the intermediate extension of the
underlying local system L to S̄. The intersection complex is also called the IC complex and is also
written as j!∗L[d]. The underlying perverse sheaf is a complex of sheaves with cohomology in the
interval [−d, 0). The local intersection cohomology of L at a point s ∈ S̄ is

IHj
s L := H j−d(IC L)s. (1.3)

So IHj
s L is the (j− d)th cohomology of the stalk of IC L at s. Clearly IHj

s L = 0 unless j ∈ [0, d).
Moreover, IH0

s L is the space of local invariants of L at s. So, IH0
s L is the fiber Ls for s ∈ S. At

points s ∈ S̄, IH0
s L = Γ(B ∩ S, L) for a sufficiently small ball B in S̄ containing s.

The following theorem, which I believe is a well-known consequence of the decomposition
theorem of Beilinson, Bernstein and Deligne [2], gives a way to obtain information about possible
compactifications π̄ from the topology of π. For the convenience of the reader I will prove it in
Section 2.

Theorem 1.4. Suppose π̄ : W → S̄ is a regular compactification of π. Then

(i) the complex ⊕i IC(Rn+iπ∗Q)[−i] includes in Rπ̄∗Q[d + n] as a direct factor;
(ii) for every integer m and each point s ∈ S̄, ⊕j+k=m IHj

s(Rkπ∗Q) includes as a direct factor in the
cohomology group Hm(W̄s, Q) of the fiber of π̄ over s.

(iii) If the inclusion in (i) is an isomorphism, then so is the inclusion in (ii).

Corollary 1.5. If a flat, regular compactification π̄ of π exists, then, for all s ∈ S̄ and all integers j, k with
j + k > 2n, IHj

s(Rkπ∗Q) = 0. If the fibers of π̄ are irreducible, then IH0(R2nπ∗Q) = Q and the groups
IHj

s(R2n−jπ∗Q) vanish for j > 0.

Proof. If π̄ is flat, then dim Ws = n for all s ∈ S̄. So Hm(Ws, Q) = 0 for m > 2n. Thus Theorem 1.4
(ii) implies the first statement. If the fiber Ws is irreducible, then H2n(Ws) = Q. The constant sheaf
is a direct factor in R2nπ∗Q. So dim IH0

s (R2nπ∗Q) ≥ 1 for all s ∈ S̄. The rest of Corollary 1.5 is
now immediate from Theorem 1.4. �

In writing this note, I was mainly motivated by a recent preprint of Laza, Saccà and Voisin
which concerns the situation where π : A → S is an abelian scheme of relative dimension n [11].
In this case, set H := R1π∗Q(1). It is a polarized variation of Hodge structure of weight −1 on S
which is isomorphic to R2n−1π∗Q(n) by Hard Lefschetz. We get the following.

Corollary 1.6. Set k = max{j : IHj
s H 6= 0}. Suppose a flat regular compactification π̄ : Ā → S̄ of π

exists. Then k ≤ 1. If the fiber Ās is irreducible, then k = 0.

Proof. This follows directly from Corollary 1.5 applied to R2n−1π∗Q. �

Suppose X is a smooth, closed, 2m-dimensional subvariety of P := PN for some positive inte-
gers m and N. By cutting X with hyperplanes, we get a family X → P∨ over the dual projective
space, which is smooth over a Zariski dense open subset U ⊂ P∨. (See §3.) Set n := 2m− 1 so that
the general member of the family X → P∨ is, by Bertini, a smooth n-dimensional variety. We get
a variation of Hodge structure HZ over U such that the fiber over H ∈ P∨ is Hn(X ∩ H, Z(m)).
Let J(HZ)→ U denote the family of Griffiths intermediate Jacobians of HZ. In very special cases,
it turns out to be an abelian scheme. Write H for the Q-variation of Hodge structure obtained
by tensoring HZ with Q. In Section 3, I will prove the following theorem (which, along with
Corollary 1.8, assumes the notation of the preceding paragraph).



PERVERSE OBSTRUCTIONS 3

Theorem 1.7. Suppose that H is non-constant. Let H ∈ P∨ be a hyperplane and write Y := H ∩ X for
the hyperplane section. Write bkY := dim Hk(Y, Q) for the k-th Betti number. Then, for k > 0,

bn+kY− bn−kY = dim IHk
H H.

