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Abstract. In this note we explore the relationships between the motivic cohomology operations and the (classical)

cohomology operations defined on mod-l étale cohomology. More precisely we show that the cohomology operations

on motivic cohomology transform to the (classical) cohomology operations on mod-l étale cohomology upon inverting
the motivic Bott element.
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1. Introduction

The main result of this note is that the motivic cohomology operations transform to the classical cohomology
operations on étale cohomology upon inverting the motivic Bott element. Throughout the paper k will denote a
fixed perfect field of characteristic p ≥ 0 and X will denote a smooth scheme of finite type over k. We will also
assume that k has a primitive l-th root of unity, where l will denote a fixed prime different from p. Hn

M(X, Z(r))
will denote the motivic cohomology with degree n and weight r; Hn

M(X, Z/l(r)) will denote the corresponding
mod-l-variant. Similarly Hn

et(X, Z/l(r)) will denote the mod-l étale cohomology of X. We will restrict to smooth
schemes of finite type over k.

Let βεH0
M(Spec k, Z/l(1)) denote the Motivic Bott element. In this situation, let P r : Hi

M(X, Z/l(j)) →
H

i+2r(l−1)
M (X, Z/l(j + r(l− 1))) and βP r : Hi

M(X, Z/l(j)) → H
i+2r(l−1)+1
M (X, Z/l(j + r(l− 1))) denote the motivic

cohomology operations defined in [Voev] and recalled below in the next section. As shown in section 3, these
operations induce operations on mod-l-étale cohomology which we identify with the mod-l-motivic cohomology
with the Bott element inverted: these will be denoted by the same symbols. By the results of Theorem 1.2
and section 6 of [J] the complex A = RΓ(Xet, µl) is an E∞-algebra over an E∞-operad. Therefore one obtains
certain (classical) cohomology operations Qr : H2q

et (X, µl(q)) → H
2q+2r(l−1)
et (X, µl(q.l)) and βQr : H2q

et (X, µl(q)) →
H

2q+2r(l−1)+1
et (X, µl(q.l))

Then the main result of this paper is the following.

Theorem 1.1. Assume the above situation. Then we obtain the relation between the classical operations and the
operations on étale cohomology induced by the motivic operations:

Qr = B(q−r).(l−1).P r, βQr = B(q−r).(l−1).βP r

Here is an outline of the paper. In the next section, we recall the motivic cohomology operations from [Voev].
In the third section we recall the motivic Bott element. In the fourth section we first recall a well-known result
that the operadic construction of classical cohomology operations leads to the cohomology operations Qr and βQr

that may be defined using equivariant cohomology. Then we complete the proof of the main theorem.

2. The motivic cohomology operations (after Voevodsky)

The basic reference for this section is [Voev]. We begin with the computation of the motivic cohomology of
Bπ where π = Z/l and π = Σl (the symmetric group on l letters) where l is a fixed prime different from the
characteristic (= p) of the ground field k.
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We begin by recalling briefly the construction of the geometric classifying space of a linear algebraic group:
originally this is due to Totaro and Edidin-Graham - see [Tot] discussed in [J, section 4]. Let G be a linear
algebraic group over S = Spec k i.e. a closed subgroup-scheme in GLn over S for some n. For a (closed) embedding
i : G → GLn the geometric classifying space Bgm(G; i) of G with respect to i is defined as follows. For m ≥ 1 let
Um be the open sub-scheme of Anm

S where the diagonal action of G determined by i is free. Let Vm = Um/G be the
quotient S-algebraic space of the action of G on Um induced by the (diagonal) action of G on Anm

S ; the projection
Um → Vm defines Vm as the quotient algebraic space of Um by the free action of G and Vm is thus smooth. We have
closed embeddings Um → Um+1 and Vm → Vm+1 corresponding to the embeddings Id × {0} : Anm → Anm × An

and we set EGgm = lim
m→∞

Um and BGgm = lim
m→∞

Vm where the colimit is taken in the category of sheaves on

(sschms/S)Nis or on (sschms/S)et. Observe that if G = Σn (or a subgroup of it) acting on An by permuting the
n-coordinates, we may take Um = {(x(1)1, · · · , x(1)n, · · · , x(m)1, · · ·x(m)n)|x(i)j 6= x(i)k, for all i, j 6= k}.
(Moreover, in this case, the quotients Vm are in fact schemes.)

2.0.1. The following are proven in [Voev, section 6]:

• the map im : Um/G → Um+1/G defines an isomorphism on motivic cohomology of weight less than m.

• One has H∗M(BGgm, Z(r)) = lim
∞←m

H∗M(Um/G, Z(r)) where r ≥ 0 is any weight.

