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1. SINGULAR/DE RHAM COHOMOLOGY AND DE RHAM THEOREM

1.1. Singular Cohomology. Let X be any topological space. Recall that a singular k-simplex is a
continuous map ¢ : A¥ — X, where A is the standard k-simplex given by

k
Aktz{(to,...,tk)ERk+1:2ti=1, t; =0, 0<i<k},
i=0
For 0 < i < k, we define a singular (k — 1)-complex by
&io’(to,. . -/tk—l) = O’(t(),. . .,tz'_l,O, ti,. --/tk—l)r-

The singular k-chains Si(X) is the free abelian groups generated by the set of all singular k-simplices
and we define 0 : Sg(X) — Sx_1(X) by

k

6(2 njo;) = anaaj, doj = Z(—l)iﬁiaj.
j j

i=0
One can verify direct that 0> = 0 and thus defines a complex (S.(X), 9). The k-th singular homology
of X is defined by
Hy(X) :=ker(0 : S¢(X) — Sk-1(X))/Am(0 : Sk41(X) — Sk(X)).
Fact 1 (Poincaré Lemma). If U is a convex open set in R", then Hy(U) = 0 for k > 0.

This is proved by constructing a homotopy operator & : Si(X) — Sk.1(X) via cone construction
satisfying oho + hdo = o, for any o € 5¢(X).

Now, if R is a commutative ring, then we set S¥(X, R) = Homz(Sx(X), R) and & : S¥(X,R) —
Sk“(X, R) is the dual homomorphism. Again, we still have 6% = 0 and thus the k-th singular
cohomology with coefficients in R is given by

H*(X,R) := ker(é : S¥(X,R) — S¥1(X,R))/im(é : S*"1(X,R) — S¥(X, R)).

By Poincaré lemma, we also have H*(U, R) = 0 for any convex open set U = R" and k > 0.
1
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1.2. Recap on Differential Forms and de Rham Cohomology. Let M be a smooth manifold of
dimension m, i.e.,

(i) M is a second countable, Hausdorff space,
(ii) there exists an open covering {Uj, },e; and homeomorphism o, : U, — IR™ onto some open
set V,, such that the transition maps

Oap = Oy O(Tﬁ_1 : Uﬁ(u“ N Uﬂ) — O'a(ua N Uﬁ)
are smooth for any &, B € I.

Remark 1. Here, we always assume that M is second countable. The important consequence of
second countability is that M admits a smooth partition of unity: for any open covering {U,}acr,
there exists {p, € C*(M)}4e1 (indexed over the same set I) such that supp px < Uy, {SUPP Pu }aer 1S
locally ﬁniteﬁ) and >, .;pa = 1.

We denote TM by its tangent bundle and T*M by its cotangent bundle. For 0 < k < m, AKT*M is
the k-th exterior bundle for T* M. A smooth k-form is a smooth section « : M — AFT* M. Locally,
given a local coordinate system (xj, ..., x;;) near p, we can write a locally as

n = Z wdxg,
1=k

where we use the multi-indices notation: [ = (i1,...,i) € NF with0 < i; < -+ < i < m and
&I 1= Qi iis de = dxil VANRIRVAN dxik, and |I| = k.

We denote A¥(M) by the space of smooth k-forms on M. There is a natural differentiation
d : AK(M) — AF1(M), called the exterior derivative, which is locally defined by

O
do = |Iz_zk]; a—x;dxj A dxj.
By commutativity of mixed derivatives, one can easily see that d*> = 0. This defines a complex
(A*(M),d) : 0 — C*(M) & AY(M) L A2(M) — - 5 A"(M) — 0,
called the de Rham complex. The k-th cohomology of the complex is called the de Rham cohmology:
H. (M, R) := ker(d : AK(M) — AMY(M))/im(d : A¥"1(M) — AF(M))
We usually call « € ker(d) a closed form and « € im(d) an exact form. Moreover, recall that
da n B) =da A B+ (—1)ka A dB.
Hence, H3:(M,R) = @, H%,(M,R) is a graded ring. If f : M — N is a smooth map between
smooth manifolds, then it induces a R-linear map f* : A¥(N) — A¥(M) given by
(ffa)p(v1, ..., 00) = agepy(fp(v1), ... dfp(vx), YpeM, wvy,..., 0 € TpM,

where df, : T,M — T,N is the differential at p and we identify A T; M as the space of alternating
k-linear form on T, M. Moreover, we have

FHanB) = franfB, frdn=dfta.
Particularly, f induces a ring homomorphism f* : H3;(N,R) — Hj. (M, R).
Finally, we recall Poincaré Lemma for de Rham cohomology.

Lemma 1. Let U = R™ be a convex open set. For 1 < k < m, if x € A¥(U) is a closed form, then there
exists p € AX"Y(U) such that & = dp. In other words, HX, (U, R) = 0.

IThis means that for any p € M, there exists a neighborhood U of p such that supp px n U = & for all but finitely
many & € [
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Sketch of Proof. The idea is again to construct a homotopy operator on the cochain level. WLOG, we
may assume that 0 e U. If o = Zm:k fr(x1,...,xm)dx, then we define

k

K: AF(U) - ANU), Ka= )] (/ t*fi(tx) dt) S (1) dxi, Ao A dit - dxg,

1=k

By direct computation and fundamental theorem of Calculus, & = dKa + Kda = d(Ka). O

1.3. de Rham Theorem. Now, we can state de Rham Theorem.
Theorem 1. Let M be a smooth manifold. Then we have a natural isomorphism
HY(M,R) = HS: (M, R).
In order to sketch some ideas on de Rham theorem, we need some preparation. Notice that via

projection, A¥ is affine equivalent to

{(x1, o) eRE: DY <1, %20, 1<j<k},

which we still denote by AF. We say o : A¥ — M is a smooth singular k-simplex if o extends to
some smooth maps on an open neighborhood of A* = R¥. Proceeding as the construction in section
we can define the Cy(M), the chain complex of smooth k-simplices and boundary operator
0 : Ce(M) — Cx_1(M) with ¢* = 0. We denote H”(M) by the corresponding homology group,
called the smooth singular homology of M.

Given a k-form « € Ak(M), oc*u is a k-form defined on an open neighborhood of AK, we can define

/a:z/ or*u.
I Ak

We extend this Z-linear to any ), n,0; and get a group homomorphism

/w:Ck(M)—>]R, 0'*—>/U(x.

