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1. SINGULAR/DE RHAM COHOMOLOGY AND DE RHAM THEOREM

1.1. Singular Cohomology. Let X be any topological space. Recall that a singular k-simplex is a
continuous map σ : ∆k Ñ X, where ∆k is the standard k-simplex given by

∆k :“ tpt0, . . . , tkq P Rk`1 :
k
ÿ

i“0

ti “ 1, ti ě 0, 0 ď i ď ku,

For 0 ď i ď k, we define a singular pk´ 1q-complex by

Biσpt0, . . . , tk´1q “ σpt0, . . . , ti´1, 0, ti, . . . , tk´1q, .

The singular k-chains SkpXq is the free abelian groups generated by the set of all singular k-simplices
and we define B : SkpXq Ñ Sk´1pXq by

Bp
ÿ

j

njσjq “
ÿ

j

njBσj, Bσj “

k
ÿ

i“0

p´1qiBiσj.

One can verify direct that B2 “ 0 and thus defines a complex pS‚pXq, Bq. The k-th singular homology
of X is defined by

HkpXq :“ kerpB : SkpXq Ñ Sk´1pXqq{impB : Sk`1pXq Ñ SkpXqq.

Fact 1 (Poincaré Lemma). If U is a convex open set in Rn, then HkpUq “ 0 for k ą 0.

This is proved by constructing a homotopy operator h : SkpXq Ñ Sk`1pXq via cone construction
satisfying Bhσ` hBσ “ σ, for any σ P SkpXq.

Now, if R is a commutative ring, then we set SkpX, Rq “ HomZpSkpXq, Rq and δk : SkpX, Rq Ñ
Sk`1pX, Rq is the dual homomorphism. Again, we still have δ2 “ 0 and thus the k-th singular
cohomology with coefficients in R is given by

HkpX, Rq :“ kerpδ : SkpX, Rq Ñ Sk`1pX, Rqq{impδ : Sk´1pX, Rq Ñ SkpX, Rqq.

By Poincaré lemma, we also have HkpU, Rq “ 0 for any convex open set U Ă Rn and k ą 0.
1
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1.2. Recap on Differential Forms and de Rham Cohomology. Let M be a smooth manifold of
dimension m, i.e.,

(i) M is a second countable, Hausdorff space,
(ii) there exists an open covering tUαuαPI and homeomorphism σα : Uα Ñ Rm onto some open

set Vα such that the transition maps

σαβ :“ σα ˝ σ´1
β : σβpUα XUβq Ñ σαpUα XUβq

are smooth for any α, β P I.

Remark 1. Here, we always assume that M is second countable. The important consequence of
second countability is that M admits a smooth partition of unity: for any open covering tUαuαPI ,
there exists tρα P C8pMquαPI (indexed over the same set I) such that supp ρα Ă Uα, tsupp ραuαPI is
locally finite1, and

ř

αPI ρα “ 1.

We denote TM by its tangent bundle and T˚M by its cotangent bundle. For 0 ď k ď m, ΛkT˚M is
the k-th exterior bundle for T˚M. A smooth k-form is a smooth section α : M Ñ ΛkT˚M. Locally,
given a local coordinate system px1, . . . , xmq near p, we can write α locally as

α “
ÿ

|I|“k

αIdxI ,

where we use the multi-indices notation: I “ pi1, . . . , ikq P Nk with 0 ď i1 ă ¨ ¨ ¨ ă ik ď m and
αI :“ αi1¨¨¨ik , dxI “ dxi1 ^ ¨ ¨ ¨ ^ dxik , and |I| :“ k.

We denote AkpMq by the space of smooth k-forms on M. There is a natural differentiation
d : AkpMq Ñ Ak`1pMq, called the exterior derivative, which is locally defined by

dα “
ÿ

|I|“k

m
ÿ

j“1

BαI

Bxj
dxj ^ dxI .

By commutativity of mixed derivatives, one can easily see that d2 “ 0. This defines a complex

pA‚pMq, dq : 0 Ñ C8pMq d
ÝÑ A1pMq d

ÝÑ A2pMq Ñ ¨ ¨ ¨
d
ÝÑ AmpMq Ñ 0,

called the de Rham complex. The k-th cohomology of the complex is called the de Rham cohmology:

Hk
dRpM, Rq :“ kerpd : AkpMq Ñ Ak`1pMqq{impd : Ak´1pMq Ñ AkpMqq

We usually call α P kerpdq a closed form and α P impdq an exact form. Moreover, recall that

dpα^ βq “ dα^ β` p´1qkα^ dβ.