• Let µl denote the group scheme of l-th roots of unity µl := ker(Gm
zl

→ Gm). (Observe that since the field k
is assumed to have a primitive root of unity, one may identify µl with the constant sheaf π = Z/l.) Then one has
the identification:

(2.0.2) Bµl = O(−l)P∞ − z(P∞)

We have Um = Am − {0}.

• Therefore, one has a cofibration sequence of the form

(2.0.3) X+ ∧ (Bµl)+ → X+ ∧ (O(−l)P∞)+ → X+ ∧ Th(O(−l))

• e(O(−l)) = lσ where σ ∈ H2
M(P∞; Z(1)) is the class of the first Chern class of O(−1) in motivic cohomology.

Here X is any smooth scheme. Therefore, the long exact sequence defined by ( 2.0.3) is of the form

(2.0.4) . . . → H∗−2
M (X, Z(?− 1)[[σ]] lσ→ H∗M(X, Z(?− 1))[[σ]] → H∗M(Bµl, Z(?)) → H∗−1(X, Z(?− 1)[[σ]] → . . .

(In the above long-exact-sequence and elsewhere, ∗ (?) will denote the degree (the weight, respectively) in motivic
cohomology.)

The short exact sequence of abelian groups 0 → Z → Z → Z/l → 0 defines a homomorphism δ : H̃∗M(−,Z/l(?)) →
H̃∗+1
M (−,Z(?)). Let v be Euler class of the line bundle on X×Bµl corresponding to the tautological representation

of µl. There exists a unique element u ∈ H1(X × Bµl,Z/l(1)) such that the restriction of u to ∗ is zero and
δ(u) = v. (Here ∗ denotes any k-rational point of Bµl that lifts to a k-rational point of one of the Um appearing
in the definition of the Eµl.)

• We will denote by v̄ the image of the class v in H2
M(X × Bµl, Z/l(1)). Now the elements v̄i and uv̄i, i ≥ 0

form a basis of H∗M(X × (Bµl), Z/l(?)) over H∗M(X, Z/l(?)).

The next key observation is that the same arguments also hold for the mod-l étale cohomology of Bµl, so that
we may conclude:

Let cycl denote the cycle map from mod-l motivic to mod-l étale cohomology. Let c(v̄) denote the Euler class
of of the same bundle on X × Bµl in H2

et(X × Bµl, Z/l(1)). Then c(v̄) = cycl(v̄), and there exists a unique class
c(u)εH1

et(X ×Bµl, Z/(1)) so that δ(c(u)) = c(v̄) and c(u) = cycl(u). Then the elements c(v̄)i and c(u)c(v̄)i, i ≥ 0
form basis of H∗et(X ×Bµl, Z/l(?)) over H∗et(X, Z/l(?)).

Next one may compute the mod-l motivic cohomology and mod-l étale cohomology of the symmetric group Σl

similarly. We recall this from [Voev]:
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2.1. H∗M(X × BΣl; Z/l(?)) is a free module over H∗M(X; Z/l(?))with a basis {cd̄i, di|i ≥ 0} where d̄ is a class in
H2l−2
M (X × BΣn; Z/l(l − 1)) which is the mod-l reduction of a class dεH2l−2

M (X × BΣn; Z(l − 1)) and c is a class
in H2l−3

M (X ×BΣn; Z/l(l − 1)) so that δ(c) = d̄.

Going over the computation, one observes as in the case of Bµl, that the same computation carries over to mod-l
étale cohomology.

Next we recall the definition of the cohomology operations of Voevodsky. Let X denote a smooth scheme over
k.

Now the symmetric group Σl acts on X×
l

by permutations. In this context, one has the total power operation:

(2.1.1) P̃l : Hi
M(X, Z/l(j)) → Hil

M(EΣl×
Σl

X×
l

, Z/l(jl))

Next one uses the pull-back by the diagonal ∆∗ : Hil
M(EΣl×

Σl

X×
l

, Z/l(jl)) → Hil
M(BΣl×X, Z/l(jl)). We will denote

the composition ∆∗ ◦ P̃l by Pl. By the above results, ⊕
i,j

Hin
M(BΣl×X, Z/l(jl)) is a free module over H∗M(X, Z/(?))

with basis given by the elements d̄r and cd̄r, r ≥ 0. The operation P r (βP r) is defined by the formula:

(2.1.2) Pl(w) = Σr≥0P
r(w)d̄d−r + βP r(w)cd̄d−r−1, wεH2d( , Z/l(d))

(A crucial observation is that, since the motivic cohomology operations are stable with respect to shifting degrees
by 1, and also both degrees and weights by 1, this defines the operations P r and βP r on all Hi

M( , Z/l(j)).)