Also, notice that [ « is also linear in « and thus we obtain a group homomorphism
/ : AK(M) — CK(M, R) := Homz(Cx(M),R), «+— (o — / uc) :
g
By fundamental theorem of Calculus, it is easy to prove the following Stokes” theorem for chain:
/ do — / w, Vae ASI(M), oeCuM).
o oo

As in singular cohomology, we denote 6 : Cf(M,R) — Ck*1(M, R) by the adjoint of ¢ and define
singular cohomology for smooth cochains by

HY (M, R) := ker(é : CK(M,R) — C**1(M,R))/im(é : C*"1(M, R) — C*(M,R))
Then Stokes’ theorem reads f - doe =0 f « and thus this defines a group homomorphism

(1.1) [ ¢ x4 R) — Hy, (M R)

We prove that (1.1) is an isomorphism in the following steps.



YU-CHI HOU

(1) Both HY, and HE,, satisfies Mayer—Vietoris property: for two open sets U, V = M, then we
have a long exact sequence in cohomology:

' » HS . (U V) —— HE (U) @ HE (V) —— HE, (U V) —— HSY (M) —— -

Il |s 1 Il

- —— HE, (U v V) —— H,(U) @ H, (V) —— HE,(UAV) —— HE'(M) —— -

an on the corresponding domain forms the above commutative diagram. By 5-lemma,
if is an isomorphism on U, V, and U n V, then it is an isomorphism on U u V.

(2) If is an isomorphism on a family of disjoint open sets, then it is an isomorphism on
their union. This is obvious from HX(|J, Uy) = @, HX(U,) for * = dR or sm.

(3) By Poincaré Lemma for both singular cohomology and de Rham cohomology, we know that
/ is an isomorphism for convex open set U < R™. By inductionand (Lj u---UN) NV =
(U1 nV)u---(Un nV),itis an isomorphism for finite union of convex open sets.

(4) Let f : M — [0, ) be a proper mapﬁ i.e., preimage of compact sets are compact. Let A, =
f~Y([n,n +1]). We can cover A, by finite union U, of open sets which are diffeomorphic to
convex sets in R which are contained in f~!([n — 1/2,n + 3/2]). We then set U = | J, Uy
and V = J; Up41 which are disjoint unions of convex open sets. By (2) and (4), is an
isomorphism on U, V, and U n V. Hence, is an isomorphismon M = U u V.

(5) The final step is to show that the inclusion C(M) — Si(M) is a chain homotopic equivalence.
A well-known facts known as Whitney approximation theorem from differential topology
asserts that any continuous map between smooth manifolds can be approximated by smooth
one. Using this, for each singular k-simplex ¢ : AF — M, one can construct a (continuous)
homotopy H : A x [0,1] — M so that H(-,0) = ¢ and H(-, 1) is a smooth singular k-simplex.
Once we construct such operator, one can easily deduce that Cx(M) — Si(M) induces an
isomorphism H{°(M) = Hy(M) and thus HX,, (M, R) = H*(M, R). The detail is quite tedious
and can be found in John Lee’s Introduction to Smooth Manifolds, Theorem 18.7.

Remark 2. The procedure above is known as Mayer-Vietoris argument. This was later generalized
by Weil to Cech complex with respect an open covering. We give a short outline on the modern
proof of de Rham-Weil isomorphism. Let C’;/UR be the sheaf of singular k-cochains defined by
U — CHU,R), AII(\/L]R be the sheaf of smooth k-forms defined by U — A¥(U), and Ry be the
constant sheaf with stalk IR on M. The exterior derivative and coboundary operator extends to a
morphism of sheaves d : A’M]R — AI]‘\I ]}{ and ¢ : C’]‘\,L]R — C'Z‘VJ[, ]%{. Moreover, Poincaré Lemma for both

cohomology theories and partition of unity shows that

d d
0— Ry — Ay g = Aygr =

0— Ry — Chgr > Chr >
are both acyclic resolution of Ry;. Hence,we have the isomorphism:
H(M) = HX(T(Cyr), 8) = H (M, Ry) = HYT (A3 r), d) = Hig(M,R)

Remark 3. In fact, (1.1) is a ring homomorphism (for singular cohomology, ring structure is given by

cup product) and is functorial.

20ne can construct such function by partitigl of unity. It is well-known that for any topological manifold M, one can
find a countable open covering {U; }]oil with U; compact. Let {p]-}]?'il be the partition of unity subordinated to {U; }]?'il.

We then set f = Z]ﬁl Jpj-
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2. HODGE THEOREM ON HARMONIC FORMS

2.1. Preliminaries. Let us first recap some simple linear algebra. Let V be a IR-vector space of

dimension m. Given an inner product ¢, -) on V, this induces an inner product on AV for0 <k <m
by first defining on monomials

<M[,U]> = det(<uik,v]-,>), Ur=ujy N A uik,v] = Z)]'l VANRINEIVAN Z)jk € AkV,

and then extending bilinearly to whole AFV. Particularly, if {ej,..., e} is an ONB for V, then

{e: 1= (i1,...,ix), 1<i; <---<iy <m}isan ONB for AV Particularly, for k = m, we call the

top form dV :=e; A -+ A e;; a Riemannian volume form of V' (with respect to the inner product).
Now, we define Hodge #-operator by

w: AV S ARV, ep > e,

where [ = (iy,...,i) and I is the complement of [ in {1, ..., m} with the ordering so that
er A %€y =€1 A+ A ey
Again, we extend R-linearly to general k-vector o = > arer, B = > Brey:
NET Z arBrer A xey =L, B)dV
[T=IT1=k

Note that * is independent of the choice of ONB with the same orientation and
(2.1) 2 = (=1)k0m=k) — (_1)k0m=1)

Previously, we define integration of differential forms with respect to a smooth singular simplex.
Now, we review integration of differential forms on smooth manifolds. Let M be an oriented
smooth manifold, i.e., M admits a smooth atlas whose transition functions has positive Jacobians,
for u e A™(M), we can define integration of u on M by

(1) First, if u vanishes outside a coordinate chart U and u = f(x1,..., Xp)dx1 A - -+ A dXp, then

/u:=/f(xl,...,xm)dx1-~dxm.
M u

(2) If we take {p,}ser be the partition of unity subordinated to the oriented atlas, then we define

[u=Y o

el

The key upshot is that under oriented hypothesis, the change of variable formula shows that the
integration is independent of the choice of coordinates. The key formula for us is Stokes” formula:

/duz/ u, ueA"1(M).
M oM

Now, for an oriented m-dimensional Riemannian manifold (M, g). By definition, for each p € M,
gp is an inner product on each tangent space T, M. By duality, ¢ also induces an inner product on
V = T;‘M and thus on AF T;‘M for 0 < k < m, which we denote by (., -). Since M is oriented, we
denote Riemannian volume form on M (with respect to ) by dV; € A™(M). We then define Hodge
+-operator * : AK(M) — A" ¥(M) by applying above construction to each T; M. By construction,

2.2) wAxp={a, BV, ape A(M)
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For simplicity, we now assume that M is closedﬂ and endow A¥(M) an L?-inner product by

23) (&, B) = / (o, BydV,, Vo, Be AN(M)

M
and we denote || = («,a)'/2. We define adjoint d* : A¥*1(M) — A¥(M) of d by
(2.4) (da, B) = (a,d*B), e AX(M), e A (M).