Hence, H‚
dRpM, Rq “

À

k Hk
dRpM, Rq is a graded ring. If f : M Ñ N is a smooth map between

smooth manifolds, then it induces a R-linear map f ˚ : AkpNq Ñ AkpMq given by

p f ˚αqppv1, . . . , vkq “ αp f ppqpd fppv1q, . . . , d fppvkqq, @p P M, v1, . . . , vk P Tp M,

where d fp : Tp M Ñ TpN is the differential at p and we identify ΛkT˚p M as the space of alternating
k-linear form on Tp M. Moreover, we have

f ˚pα^ βq “ f ˚α^ f ˚β, f ˚dα “ d f ˚α.

Particularly, f induces a ring homomorphism f ˚ : H‚
dRpN, Rq Ñ H‚

dRpM, Rq.
Finally, we recall Poincaré Lemma for de Rham cohomology.

Lemma 1. Let U Ă Rm be a convex open set. For 1 ď k ď m, if α P AkpUq is a closed form, then there
exists β P Ak´1pUq such that α “ dβ. In other words, Hk

dRpU, Rq “ 0.
1This means that for any p P M, there exists a neighborhood U of p such that supp ρα XU “ H for all but finitely

many α P I
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Sketch of Proof. The idea is again to construct a homotopy operator on the cochain level. WLOG, we
may assume that 0 P U. If α “

ř

|I|“k f Ipx1, . . . , xmqdxI , then we define

K : Ak`1pUq Ñ AkpUq, Kα “
ÿ

|I|“k

˜ˆ 1

0
tk f Iptxqdt

¸

k
ÿ

j“1

p´1qjxij dxi1 ^ ¨ ¨ ¨ ^
ydxij ¨ ¨ ¨ dxik

By direct computation and fundamental theorem of Calculus, α “ dKα` Kdα “ dpKαq. �

1.3. de Rham Theorem. Now, we can state de Rham Theorem.

Theorem 1. Let M be a smooth manifold. Then we have a natural isomorphism

HkpM, Rq – Hk
dRpM, Rq.

In order to sketch some ideas on de Rham theorem, we need some preparation. Notice that via
projection, ∆k is affine equivalent to

tpx1, . . . , xkq P Rk :
k
ÿ

j“1

xj ď 1, xj ě 0, 1 ď j ď ku,

which we still denote by ∆k. We say σ : ∆k Ñ M is a smooth singular k-simplex if σ extends to
some smooth maps on an open neighborhood of ∆k Ă Rk. Proceeding as the construction in section
1.1, we can define the CkpMq, the chain complex of smooth k-simplices and boundary operator
B : CkpMq Ñ Ck´1pMq with B2 “ 0. We denote H8

k pMq by the corresponding homology group,
called the smooth singular homology of M.

Given a k-form α P AkpMq, σ˚α is a k-form defined on an open neighborhood of ∆k, we can defineˆ
σ

α :“
ˆ

∆k
σ˚α.

We extend this Z-linear to any
ř

i niσi and get a group homomorphismˆ
α : CkpMq Ñ R, σ ÞÑ

ˆ
σ

α.

Also, notice that
´

α is also linear in α and thus we obtain a group homomorphism
ˆ

: AkpMq Ñ CkpM, Rq :“ HomZpCkpMq, Rq, α ÞÑ

ˆ

σ ÞÑ

ˆ
σ

α

˙

.

By fundamental theorem of Calculus, it is easy to prove the following Stokes’ theorem for chain:ˆ
σ

dα “

ˆ
Bσ

α, @α P Ak´1pMq, σ P CkpMq.

As in singular cohomology, we denote δ : CkpM, Rq Ñ Ck`1pM, Rq by the adjoint of B and define
singular cohomology for smooth cochains by

Hk
smpM, Rq :“ kerpδ : CkpM, Rq Ñ Ck`1pM, Rqq{impδ : Ck´1pM, Rq Ñ CkpM, Rqq

Then Stokes’ theorem reads
´

σ dα “ δ
´

α and thus this defines a group homomorphism

(1.1)
ˆ

: Hk
dRpM, Rq Ñ Hk

smpM, Rq

We prove that (1.1) is an isomorphism in the following steps.
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(1) Both Hk
dR and Hk

sm satisfies Mayer–Vietoris property: for two open sets U, V Ă M, then we
have a long exact sequence in cohomology:

¨ ¨ ¨ Hk
dRpU YVq Hk

dRpUq ‘ Hk
dRpVq Hk

dRpU XVq Hk`1
dR pMq ¨ ¨ ¨

¨ ¨ ¨ Hk
smpU YVq Hk

smpUq ‘ Hk
smpVq Hk

smpU XVq Hk`1
sm pMq ¨ ¨ ¨

´ ´ ´ ´

an (1.1) on the corresponding domain forms the above commutative diagram. By 5-lemma,
if (1.1) is an isomorphism on U, V, and U XV, then it is an isomorphism on U YV.

(2) If (1.1) is an isomorphism on a family of disjoint open sets, then it is an isomorphism on
their union. This is obvious from Hk

˚p
Ť

α Uαq “
À

α Hk
˚pUαq for ˚ “ dR or sm.