Observe that so defined P r : Hi
M(X, Z/l(j)) → H

i+2r(l−1)
M (X, Z/l(j + r(l − 1))) and βP r : Hi

M(X, Z/l(j)) →
H

i+2r(l−1)+1
M (X, Z/l(j + r(l − 1))).

In view of the observations above, exactly the same definitions will define the cohomology operations in mod-l
étale cohomology as well. We will denote the operations P r : Hi

et(X, Z/l(j)) → H
i+2r(l−1)
et (X, Z/l(j + r(l − 1)))

(βP r : Hi
et(X, Z/l(j)) → H

i+2r(l−1)+1
et (X, Z/l(j + r(l − 1)))) by P r

et (βP r
et, respectively). Therefore, we obtain the

following result:

Theorem 2.1. Denoting the cycle map from motivic cohomology to étale cohomology by cycl, we obtain: cycl◦P r =
P r

et ◦ cycl and cycl ◦ βP r = βP r
et ◦ cycl.

3. Inverting the Motivic Bott element

Recall that if k is a field as above, we have:

Hp
M(Spec k, Z(1)) = 0, p 6= 1(3.0.3)

= k∗, p = 1

Now the universal coefficient sequence associated to the short exact sequence 0 → Z(1)×l→Z(1) → Z/l(1) → 0 of
motivic complexes, provides the isomorphism

(3.0.4) H0
M(Spec k, Z/l(1)) ∼= µl(k)

The Motivic Bott element is the class in H0
M(Spec k, Z/l(1)) corresponding under the above isomorphism to the

primitive l-th root of unity ζ. We will denote this element by B. Since cycl(B) = ζ in H∗et( , µl(∗)), multiplication
by the class cycl(B) induces an isomorphism: H∗et( , µl(r)) → H∗et( , µl(r + 1)). It follows that the cycle map
cycl induces a map of cohomology functors:

(3.0.5) cycl(B−1) : H∗M( , Z/l(?))[B−1] → H∗et( , µl(?))

It is shown in [Lev] that this map is an isomorphism on smooth schemes.
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3.1. Observe that by the multiplicative properties of the operations and the observation that P r(B) = 0 if r ≥ 1
([Voev, Lemma 9.8]):

P r(Bjα) = BjP r(α),(3.1.1)

βP r(Bjα) = BjβP r(α)(3.1.2)

The above relations show that the motivic cohomology operations above induce operations on H∗( , Z/l(?))[B−1]
in the obvious manner: we define P r(α.B−1) = P r(α).B−1 and βP r(α.B−1) = βP r(α).B−1. Since we have already
observed that the cohomology operations commute with the cycle map, it follows that the induced operations on
H∗( , Z/l(?))[B−1] may be identified with the cohomology operations on mod-l étale cohomology.

3.2. These operations on mod−l étale cohomology will be denoted P r and βP r.

4. Comparison of cohomology operations in étale cohomology

We will begin by defining classical cohomology operations in étale cohomology. For this we start with a smooth
scheme X and let A = RΓ(Xet, µl). We let {NZEΣn|n} denote the simplicial Barratt-Eccles operad defined in
[J, Definition 4.1]. By the results in Theorem 1.1 and section 6 of [J], this acts on the complex A = RΓ(Xet, µl).
We will let Hom(K, Z/l) be denoted by K∨, if K is a complex of Z/l-sheaves on (smt.schms)et or a complex of
Z/l-vector spaces. Let π denote the cyclic group Z/l imbedded as a subgroup of the symmetric group Σl.

If H is any subgroup of the symmetric group Σl, we will define the equivariant cohomology of A⊗l

with respect
to H as follows: H∗(A⊗l

,H; Z/l) will be the cohomology of the complex (NZEΣl)∨ ⊗
ZH
A⊗l

.

4.0.1. For our comparison purposes, it is important to realize that the equivariant cohomology defined above is
nothing other than equivariant étale cohomology. We proceed to explain this identification. First of all let H
also denote the obvious constant group-scheme defined over the field k and associated to the sub-group H of Σl.
Now H acts as a group scheme on the scheme X l; therefore we may form the simplicial scheme EH×

H
X l in the

obvious manner. We define the H-equivariant mod-l étale cohomology of X l to be the mod-l étale cohomology of
the simplicial scheme EH×

H
X l. This identifies with the equivariant cohomology H∗(A⊗l,H, Z/l). (In fact one may

identify the complex RΓ(EH×
H

X l, Z/l), upto quasi-isomorphism, with the complex (NZEΣl)∨ ⊗
ZH
A⊗l

.)