By (2.2), (2.3), and Stokes’ formula, we get
= = A xB = A#B) — (=1)Fa A d(p) = (=1)F*1 A d(x
(d,) = [ s BV = [ dunsp= [ dlon )= (<1fxndep) = (0 [ wndiop)
Then implies
(dOC,‘B) _ (_1>k+1(_1)k(m—1)/ XA k% (d*ﬁ) _ (_1)km+1(lx’ *d*‘B)

M
This shows that the adjoint 4* can be expressed into d and Hodge #-operator: d* = (—1)M"*1 « dx.

Definition 1. The Hodge Laplacian A : AX(M) — A¥(M) on k-forms is defined by by A =
dd* + d*d. A smooth k-form a € A¥(M) is harmonic if Aa = 0 and we denote H*¥(M) by the space
of harmonic k-forms on M.

One can easily verify that for M = R" with Euclidean metric ¢ = Z;"zl dx]Z,

Ax = — Z (i 6;:;) dx;, Va = Z aydxy € Ak(M)
j

1=k \j=1 \I|=k
This justifies the name Laplcian for Hodge Laplacian A. Also, notice that A is self-adjoint, i.e.,
(Aw, ) = (&, AB),  Va, pe AX(M).

2.2. Hodge Theorem: Statement and Some Ideas of Proof. Let M be an oriented, closed manifold.
Given a cohomology class [«] € HY; (M, R), we wish to find a canonical representative within the
class. If we endow M a Riemannian metric g, then we endow A¥(M) a pre-Hilbert space structure
by the L>-norm (energy) by (2.3). One possibility is to require a to have minimal energy among the
cohomology class [«]. For any g € A¥~1(M) with df # 0 and t € R, we find that

o + tdp|* = || +2t(a, dB) + 12>
=[dBI(t + (,dB)/|dBI*) + |a® — |(e, dB)[*/IdBI* < ]
iff (x,dB) = (d*a, B) = 0 for any B € A*"1(M). Hence, d*a = 0. On the other hand,
(A, ) = (dd*y,7) + (d*dy,7) = |dv|* + [d*y )7, ¥y e AX(M).
Based on discussion above, we conclude that H*(M) = ker(d) n ker(d*) and

Proposition 1. Let (M, g) be an oriented, closed Riemannian manifold, [ng] € HX, (M, R) be a cohomology
class. Then w € [ao] has minimal energy if and only if « € H*(M).

Remark 4. Above proposition is the analogous to so called Dirichlet principle for harmonic functions.
Let (2 c R be a bounded open set. We define Dirichlet energy by

1
ELf] = [ IV7Pax.
Q
The Euler-Lagrange equation for E is exact the usual Laplace equation Af = 0.

3i.e., M is compact and oM = .
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Thus, the question in consideration becomes whether one can find a harmonic representative
among each cohomology class? Hodge theorem asserts that the answer is affirmative:

Theorem 2. Let (M, g) be an oriented, closed Riemannian manifold. For each cohomology class [ag] €
HX. (M, R), there exists a unique harmonic representative a € H*(M) with a € [ag]. In other words,

Hip(M,R) = HX(M),  [ao] — a.
An important consequence of Theorem [2]is that it gives a quick proof for Poincaré duality.

Corollary 1 (Poincaré Duality). Let M be an oriented compact manifold. The bilinear pairing A¥(M) x
A""F(M) — R give by (, ) — [y, A B descends to a non-degenerate pairing on de Rham cohmology
HEL(M,R) x HT-5(M,R) — R.

Proof. By Stokes’ theorem, it is clear that the pairing descends to the level of de Rham cohomol-
ogy. We choose a Riemannian metric ¢ on X and identify H%, (M, R) =~ H¥(M) and H;”R_k (M) ~
H"K(M) by Theorem [2l Notice that Hodge *-operator commutes with A, since g € A" ¥(M),
#% B = (=1)k("=K) g and thus

A *:3 _ (_1)m(k—1)+1d*d* *:B + (_1>km+1 *d*d*ﬁ
:(_1)m(mfk71)+l wd*dx ,3 + (_1)m(mfk)+l % wd % dﬁ _ *A,B
It follows that * : H¥(M) — H"¥(M) is an isomorphism. Moreover, if « € H?(M) and « # 0, then

/ wAxx = |af>>0

M

Thus, the pairing is non-degenerate. induces an isomorphism * : H¥(M) = H"~*(M). Combing

with Hodge isomorphism, * : H5, (M, R) = H" (M, R). O
In fact, Theorem 2]is deduced from the following stronger statement.

Theorem 3 (Hodge Decomposition). Let (M, g) be an oriented, closed Riemannian manifold. We have an
orthogonal decomposition with respect to (2.3):

(2.5) AK(M) = HE (M) @ A (AK(M)).
Proof of Theorem 2} Given any closed form ag € A¥(M), we decompose ay uniquely by (2.5):
g =+ AP =a+(dd*B+d*dp),
for some B € AX(M). By assumption, dag = 0 = dd*dp and hence d*dp = 0 since
0 = (dd*dB,d*dp) = ||d*dp|*.

Therefore, ay = a + d(d*B) and « is the unique harmonic representative within [«g]. O

Notice that is equivalent to solvability for inhomogeneous equation for Hodge Laplacian.
Theorem 4. Given B e AX(M), A« = B is solvable iff B € HF(M)* .