Call Y palindromic (resp. weakly palindromic) if bn+kY = bn−kY for all k (resp. for all k > 1).

Corollary 1.8. Suppose that π : J(HZ) → U is a non-constant abelian scheme admitting a flat, regular
compactification π̄ : J̄ → P∨. Fix H ∈ P∨ and set Y = X ∩ H. Then Y is weakly palindromic. If the fiber
of π̄ over H ∈ P∨ is irreducible, then Y is a palindromic.

Proof. Since R1π∗Q(1) ∼= H, Corollary 1.8 follows from Theorem 1.7 and Corollary 1.6. �

In [11], the authors produce a flat, regular compactification Ā of a family π : A → U of abelian
5-folds over an open subset of P5. In Section 4, I will give examples where Corollary 1.8 can be
used to rule out the existence of a flat, regular compactification, or a flat, regular compactification
with irreducible fibers. I will also give a consequence (Corollary 4.3) of the main result of [11] and
state a conjecture (Conjecture 4.4) about palindromicity partially motivated by the results of [11].
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the note itself began as an email to Laza. I thank the FRG members listed above as well as G. Saccà
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I also thank M. Nori for giving me a lot of help with §4, and B. Klingler for inviting me and Nori
to Paris Diderot during the Summer 2016. I thank A. Otwinowska for comments pertaining to
Conjecture 4.4, J. Achter for telling me about the tables in M. Rapoport’s paper [13], O. Martin for
help with Lemma 4.7 along with several other suggestions (including, but not limited to, extensive
typo correction) and N. Fakhruddin for advice, which turned out to be very helpful, on how
to improve the exposition. Lastly I thank the referee for suggestions and typo corrections, but
also for a small comment on the notions of “general” and “Hodge general” which helped me to
reformulate the results in §4. (See Remark 4.2 and the proof of Corollary 4.3.)

The interaction between palindromicity and intersection cohomology comes up in a similar
way to the way it is used here in my joint paper [3] written with T. Chow. I thank Chow for many
conversations about the notion of palindromicity.

2. PROOF OF THEOREM 1.4

Proof. Let d denote the dimension of S̄ and let n denote the dimension of the generic fiber of
π. By the decomposition theorems of Beilinson—Bernstein—Deligne [2] and Saito [14], we have
Rπ̄∗Q[d + n] = ⊕i∈ZFi[−i] where the Fi are direct sums of intersection complexes underlying
polarizable Hodge modules coming from local systems on various strata. The restriction of Fi to
S is equal to Rn+iπ∗Q[d]. So, by the semi-simplicity of the category of polarizable Hodge modules,
each Fi contains IC(Rn+iπ∗Q) as a direct factor, and this implies Theorem 1.4 (i).

Let ι : {s} → S̄ denote the inclusion of the point s. By proper base change, we have Hm(Ws, Q) =
Hm(ι∗Rπ̄∗Q) = Hm−d−n(ι∗Rπ̄∗Q[d + n]) = ⊕i Hm−d−n(ι∗Fi[−i]). This vector space contains as a
direct factor the space

⊕i Hm−d−n(ι∗ IC(Rn+iπ∗Q)[−i]) = ⊕i Hm−d−n−i(ι∗ IC(Rn+iπ∗Q))

= ⊕i IHm−n−i
s (Rn+iπ∗Q))

= ⊕j+k=m IHj
s(Rkπ∗Q).
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Moreover, if the inclusion in (i) is an isomorphism, the two spaces are equal. This proves (ii) and
(iii). �

3. PROOF OF THEOREM 1.7

Now we fix the notation from the introduction that X is a smooth 2m dimensional closed sub-
variety of P = PN and P∨ is the dual projective space. Let X := {(x, H) ∈ X × P∨ : x ∈ H}
denote the incidence variety. Write q and p for the projections on the first and second factors re-
spectively. Then q is a PN−1-bundle. So X is smooth and irreducible of dimension dX = n + N
with n = 2m− 1. On the other hand, the fiber of p : X → P∨ over a hyperplane H is the hyper-
plane section YH := H ∩ X. Write U for the locus of hyperplanes H such that YH is smooth, and
set XU = p−1(U). Then the restriction of p to XU gives a smooth, proper morphism pU : XU → U.