4.0.2. We need to also compare the H-equivariant mod-l étale cohomology defined above with the equivariant
étale cohomology obtained by inverting the Bott element in H-equivariant mod-l motivic cohomology. Recall that
the definition of H-equivariant mod-l-motivic cohomology uses the geometric model for the classifying space for
H as opposed to the simplicial model. However, it is shown in [MV] that the two variants give isomorphic mod-l
étale cohomology, i.e. H∗et(BGgm, Z/l) ∼= H∗et(BG, Z/l) where BG denotes the simplicial classifying space for G
considered above.

Let ∆∗ : H∗(A⊗l

, π; Z/l) → H∗(A, π; Z/l) ∼= H∗(Bπ; Z/l) ⊗ H∗(A) denote the obvious map induced by the
diagonal :X → X l. One may also observe readily that the l-th power map defines a map H∗(A) → H∗(A⊗l

, π; Z/l),
a 7→ al. Let {wi, vwi|i ≥ 0} denote a basis of the Z/l-vector space H∗(Bπ; Z/l). Here v has degree 1 and w has
degree two. Since the cohomology operations are assumed to be stable, they are stable with respect to suspension
so that it suffices to define these on classes of even degree. One defines cohomology operations Qs, βQs on H2q(A)
by the formula: if l = 2, we let:

(4.0.3) ∆∗(x2) = ΣsQ
s(x)w(q−s) + βQs(x)vwq−s−1

and if l > 2, we let:

(4.0.4) ∆∗(xl) = Σs(−1)d−sQs(x)w(q−s)(l−1) + (−1)d−sβQs(x)vw(q−s)(l−1)−1

In [J, Section 7.1] we provided the action of the operad {NEΣn|n} on the motivic complex Z/lν
mot
et which is

the mod-lν motivic complex sheafified on the big étale site of smooth schemes. One may identify the complex
Z/lν(r)mot

et with µlν (r)[0] upto quasi-isomorphism: see [MVW, Theorem 10.3]. These lead to a somewhat different
definition of the classical cohomology operations on mod−lν -étale cohomology as discussed in [J, Section 8]. We
will explain in outline that these operations are in fact identical. (Since most of this is folklore, we will be brief.)
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Proposition 4.1. The cohomology operations defined above coincide with the classical cohomology operations
defined on mod-l étale cohomology in [J, Section 8].

Proof. For the rest of this section we will denote Z/lν
mot
et by A. The above action of the operad {NEΣn|n} on the

above complex provides us maps

(4.0.5) θn : NZEΣn ⊗A⊗
n

→ A

We will let Hom(K, Z/l) be denoted by K∨, if K is a complex of Z/l-sheaves on (smt.schms)et. From the above
pairing we obtain

θ∗n : NZEΣn ⊗A∨ → (A∨)⊗n

where we define θ∗n(h, a∨)(a1 ⊗ · · · ⊗ an) =< a∨, θn(h ⊗ a1 ⊗ · · · ⊗ an) >, aiεA, a∨εA∨ and hεNZEΣn. It is a
standard result in this situation that the map θ∗n is a chain map and is an approximation to the diagonal map
(i.e. homotopic to the diagonal map) ∆ : A∨ → (A∨)⊗n

. (Here, as well as elsewhere in this section, we use the
observation that for any vector space V over Z/l, a vector vεV ( a vector v∨εV ∨) is determined by its pairing
< v, w > with all vectors wεV ∨ (its pairing < u, v∨ > with all vectors uεV , respectively.).)

We now define

(4.0.6) d : NZEΣn ⊗A∨ → NZEΣn ⊗ (A∨)⊗
n

by the formula d(h, a∨) = (h, θ∗n(h, a∨)). This in turn defines a map

(4.0.7) d∗ : (NZEΣn)∨ ⊗A⊗
n

→ (NZEΣn)∨ ⊗A

by the formula:

< d∗(h∨, a1 ⊗ · · · ⊗ an), h′ ⊗ a∨ >=< d(h′, av), h∨ ⊗ a1 ⊗ · · · ⊗ an >

=< θn(h′, a1 ⊗ · · · an), a∨ > ⊗ < h′, h∨ >.