One direction is clear. If Aa = f for some a € A¥(M), then for any v € H*(M),

(B, 7) = (Ba,y) = (&, Ay) = 0.
The other inclusion requires some (nowadays standard) PDE techniques. Let us sketch the ideas of
proof. The first step is some functional analytic formalism. Recall that A¥(M) is a pre-Hilbert space
with respect to L?-inner product (2.3). Given g € A¥(M), if Aa = B is solvable, then

(D‘/ A’Y) = (Alxr ')’) = (:BI r)’)/ Vy e Ak(M)z
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which is a linear form on im(A). The essence here is to construct « first in the dual formulation.
Given B € H¥(M)*, we define a linear form ¢ on the subspace im(A) c A¥(M) by

(26) (DY) = (B,7), Yy e AN(M).
Notice that this is well-defined since 8 € H*¥(M): if o' € AF¥(M) with Ay’ = Ay, theny' — 7 €
H*(M) and thus (B,7) = (B,7"). The first difficulty is to prove the following estimate:

Proposition 2 (Closed Range). There exists C > 0 such that |B| < C|AB| for any p e H*(M)* .

With Proposition we prove that £ is a bounded linear form on im(A). Indeed, since H*(M) =
ker(A\) is a closed subspace, we denote P : A¥(M) — H¥(M) by the projection. We set 6 :=
v — P(y) € H¥(M)*. Then Af = Ay and

(LAY = [E(A0)] = |(B,0)] < [Bll6l < ClBIIA8] = ClBII Avl-

Hence, by Hahn-Banach theorem, £ can be extended to a bounded linear form £ on A*(M) with the
same norm. In the terminology of PDE, we call a bounded linear operator ¢ on A¥(M) satisfying
(2.6) a weak solution of Aa = B. The final analytic input is the following proposition.

Proposition 3 (Elliptic Regularity). For any weak solution { of Aa = B is actually smooth, i.e., there
exists « € AK(M) such that £(7y) = (&, ) for any v € AF(M).

We find H*(M)* = im(A\), assuming Proposition@ and |3} We end with a few comments on them.
(1) Propositionis also known as the closed range for if ( 5]‘)]21 is a sequence such that AB; — «
in L2-norm, then Proposition implies that

1B; = Bl < CIAB; = Br) = 0, j k — .

Hence, {;};2, is a Cauchy sequence in the pre-Hilbert space A¥(M). A technical point
here is that §; converges a priori to the limit B, in the completion of AF(M). By Riesz

representation theorem, 8, is the weak solution of AB = 7. By Proposition By € AK(M)
and hence ABy, = 7. In other words, im(A) is closed.

(2) Both Proposition[2land[3]depend heavily on the differential operator AA. The type of operators
enjoy these facts are called elliptic operators. A prototype of ellipitc operator is of course the
standard Laplacian on Euclidean space. Proposition 3]is the generalization of the classical
facts that harmonic functions are actually smooth.

(3) The proof for closed range also shows that dimg H*(X) < oo.

(4) The actual proof of both Propositions requires some knowledge on Sobolev spaces, which
generalizes the notion of derivatives to non-differentiable functions. For definitions and
related results of Sobolev spaces, and details of actual proof to both Propositions, one can
consult Griffths—Harris, Wells, and Warner.

3. COMPLEX MANIFOLDS AND KAHLER METRICS

3.1. An Interlude on Complex Linear Algebra. We begin with a digression on linear algebra.

(1) Let W be a complex vector space with dim¢ W = n. We choose a C-basis {ey, ..., e,} so that
W =~ C". Let (z1,...,2,) € C" be the corresponding coordinates. By splitting z; into real and
imaginary parts

zi=xj+iy;, 1<j<mn,

we see that W has a (non—canonical) real vector space structure Wr of real dimension 2n with
R-basis {ey,, ..., en, ie1,...,ie,}. Multiplication by imaginary unit w — iw can be identified
as an R-linear endomorphism | : Wr — WR whose matrix representation with respect to

0 _OI”> and satisfies J* = —Idy,.

above R-basis is given by | = < I
n
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(2) Conversely, given a real vector space V, a linear complex structure | : V — V is a R-linear
endomorphism with J2 = —Idy. We can then endow V a C-vector space structure by

(a+1ib)v:=a+DbJv, YveV, Va,beV.

Notice that if V admits a linear complex structure, then dimr V must be everﬂ Hence, a
complex vector space is equivalent to a real vector space with a linear complex structure.
Moreover, a R-linear map T : (V,]) — (V’,]') is C-linear iff "o T = T o ]. Hence, the
category of C-vector space is equivalent to the category of R-vector space equipped with a
linear complex structure.

(3) Another way to obtain a complex vector space from a real one is extension by scalar. Let V be
a real vector space with dimg V = m. The complexification of V is defined by V¢ := V ®g C.
which is a C-vector space. If {ej,...,e,} is a R-basis for V, then {e;®1,...,e,, ® 1} is a
C-basis for V. This shows that dime Ve = m. On the complexification V¢ of V, we can
define (canonical) complex conjugation, which is an anti C-linear map given by

Ve Ve, 7Rz~ URZ.

and extends additiviely. Notice that V embeds into a IR-linear subspace of V¢ by v +— v ®1
which can be characterized as the fixed subspace {v' € V¢ : v/ = v'}.

Remark 5. Let W be a C- vector space. There are two ways to define complex conjugation.

(a) We can define a C-vector space W which is the same underlying abelian group as W and
conjugate complex multiplication z - w := zw for w € W and z € C. Then Idy : W — W
is an anti C-linear isomorphism.

(b) By choosing a C-basis {ey, ..., e,} of W, we identify W =~ C". However, C" = R"®@grC =
R" @ iR". Hence, we define w = v —iu if w = v + iu according to the direct sum
decomposition. Notice that this construction depends on the choice of basis and thus is
not canonical.

(4) Conversely, given a complex vector space W with dim¢ W = m with an anti C-linear
involution c : W — W, i.e., ¢> = Idy, the fixed subspace V := W¢ := {w e W : c(w) = w} is
a R-vector subspace Wg, called the real form of W. One can easily show that W = V @R C.
In other words, a complex vector space W is the complexification of some real vector space
V iff we endow W an anti C-linear involution ¢ : W — W.

Remark 6. Notice that the real form of a complex vector space is not unique. For instance, in
representation theory, sl(n, C) is both the complexification of s((n, R) and u(n).