Set H := Rn pU∗Q(m). This is a weight −1 variation of pure Hodge structure on U. By weak
Lefschetz, it follows that the sheaves Rn−k pU∗Q are constant for k > 0. In fact they are the con-
stant sheaves given by Hn−k(X, Q). Then, Hard Lefschetz shows that, for k > 0, Rn+k pU∗Q(k) ∼=
Rn−k pU∗Q. By Deligne’s degeneracy theorem [5], RpU∗Q(n) = ⊕kRk pU∗Q[−k]. So RpU∗Q(n) is a
direct sum of shifted constant sheaves and H[−n].

The following theorem, which is Theorem C of C. Schnell’s paper [15], shows that an analogous
decomposition holds on the level of Rp∗Q provided that H is non-constant. As explained by
Beilinson in [1], the result is also a direct consequence of a much older paper of Brylinski on the
Radon transform and perverse sheaves [4].

Theorem 3.1 (Beilinson, Brylinski, Schnell). Suppose H is non-constant. Then

Rp∗Q[dX ] =
⊕

k

IC(Rn+k pU∗Q)[−k]

= IC(H)⊕
⊕
k 6=0

IC(Rn+k pU∗Q)[−k]

= IC(H)⊕ (
⊕
k<0

IC(Hn+k(X))[−k])⊕ (
⊕
k<0

IC(Hn+k(X))[k]).

Here IC(Hn+k(X)) simply denotes the constant perverse sheaf on P∨ with group Hn+k(X). In particular,
Rp∗Q[dX ] is the direct sum of IC(H) and (shifted) constant sheaves on P∨.

Proof of Theorem 1.7. Pick H ∈ P∨ and set Y = X ∩ H. We have IHj
H(Rn+iπ∗Q) = 0 for ij 6= 0. So,

using Theorem 1.4 (iii), we have

Hn+j(Y, Q) = IHj
H(H)⊕ IH0(Rn+jπ∗Q) (3.2)

for j 6= 0. By Hard-Lefschetz, Rn+jπ∗Q(j) ∼= Rn−jπ∗Q. So, since IHj
H(H) = 0 for j < 0, we get that

bn+jY− bn−jY = dim IHj
H(H) for j > 0 as desired. �

4. EXAMPLES

Terminology Reminder. If S is an irreducible complex scheme of finite type and P is a property
of closed points of S, then P holds for the general (resp. very general) point of S if P holds outside
of a finite (resp. countable) union of proper closed subschemes of S.
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Cubic 4-folds. The paper [11] starts with a smooth cubic 4-fold X embedded in P = P5 and
considers the family p : X → P∨. The family pU : XU → U of smooth cubic 3 folds gives rise to
a variation of Hodge structure HZ = R3 pU∗Z as in the introduction and a family π : J(HZ) → U
which, in this case, turns out to be a family of 5-dimensional abelian varieties.

Theorem 4.1 (Laza—Saccà—Voisin). Suppose the cubic 4-fold X is very general. Then there is flat
regular compactification π̄ : J̄ → P∨ with irreducible fibers.

Explanation. The fact that there exists a regular flat compactification π̄ : J̄ → P∨ is part of the
main theorem of [11]. The irreducibility of the fibers is not explicitly stated in [11], but it is an
important part of the construction. Proving it amounts to tracing through several definitions and
intermediate results in [11], which I now do.

By [11, Definition 4.11], the compactified relative Prym variety, Prym C̃B/CB, is irreducible (as it
is defined as an irreducible component of a larger scheme). By [11, Proposition 4.16], this definition
is stable under base change so that the fiber over a point b ∈ B is also irreducible. Then [11,
Proposition 5.1] states that Prym C̃B/CB → B is flat when B is a certain Fano variety F 0 of lines.

Section 5 of [11] descends the family of Prym varieties over F 0 (which maps surjectively to P5)
to P∨ = P5. As explained in the paragraph between Lemmas 5.3 and 5.4 of [11], the result is a
family J̄ → P∨ whose pullback to F 0 is the above family of compactified Prym varieties. Since the
compactified Prym varieties are irreducible, the fibers of J̄ → P∨ are as well. �

Remark 4.2. In [11], the authors, in fact, prove that the morphism π : J → U has a flat, regular
compactification π̄ : J̄ → P∨ with irreducible fibers for X Hodge general. In other words, the
conclusion holds for all X outside of the inverse image of a countable union of divisors in the
image of the period map. The authors inform me that a postiori it follows that the conclusion holds
for general X. That is, it holds for all X in some Zariski open subset of the space of cubic 4-folds.
I will not give an argument proving this fact (which is not needed in what follows). However, the
proof of Corollary 4.3 below goes from very general to general in a similar way.