(Here h′εNZEΣn, h∨ε(NZEΣn)∨, a∨εA∨, aiεA.) We now let n = l and let π denote the cyclic subgroup Z/l
of Σl. One may recall that the action of σεΣn on NEΣn and of σ−1 on A⊗n

cancel out. Tracing through these
actions of Σn on the maps in the above steps, one concludes that the map d∗ induces a map on the quotients:

(4.0.8) d∗ : (NZEΣn)∨⊗
Zπ
A⊗

n

→ (NZEΣn)∨⊗
Zπ
A

Now the cohomology of the complex (NZEΣn)∨ ⊗
N(Z(π))

A identifies with H∗(Bπ; Z/l)⊗H∗(A) whereas the coho-

mology of the complex (NZEΣn)∨⊗
Zπ
A⊗n

identifies with the equivariant cohomology: H∗(A⊗n

, π; Z/l). Therefore,

the map d∗ defines a map

(4.0.9) d̄∗ : H∗(A⊗
n

, π; Z/l) → H∗(Bπ; Z/l)⊗H∗(A)

One may also observe readily that the l-th power map defines a map H∗(A) → H∗(A⊗l

,Σl; Z/l), a 7→ al.
Let {ei, fei|i ≥ 0} denote a basis of the Z/l-vector space H∗(BΣn; Z/l) dual to the basis {wi, vwi|i ≥ 0} for
H∗(BΣn; Z/l), i.e. < ei, w

j >= 0, if i 6= j and = 1 if i = j. Also < fei, w
j >= 0 for all i , j, < fei, vwj >= 0 for

i 6= j and = 1 for i = j. Observe that now we have the following computation for a class xεHq(A):

< d̄∗(xl), (−)∨ ⊗ ei >=< θ̄∗l (ei, (−)∨), xl >=< (−)∨, θ̄l(ei, x
l) > and

< d̄∗(xl), (−)∨ ⊗ fei >=< θ̄∗l (fei, (−)∨), xl >=< (−)∨, θ̄l(fei, x
l) >

where (−)∨εH∗(A)∨ and θ̄ (θ̄∗l ) is the map induced by θ (θ∗l , respectively) on taking homology of the corresponding
complexes. Since the map θ∗l was observed to be chain homotopic to the diagonal, it follows that d̄∗ = ∆∗ where
∆ is the obvious diagonal. Therefore, the coefficient of wi (vwi) in the expansion of d̄∗(xl)εH∗(BΣl; Z/l)⊗H∗(A)
identifies with θ̄i(ei, x

l) (θ̄i(fei, x
l), respectively). This completes the proof of the proposition �
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The formulae in ( 4.0.3) and ( 4.0.4) are stated in terms of the cohomology of the cyclic groups. This has a
reformulation in terms of the cohomology of the symmetric groups Σl which will be readily comparable to the
formula in ( 2.1.2). First one may compute the cohomology of the symmetric group H∗(BΣl, Z/l) to be the
Z/l-vector space with basis given by {yi, xyi|i ≥ 0} where y is a class in H2l−2(BΣl; Z/l) and x is a class in
H2l−3(BΣl; Z/l). In fact y =

∏l−1
i=1 iw = (l − 1)!wl−1 = −wl−1 where w is the class in H2(Bπ; Z/l) considered in

( 4.0.4). Now x = −vwl−2. Then the cohomology operation Qr and βQr expressed in terms of the equivariant
cohomology with respect to the symmetric group replacing the equivariant cohomology with respect to the cyclic
group Z/l has the following form:

(4.0.10) ∆∗(wl) = Σr≥0Q
r(w)yd−r + βP r(w)xyd−r−1, wεH2d

et ( , Z/l(d))

This uniquely defines the cohomology operations as they are stable with respect to suspension and hence extend
uniquely to cohomology classes with odd degree.

Proof of the main theorem.

Here the observations in 4.0.1 and 4.0.2 are important. In addition, one needs to observe that weight-suspension
in mod-l étale cohomology is defined by multiplication by the Bott element B: since B is a unit, the weight
suspension is an isomorphism in mod-l étale cohomology.

Therefore, the main difference of the above formula with the one in 3.2 is that the classes yi and xyi have no
weight, or equivalently have weight 0. Observe that the operations Qr and βQr defined above are maps:

Qr : H2q
et (X, µl(q)) → H

2q+2r(l−1)
et (X, µl(q.l)) and

βQr : H2q
et (X, µl(q)) → H

2q+2r(l−1)+1
et (X, µl(q.l))

Since the operations above raise a cohomology class in H2q
et (X, µl(q)) to the l-th power, and the classes yi and xyi

have zero-weight, the Tate-twist q.l appears in the target of these operations.

Therefore, we obtain the relation between the classical operations and the operations on étale cohomology
induced by the motivic operations as follows:

Qr = B(q−r).(l−1).P r, βQr = B(q−r).(l−1).βP r
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