(5) Let (V,]) be a real vector space with linear complex structure of real dimension 21, which is
equivalent to a complex vector space of complex dimension n by (2). If we complexify V
into V¢ and extend | to V¢ by J(v®z) = J(v) ® z, then we have eigenspace decomposition:

Ve =VWPq@V9, vW.—weVe:Jv =i}, VU:={"eVe: v =—iv"}.
Notice that V10, V%! are C-linear space of (complex) dimension 7 and complex conjugation
induces a R-linear isomorphism V0 ~ VOl Moreover, (V,]) = (V}9,i) and (V,]) =~
(V91 1) as C-vector space. Here, (V, ) means the conjugate C-vector spaceﬂ of (V,]).

(6) Let (V,]) be areal vector space with linear complex structure. We denote V* := Hompg (V, R)
be the IR-dual space of V. Then | induces a linear complex structure on V* by

(v, Juy :=Jo,u), veV,ueV¥

4f dimp V is odd, then there exists a real eigenvalue A of J. However, 2 = —Idy implies A% = —1, a contradiction.

SRecall that for a C-vector space W, W is also a C-vector space with the same underlying abelian group structure as W
and conjugate complex multiplication z - w := zw forw € Wand z € C.
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where (-,-) : V x V* — R is the natural pairing. By functoriality of complexification,
(Ve = (V*)®r C = Homg(V,C) = Home(Ve,C) =: (Vi)¥,
and the induced eigenspace decomposition on (V*)¢ is given by
(VW ~ {u e Homg(V,C) : Ju = iu} = (V}0)*,
(V9! =~ {u e Homg(V,C) : Ju = —iu} = (VO1)*,

Finally, notice that (V*)? ~ Hom¢((V, ]), C).
(7) Againlet (V,]) be a complex vector space. The decomposition V¢ = V0@ VO induces a
decomposition on the exterior algebra (over C):

ANVe= @ APV, APV = APV ®c ATVOL
k=p+q

Foreach1 < p,q < n = dimc¢(V,]), we identify APV as a subspace of AV by
1 Q Uk — U A UK.

and from V10 = V01 we see that APAV =~ AIPV.
(8) Let (V, g) be an Euclidean vector space. A linear complex structure | on V is compatible
with g with [ € O(V, g), i.e., g(v,w) = g(Jv, Jw) for any v, w € V. In this case, we set

w(v,w):=g(Jv,w), v,welV.
Notice that w(w,v) = ¢(Jw,v) = ¢(J?w, Jv) = —g(w, Jv) = —w(v, w). Hence, w € A%V and
w(Ju, Jw) = ¢(J?v, Jw) = —g(v, Jw) = —w(w,v) = w(v,w), Yo,weV.
If we extend w C-linear to /\2 Ve, then for v,w € V10 or V1,
w(v,w) =w(Jv, Jw) = w(+iv, tiw) = —w(v,w) = w(v,w) = 0.

As aresult, w e A1 V* A A%V, called the hermitian form of (V, S ).
(9) Let (V,g,]) be an Euclidean space with compatible linear complex structure. We set

h(v,w) := g(v,w) —iw(v,w), v,weV.

Then h is clearly R-bilinear and h(v, v) = g(v,v) > 0 for v € V\{0}. Moreover,

h(w,v) = g(v,w) +iw(v,w) = g(v,w) —iw(v,w) = h(v, w)
and h(Jo,w) = g(Jv,w) —iw(Jv,w) = w(v,w) + ig(v,w) = ih(v,w). Thus, h is a positive
definite hermitian product on (V, J).
(10) Alternatively, one can extend g into a hermitian metric on V¢ by
gc(o@u,w®A) = uAg(v,w), v,weV, ueC.

One can easily see that gc(V'?, V1) = 0 and thus V = V¥ @ V! is an orthogonal decom-
position. However, under the isomorphism (V, J) = (V1?,1), h = 2gc| .-

(11) We now summarize above discussion in coordinates. Let (x1, ..., x,) be a C-basis for (V, ).
Then (x1,y1 := Jx1,...,Xn, Yn = Jxu) is a R-basis for V. Then

1, .. .1, . .
zii= 5 (x—iy), Zi= 5 (y+iy), 1<j<n,

fqrm ba}ses for V19 and Vo1 respectively. Dually, if (xl, ...,Xx")is a C-basis for (V*,]), then
y/ = Jx/ is dual basis for y; and

7 = xj+iyj, g :=xj—iyf, 1<j<n,
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are dual bases for z; and z; respectively. Suppose that fi(x;, x;) = hjj. Then gc(zj,z¢) = 3hj
and
h(xj, yx) = h(xj, Jxx) = —ihj,  h(y;, yx) = h(Jxj, Jxx) = h(xj, xx) = .
Since ¢ = Reh and w = —Imh, we see that
w(xj,xx) = w(yj,yx) = —Imhy, w(xj,yx) = Rehj
g(xj, xk) = g(yj, yx) = Re(hy),  &(xj, xx) = Im(hy).

Hence, we write
n

w=— Z Im(hjk)(xj Ay AR + Z Re(h/k)xj N
j<k jk=1

From z/ A 2F = x/ A xK —i(x) A Y5 + 2K A y)) + 1/ A Y, we see that

.on
(3.1) w = % M bzl A 2Fe AVVF A APV
jk=1
If we choose an ONB (x1, Y1 - - ., X, Y) for g, then w = %Z7=1 Az = Z?ﬂ x/ A yl. We find
that hermitian form determines the Riemannian volume form on (V, g, J):
w" i " 1 =1 n SN
H: <2> (Z /\Z)/\"'/\(Z /\Z)
=AY AP AP A XAy = dV € AMTVF A ATTVE
(12) Asin the real case discussed in section 2}, a hermitian product gc on V¢ induces hermitian

products (-, -)c on AV for all 0 < k < 2n. We can then extend Hodge #-operator on (V, g)
C-linearly to = : Af Ve — A*"* Ve which is characterized by

(3.2) a A B ={a,BcdVy, Va,peAVe.