Corollary 4.3. Suppose X is a general cubic 4-fold and H ∈ P∨ is any hyperplane. Then Y := X ∩ H is
palindromic.

Proof. By Theorem 4.1 and Corollary 1.8, we see that Y is palindromic for X very general and Y
arbitrary. The conclusion with X general now follows from the constructibility of comhomology
sheaves.

To be explicit about this last point, we can consider the space B of pairs (X, L) with X a cubic
4-fold and L a hyperplane in P5. Over B, we have a universal family f : Y → B whose fiber over
(X, L) is the intersection Y = X ∩ L. If V denotes the projective space of all cubic 4-folds, we have
a morphism g : B → V which forgets L. Write C for the locus of points in B consisting of pairs
(X, L) where H∗(X ∩ L) fails to be palindromic. By the constructibility of the sheaves Rk f∗C, C
is a (locally closed) subscheme of B. By the results cited above, H∗(X ∩ L) is palindromic for all
pairs (X, Y) ∈ B with X outside of a countable union Z = ∪∞

i=1Zi of divisors in V. It follows that
g(C) is contained in Z. Therefore, since g(C) is constructible, g(C) is contained in a divisor D in
V. So H∗(X ∩ L) is palindromic for all pairs (X, L) with X outside of D. �

This motivates the following conjecture.

Conjecture 4.4. Suppose X is a general complete intersection in P = PN of multi-degree (d1, d2, . . . , dk)
with d1 ≤ · · · ≤ dk. Assume that d1 � 0. Then, for any hyperplane H ∈ P∨, the hyperplane section
Y := X ∩ H is palindromic.

Remark 4.5. Perhaps “�” could be replaced with a reasonable lower bound.
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Here is a simple argument proving the conjecture when X is a very general surface complete
intersection of multi-degree not equal to (2), (3) or (2, 2). In that case, the Noether-Lefschetz
theorem says that the Néron-Severi group of X is Z with generator [X ∩ H] (for any hyperplane
H). (See Voisin’s book [16, Theorem 3.32] and [10, Theorem 1] for modern proofs.) It follows
easily that Y := X ∩H is irreducible (since [Y] cannot be the direct sum of two non-trivial effective
divisors). But, since Y is a curve, this implies that Y is palindromic. Note that we can then deduce
that the conjecture hold for general (as opposed to very general) surface complete interesections
X using the arguments similar to the proof of Corollary 4.3 above.

Proposition 4.6. Suppose X is a smooth hypersurface in P = PN and H ∈ P∨ is any hyperplane section.
Then Y := X ∩ H is weakly palindromic.

Sketch. This is well-known (see [6, Theorem 2.1]). So I only give a sketch. The main point is that Y
has isolated singularities. From this one can either use the Clemens-Schmid exact sequence or an
argument comparing the intersection cohomology with the ordinary cohomology. �

Suppose X is an arbitrary smooth cubic 4-fold. Since every hyperplane section is weakly palin-
dromic, Corollary 1.8 does not rule out the existence of a flat regular compactification π̄ : J̄ → P∨.
However, it can rule out the existence of a flat regular compactification with irreducible fibers: If
X is a cubic fourfold containing a non-palindromic cubic 3-fold Y = X ∩ H, then the fiber π̄−1{H}
is not irreducible. To find such a cubic 4-fold we use the following Lemma.

Lemma 4.7. Suppose Y = V( f ) is a degree d hypersurface in PN−1. Fix a (linear) embedding PN−1 ⊂
PN . Then there is a smooth degree d hypersurface X in PN such that Y = X ∩PN−1 if and only if Y has
isolated singularities.

Sketch. The “only if” part is easy (and was already used above in the proof of Proposition 4.6). For
the “if” part, suppose f (x1, . . . , xN) is a degree d homogeneous polynomial. Consider the linear
subspace V in H0(PN ,OPN (d)) spanned by f and x0h as h runs over all degree d− 1 homogeneous
polynomials in the N + 1 variables. The base locus of the linear system |V| is Y. So the general
member of |V| is smooth off of Y by Bertini. But the singularities of g = f + x0h on Y are contained
in the intersection of V(h) with the singularities of Y. Therefore, the general member of |V| is
smooth. �

Now, I use a result of Segre and Fano as interpreted by Dolgachev.