Since Ve = V0@ V! is orthogonal with respect to gc, AFVE = D gk APV is also

an orthogonal decomposition. Moreover, notice that if y; € APIiV* for j = 1,2 with

p1+p2+q1+q2 =2nbut (p1 + p2,q1 + g2) # (n,n), then 11 A 72 = 0. Hence, by (3.2),

w1 APAVE — APV
3.2. Complex Manifold and Kdhler Metrics. First, we recall the definition of holomorphic func-
tions in several variables. Let () — C” be an open set, (z1, . .., z,) be standard complex coordinates on
C". We identify C" ~ R*" via zj = x; + iy;. Hence, T,() has R-basis {0/0x1,0/dy1, ..., 0/0xy, 0/0yn}
with linear complex structure | : T,Q) — T5Q) given by
J(0/0x;) = o/ayj, J(0/dyj) = —=0/ox;, j=1,...n,

Applying the discussion in previous section, if we consider the complexification (T,Q)c, then
(Ty)Q)c = T,"Q@ Ty Q and

0/0zj = % (0/0xj —idjoy)), 0/ozj = % (6/oxj+io/dy;) :j=1,...,n

are C-basis for T;’OQ and Tg’lﬂ respectively. Similarly, on contangent space T;() has R-basis
{dx1,dys,...,dx,,dy,} with linear complex structure

J(dx)) = dy;,  J(dy)) = —dx;, j=1,...,m,

and the complexification (T;Q)c = T;°Q @ T;°'Q with dual basis {dz; := dx; + idy; }j—y and
{dzj :=dxj — idy]-};?:l, respectively.
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For f € C1(Q), C), we can write the differential dfy € Homg(T,Q),C) = (T;Q)C as
N e N o (p) ; o ) f
dfy = ]; &xj(p)dx] +]-§ el Z ~—(p)dzj + (p)dz]

Definition 2. We say f is holomorphic if df, € A'? T5Q) for any p € Q). Equivalently,
(a) df, € Home(T,(2,C), i.e., df, is C-linear.
(b) f satisfies Cauchy-RIemann equation 0f/0z; =0onQforj=1,...,n

We denote O(Q) by the set of holomorphic functions on Q).

A Cl-map F = (F,...,E;) : Q — C" is called holomorphic if each F e O(Q)). Hence,

dEy(T,"Q2) < Ty C" and dF,(Ty' Q) < T, C™. Now, we recall

Definition 3. A complex manifold X of (complex) dimesnon # is a smooth manifold of (real) dimen-
sion 21 with a holomorphic atlas, i.e., there exists an open covering {U, },e; and homeomorphism
oy : Uy — C" onto some open set V,, such that the transition maps

(7'“5 —O'NOU'ﬁ 5(1,1“(\1,15) —>0'a(uaﬁu/g)
are holomorphic, Va, B € I. We write 0, = (21, ...,25), called local complex coordinates on U,.

For x € X, say x € U, for some a € [, we define holomorphic tangent space T, X to be T;, (1)) Vi
with linear complex structure defined as above. Since transition maps are holomorphic, d(0ug) o, (x)
is a C-linear isomorphism and thus is independent of the choice of ¢.

On the other hand, X has a underlying smooth manifold structure and thus T, X has a underlying
real vector space structure, denoted by T, R X. The discussion above on open sets in C" can be
applied to X in a direct manner and generalize to bundle level:

CTrX := TRX®rC = TX @ T"X, TX=~TWX TX=T0X;
CTiX = T"'X @ T0'X, AMCTX)= @ APIT*X
p+q=k

When X is a complex manifold, we always denote A*(X) by the smooth sections of A*(CTX), i.e.,
the complex-valued differential forms, and Ak(X, R) by the real ones. A smooth section of AP4T*X
is called a (p, q)-form. We denote AP (X) by the space of (p, g)-forms. We also have

P API(X
p+q=k
For « € AP(X), we can locally write a with respect to a local complex coordinates
o= Z DCUdZ[/\dZ_].
I1=p.l]|=q

If we extend exterior derivative to complex-valued form d : A¥(X) — AF1(X) and restrict to AP/,
then we can decompose d = 0 + ¢, where

n
14
01 AMIX) - AP, a= Y)Y Sz n e
=p,I=qj=1 """/

- - 0
31 APA(X) - APIN(X), da= ) 2 ﬂdz] A dzp A dz).
[H1=pl]I=qj=1
Since d?> = 0 and d? = 0% + 90 + 90 + 02 are in types (p +2,0), (p + 1,4 + 1), and (p, g + 2), we have
0* = 0> =00+ 00 = 0.
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Notice that for p = 0, ker(d) = O(X), the space of holomorphic functions on X. For p > 0,
ker(d) = QF(X), the space of holomorphic p-forms on X, the holomorphic section of APOT*X.
Clearly, on a coordinate open set U, « € (3 (X) can be locally written as

aly = Z ardz;, wape O(U).
[I|=p
Hence, for each 0 < p < 1, we obtain a complex

(AP*(X),2) : 0 — QF(X) — APO(X) S APL(X) & ... & APP(X) — 0.
The g-th cohomology of the complex is called the g-th Dolbeault cohomology of X:
(3.3) HPA(X) = ker(d : APA(X) — APATL(X)) /im( : APT~1(X) — APA(X)).
As in the case of de Rham case, we call « € AP4(X) is 0-closed if du = 0 and d-exact if & = Jp for
some B € API~1(X).

Remark 7. An important fact is that we also have J-Poincaré Lemma, also known as Dolbeault-
Grothendieck Lemma, which says that on any open set U ¢ C" and a € AP4(U) with da = 0,
then there exists a ”suitable” open set V < C" B € AP1~1(U) so that 98 = « on V. Hence, the
corresponding complex on the sheaf level is exact.

0—0f — A — APt AR 0

Moreover, A% is acyclic since we can multiply a (p, 7)-forms by partition of unity. Hence, we obtain
Dolbeault theorem which is complex analogue of de Rham theorem:

HY(X, Q%) = HPA(X).

Now, we discuss the metric structure on a complex manifold. A hermitian metric / on a complex
manifold X is a smooth positive definite hermitian bundle metric on holomorphic tangent bundle
TX. That is, in terms of local coordinates (z1, .. .,z,) on a coordinate open set U, we can write

n
h = Z h]k<Z)dZ] ® dzy, h]k € COO(U),
jk=1
and (hj(z)) is a positive-definite hermitian matrix for each x € U. Following the discussion as

in previous section, h is equivalent to a Riemannian metric ¢ = Rehon TX or w = —Imh €
AYY(X) n A%2(X,R) locally given by

w = %Z h]de] A dZg.
j<k
Definition 4. Let X be a complex manifold.
(i) A hermitian manifold is a pair (X, w), where w is a smooth, positive-definite real (1, 1)-form,
called a hermitian metric, hermitian form, or fundamental (1, 1)-form associated to /.
(ii) A hermitian metric is called Kdhler if dw = 0.
(iii) X is called a Kdhler manifold if X admits a Kdhler metric.

We know that if w is a hermitian metric, then one can express Riemannian volume form by

n

n!
Since w is real, dw = 0, dw = 0, and ow = 0 are equivalent. In local coordinates, 0w = 0 means
ohj  oh
j Ik .
— =—, 1<jkl<n.
821 &Z]' J "

Using this, one can show existence of holomorphic normal coordinates for Kihler metric.
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Theorem 5. Let (X,w) be a hermitian manifold. Then w is Kihler iff for any x € X, there exists local
holomorphic coordinates (z1, .. .,zyn) centered at x so that hj = 6j + O(|z|?).

The proof is quite standard so we omit (see Wells or Griffths—Harris, or many other textbooks).
We end this section by discussing some examples and non—examples for Kdhler manifolds.

Example 1. The most important example for us is complex projective space CIP”. We have a natural
Kéhler metric given by Fubini-Study metric:

i -
prwrs = 5_00log(|Zol* + -+ + [2ul*),
where (&, ...,&) € C""land p : C"*1\{0} — CIP" is the projection. Let z = (&1/&, .., &/&0) be

the local coordinates on Uy = {[Cp : - -+ : §n] € CP" : {p # 0} = C". Then wgg satisfies
i -
= -—00log(1 + |z Pe=1
wrs = 5 —00log(1 +|z[%), /GPH WEs

Example 2. Let (X, w) be a Kdhler manifold. If : : Y — X is a complex submanifold, then wy := *w
is still a positive definite real (1,1)-form on Y. Moreover, since di*w = *dw = 0, wy defines a
Kéhler metric on Y. Particularly, any non-singular smooth projective variety is Kéhler.

Example 3. A complex torus is a quotient X := C"/A, where A is a lattice of rank 2n. Then X is
a compact complex manifold. Moreover, any positive hermitian form w =i >} o<, hjxdzj A dzg
with constant coefficients defines a Kéhler metric on X.

Notice that dw = 0 imposes topological constraints on compact Kdhler manifolds. Indeed, since
volg(X) = [yw"/n! > 0, for 1 < k < n, w* cannot be exact for [y, w"/n! = 0 by Stokes’ formula.
Hence, [w*] # 0in H2K (X, R).

Example 4. Let X = (C?\{0})/T, where I’ := {A" : n € Z} acts on C? by (z1,22) — (A"z1,A"zy).
One can show that X is a compact complex manifold and X is diffeomorphic to S' x S3. Thus,
H2(X, R) = 0 and hence, X cannot be Kahler.

4. KAHLER IDENTITIES AND HODGE DECOMPOSITION ON COMPACT KAHLER MANIFOLDS

4.1. Operators on Kihler Manifolds and their Commutation Relations. Let (X, w) be a hermitian
manifold. As mentioned before, gc induces a hermitian inner product ¢-,-)c on A¥(CT;X) and we
can define Hodge #-operator with respect to w by

1 APA(X) — APIP(X),

which is a C-linear isometry and satisfies & A * E = {a, B)cdV,,. If X is compact, then we can endow
a L*-inner product on AP1(X) by

(a,B) := /X<zx,ﬁ>chw, Va, B e APA(X).

Thus, we can define adjoint d* = — * d+ : AK*1(X) — AK(X) as before as well as
0% = — % 0% 1 APTUI(X) — APA(X), 0% = — 0% : APTTH(X) — APA(X).

From d = 0+ 0, we also have d* = ¢* + 0*. Hence, we can define Hodge Laplacian A = dd* + d*d
as well as 0-Laplacian and ¢-Laplacian:

Np:=0%0+00%, Npz:=0%0+ 00*.

Now, we define the spaces of harmonic (p, g)-forms for Hodge Laplacians HP1(X) := H*¥(X) n
APA(X) and for d,0-Laplcian:

HEN(X) = {ae API(X): Dpa =0}, HEI(X) := {a e API(X): Do = 0}
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By definition, A; = Aj and thus H'(X) = H1"(X). Granting the fact that A, Ay, and A;
are elliptic operators, we can proceed exactly same as Hodge theorem for compact Riemannian
manifolds to show the following Hodge decompostion for for a compact hermitian manifolds.

ANX) = H (X))@ A(ANX)),  API(X) = HET(X) @ Lp(API(X)),  API(X) = HET(X)® Do(AP(X),
which is orthogonal with respect to L?-norm on A¥(X) and AP4(X). Thus, we have H*(X,C) =
H*(X) and Hg’q(X) ~ ’Hg’q(X). Also, we have dim¢ H¥(X), dim¢ Hg’q(X), dime HE'(X) < infty.

Proposition 4 (Kodaira-Serre Duality). Let (X, w) be a compact hermitian manifold. The bilinear pairing
APA(X) x AP7PTI(X) - C,  (a,B) — / x AP
X

descends to a non-degenerate paring on HY'(X) x Hy """9(X) — C. Particularly, HY(X) = (H7 ""71(X))*.

Proof. For o € APA(X), v € A"~P"=1-1(X), since & A y € A"~ 1(X), we have
dlany)=0@ny)=0oxny+(=1)Pa A 0.

Hence, if B, f’ are o-closed and ' = B + ¢y, then by Stokes’ theorem,

/Xoc/\[%’=/X(x/\[3+/xoc/\3'y=/Xoc/\ﬂJr(—l)p”/Xd(oc/\'y)=/sz/\,3.

Similarly, the pairing is independent of representative of the Dolbeault cohomology class [a] €
H g’q(X ). Therefore, the pairing descends to the Dolbeault cohomology level. Similar to the proof of
Poincaré duality, one notice that *Ay = Ay and thus

w0 HEN(X) — 1y "P(X).

Since H; 7" P(X) = ’Hgfp’"*q(X), a — *X maps Hg’q(X) — ’Hg*p’”*q(X). Finally, notice that
Hg’q(X) — Hg’q(X) — C is non-degenerate since [y & A = |a|? > 0if & # 0. Therefore, the result
follows from Hg’q(X) ~ Hg’q(X). 0

However, for compact hermitian manifolds (X, w),
(a) H*(X) may not respect the bidgree decomposition.
(b) ’Hg’q(X), HET(X), and HP1(X) might be different.
Both issues will be resolved when w is a Kdhler. The key is the Kdhler identities we now discuss.
Now, we assume that (X, w) is a K&hler manifold. We define Lefschetz operator

(4.1) L: APA(X) — APTUIHL(X), a— w A

and its adjoint A := — % Lx : APT1AF1(X) — APA(X) satisfying

(4.2) (La, B)c = {w, AB), VYo e APA(X),Be APTITL(X),
Theorem 6 (Kdhler Identities). Let (X, w) be a Kihler manifold. Then

(4.3) [0*,L] =i0, [A,0]=—id%;

(4.4) [0*,L] = —id, [A,d] = id*.