Theorem 4.8. There exists a cubic threefold Y smooth outside of 10 ordinary double points and with b4Y =
6.

Proof. See [7, Proposition 1.1] and the discussion shortly before and shortly after. �

Corollary 4.9. There exists a smooth, cubic 4-fold X containing a cubic 3-fold Y with b4Y = 6. For such
an X, there is no flat regular compactification π̄ : J̄ → P∨ with irreducible fibers.

Proof. The cubic 3-fold Y with b4Y = 6 is not palindromic since b2Y = 1 by weak Lefschetz.
Using Lemma 4.7, we can find a smooth cubic 4-fold X containing Y. The result then follows from
Corollary 1.8. �

Quadrics in Cubic 4-folds. Suppose X is a smooth 2m-dimensional subvariety in P = PN as in
the beginning of §3. The family π : J(HZ) → U of intermediate Jacobians will be an abelian
scheme provided the Hodge structure H2m−1Y of a smooth hyperplane section Y is level≤ 1. This
means that H2m−1(Y, C) = FmH2m−1(Y, C). As in §3, we set n = 2m− 1.

I do not have a very clear idea how often the situation above occurs for arbitrary X. However,
in [13], Rapoport has a table of all complete intersections Y for which the Hodge level of the middle
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dimensional cohomology is 1. Write Vn(d1, . . . , dk) for the family of smooth complete intersections
of dimension n coming from intersecting k hypersurfaces of degrees d1, . . . , dk in Pn+k. Then,
according to Rapoport’s table, the only non-empty families with middle dimensional cohomology
of level one (and n odd) are: Vn(2, 2), Vn(2, 2, 2), V3(3), V3(2, 3), V5(3) and V3(4).

The case where Y is a cubic 3-fold, V3(3), was the subject of the last subsection. In this subsec-
tion, I want to consider V3(2, 3).

So fix a cubic 4-fold X embedded in P5. Set L := OP5(1)|X. An easy computation shows that
|L2| = dim H0(P5,OP5(2))− 1 = 20. So, the complete linear system L2, gives an embedding of X
into P := P20. Cutting X with hyperplanes H ⊂ P, we get a family p : X → P∨ as in the beginning
of §3 which is smooth over an open subset U ⊂ P∨. Since the smooth hyperplane sections are
complete intersections of type V3(2, 3), they have level 1. Therefore, the family π : J(HZ) → U is
an abelian scheme. In fact, Rapoport’s table also gives b3Y = 40 for Y of type V3(2, 3). So the family
π : J(HZ)→ U is, in fact, a family of 20-dimensional abelian varieties over a 20 dimensional base.

Theorem 4.10. Let X be a cubic 4-fold as above embedded in P = P20. There is no regular flat compactifi-
cation π̄ : J̄ → P∨ of the family π : J(HZ)→ U of intermediate Jacobians.

Proof. The elements H ∈ P∨ are in 1-1 correspondence with quadrics in P5. Pick two hyperplanes
L1 and L2 in P5 such that the cubic 3 folds Yi := X ∩ Li are smooth and distinct. Let H be the point
in P∨ corresponding to the union L1 ∪ L2. Then Y := X ∩ H has two irreducible components.
Therefore b6Y = 2. So Y is not weakly palindromic. The result follows from Corollary 1.8. �

Remark 4.11. In [11, §1.3], Laza, Saccà and Voisin point out that the total space of the family
J(HZ) → U admits a holomorphic symplectic form which would extend to any compactifica-
tion π̄ : J̄ → P∨. They also show that this form is non-degenerate above a quadric if and only if
the quadric is non-degenerate [11, Lemma 1.20].
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[11] R. Laza, G. Saccà, and C. Voisin. A hyper-Kähler compactification of the Intermediate Jacobian fibration associated

to a cubic fourfold. ArXiv e-prints, February 2016, 1602.05534. To appear in Acta Mathematica.
[12] Masayoshi Nagata. Imbedding of an abstract variety in a complete variety. J. Math. Kyoto Univ., 2:1–10, 1962.
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