Proof. Notice that follows from by taking complex conjugation and [A, 0] = —id* follows
from [0*, L] = id by taking adjoint.

Now, we sketch the proof [0*, L] = i0 for the case wheb X — C" is a bounded open set with
standard Kahler metric w = i 3} dzj A dzj. For a = 3 _, -, anydz; A dzj € APA(CY),

& o _ = z oxyy ,_ -
on = 2 Egkjdzk/\dzlAdz], on = Z Eﬁ]dzk/\dzlAdz].
H=p|JI=q k=1 H=p|]I=q k=1



16 YU-CHI HOU

Notice that for v = Z\Klzp,\leq vrrdzx A dzp, {u,v)c = Z|I|:p =g U1701] and thus

M Z) / 2 MI]UUdV

|=p,|]1=q

where dV = w"/n! = 2"(dx1 A dyy A ---dx, A dy,). Then one can directly compute that

} oy z o
fa = — Z Z pe la/azkdzl AdZp = Z lojo 7
1l=p =g k=1 "X k=1 ¢

Here, 15/5z, « is the interior multiplication of 0/0Zy into a. Then we get
n
- 0 6oc
[é’, L]IX = — Z Lp/oz; < (w A Dé)) +w A Z Lojoz, =~
k=1 02k k=1 02k

Since w has constant coefficients, a%{(w AR) =W A a L and therefore

on «
[0%, L 2 Lo/oz, <w A &Zk) w A <la/azk o ) Z Lo/oz,)

Since ty/pz,w = —idzy, we get

Finally, for general (X, w) and any x € X, if we choose holomorphic normal coordinates (z1, ..., z,)
centered at x as in Theorem |5, above calculation go through with error term

[0%, L]a = ida + O(z]),
for (p, q)-form a supported in a neighborhood of x. Particularly, [0*, L]a(x) = ida(x), forx e X. O
Corollary 2. If (X, w) is Kihler, then
(4.5) [0,0%] =[0,0%] =0
(4.6) A =205 =24,
and /\ commutes with =,0,0,0%,0%, L, A.
Proof. We have [d, 0*] = —i[d, [A, d]] and Jacobi identity implies
—[0.[A, 1) + [A, [2,0]] + [0,[2,A]] = 0.
Hence, —2[0, [A, 7]] = 0 and [9,0*] = 0. The second relation [0, 0*] = 0 is the adjoint of the first.
Next,
A 0,0%] = —i[0,[A, d]].
Since [9, 0] = 0, Jacobi identity implies —[0, [A, d]] + [0, [0, A]] = 0. Hence,
[ A]] = [0,0"] = Ao

= + [0, 0%] + [0, 0*] = Ao+ Ay Finally, [0, Ag] =
(A, ] are immediate. Furthermore, [0,L] = dw = 0

9
Il
—

3:

[0,
From ([@.5),we have A\ = [0 + 0, 0* + 0*]
[0%, No] = [0, 03] = [0%, 23] = 0 and
together with Jacobi identity implies

[L, Aol = [L,[0,0%]] = —[0,[0%,L]] =i[d,0] = 0.
By taking adjoint, [A5, A] = 0. O
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4.2. Hodge Theory on Compact Kidhler Manifolds. Now, we assume that (X, w) is a comapct
Kéhler manifold. The identity A = 2/ ; shows that A is homogeneous with respect to bidegree,
Hg’q(X) = HP4(X), and that there is an orthogonal decomposition

4.7) H(X) = @ HPUX).
p+q=k

As Ny = Ny = N3, we have HP1(X) = HPA(X). Using Hodge theorem for de Rham and Dolbeault
cohomology, we get Hodge decomposition on compact Kéhler manifolds:

(4.8) HYX, €)= @ HYI(X),
p+q=k
(4.9) HY(X) = HIP(X).

A priori, it is not clear that the decomposition is independent of the choice of Kidhler metrics. We
now show the following result known as 0d-Lemma which will deduce that this is the case.

Lemma 2. Let (X, w) be a compact Kihler manifold. For a d-closed (p, q)-form a, TFAE

(a) « is d-exact.

(b) wis 0-exact.

(b)" wis o-exact

(c) wis dd-exact, i.e., there exists v € AP~V (X) such that & = 00v.
(d) o e HPA(X)",.

Proof. (c)=(a),(b),(b)" and (a), or (b) or (b")= (d) are obvious. It suffices to show that (d)= (c). As
da = 0, we have dnx = 0 = da = 0. Since « € HP(X)*, there exists B € AP1~1(X such that a = 0.
By Hodge decomposition for Aj:

APATHX) = HPAL(X) @im(D ),

we can write B = h + (00* + 0*0)u for some u € APA7Y(X). Let v := 0*u € AP~Y171(X) and
w = 0*u € APTLI-1(X). Therefore, by (&5),

& = 000 + 00*w = —00v — 0 ow.
However, as du = 0 and 0*dw € ker 0+, 0*0w = 0 and hence a = ddv. O
Corollary 3. is independent of the choice of Kiihler metric.

Proof. Let w' be another Kihler metric on X. We denote H?1(X, w) and HP(X, w') be the harmonic
forms with respect to w and w’ respectively. Given a Dolbeault cohomology class [xg] € H g 1(X), we
denote « € HP1(X,w) and &’ € HP1(X, w’) be the corresponding harmonic representative of [«g].
By definition, there exists y € AP779(X) such that « = &’ + . However, ddy = d(a —a’) = 0 shows
that dy € HP1(X)* by Hodge decomposition for /. Hence, 0A € im(A) and thus a, a’ represent
the same de Rham cohomology class. O

We denote Betti number and Hodge number by
by = dim¢ HY(X,C), hP7 := dim¢ HY'(X).
Then (4.8), (.9), and Kodaira—Serre duality implies
be(X) = Z hPA,  hPA(X) = kTP, WPA(X) = B"TPTTI(X).
p+q=k
Particular, this gives another topological constraints for compact Kdhler manifolds

Corollary 4. If X is a compact manifold, then byy1(X) is even.
Proof. This follows from by, 1(X) = 2 ZI;=0 hPAH1I=P(X). U
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