(3) By Poincaré Lemma for both singular cohomology and de Rham cohomology, we know that´
is an isomorphism for convex open set U Ă Rm. By induction and pU1 Y ¨ ¨ ¨UNq XV “

pU1 XVq Y ¨ ¨ ¨ pUN XVq, it is an isomorphism for finite union of convex open sets.
(4) Let f : M Ñ r0,8q be a proper map2, i.e., preimage of compact sets are compact. Let An “

f´1prn, n` 1sq. We can cover An by finite union Un of open sets which are diffeomorphic to
convex sets in Rm which are contained in f´1prn´ 1{2, n` 3{2sq. We then set U “

Ť

k U2k
and V “

Ť

k U2k`1 which are disjoint unions of convex open sets. By (2) and (4), (1.1) is an
isomorphism on U, V, and U XV. Hence, (1.1) is an isomorphism on M “ U YV.

(5) The final step is to show that the inclusion CkpMq ãÑ SkpMq is a chain homotopic equivalence.
A well-known facts known as Whitney approximation theorem from differential topology
asserts that any continuous map between smooth manifolds can be approximated by smooth
one. Using this, for each singular k-simplex σ : ∆k Ñ M, one can construct a (continuous)
homotopy H : ∆ˆ r0, 1s Ñ M so that Hp¨, 0q “ σ and Hp¨, 1q is a smooth singular k-simplex.
Once we construct such operator, one can easily deduce that CkpMq ãÑ SkpMq induces an
isomorphism H8

k pMq – HkpMq and thus Hk
smpM, Rq – HkpM, Rq. The detail is quite tedious

and can be found in John Lee’s Introduction to Smooth Manifolds, Theorem 18.7.

Remark 2. The procedure above is known as Mayer-Vietoris argument. This was later generalized
by Weil to Čech complex with respect an open covering. We give a short outline on the modern
proof of de Rham–Weil isomorphism. Let Ck

M,R be the sheaf of singular k-cochains defined by
U ÞÑ CkpU, Rq, Ak

M,R be the sheaf of smooth k-forms defined by U ÞÑ AkpUq, and RM be the
constant sheaf with stalk R on M. The exterior derivative and coboundary operator extends to a
morphism of sheaves d : Ak

M,R Ñ Ak`1
M,R and δ : Ck

M,R Ñ Ck`1
M,R. Moreover, Poincaré Lemma for both

cohomology theories and partition of unity shows that

0 Ñ RM Ñ A0
M,R

d
ÝÑ A1

M,R
d
ÝÑ ¨ ¨ ¨ ,

0 Ñ RM Ñ C0
M,R

δ
ÝÑ C1

M,R
δ
ÝÑ ¨ ¨ ¨ .

are both acyclic resolution of RM. Hence,we have the isomorphism:

HkpMq “ HkpΓpC‚M,Rq, δq – HkpM, RMq – HkpΓpA‚M,Rq, dq “ Hk
dRpM, Rq

Remark 3. In fact, (1.1) is a ring homomorphism (for singular cohomology, ring structure is given by
cup product) and is functorial.

2One can construct such function by partition of unity. It is well-known that for any topological manifold M, one can
find a countable open covering tUju

8
j“1 with Ui compact. Let tρju

8
j“1 be the partition of unity subordinated to tUju

8
j“1.

We then set f “
ř8

j“1 jρj.
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2. HODGE THEOREM ON HARMONIC FORMS

2.1. Preliminaries. Let us first recap some simple linear algebra. Let V be a R-vector space of
dimension m. Given an inner product x¨, ¨y on V, this induces an inner product on ΛkV for 0 ď k ď m
by first defining on monomials

xuI , vJy “ detpxuik , vjlyq, uI “ ui1 ^ ¨ ¨ ¨ ^ uik , vJ “ vj1 ^ ¨ ¨ ¨ ^ vjk P ΛkV,

and then extending bilinearly to whole ΛkV. Particularly, if te1, . . . , emu is an ONB for V, then
teI : I “ pi1, . . . , ikq, 1 ď i1 ă ¨ ¨ ¨ ă ik ď mu is an ONB for ΛkV.Particularly, for k “ m, we call the
top form dV :“ e1 ^ ¨ ¨ ¨ ^ em a Riemannian volume form of V (with respect to the inner product).

Now, we define Hodge ˚-operator by

˚ : ΛkV Ñ Λm´kV, eI ÞÑ eIc ,

where I “ pi1, . . . , ikq and Ic is the complement of I in t1, . . . , muwith the ordering so that

eI ^ ˚eI “ e1 ^ ¨ ¨ ¨ ^ em.

Again, we extend R-linearly to general k-vector α “
ř

|I|“k αIeI , β “
ř

|J|“k β JeJ :

α^ ˚β “
ÿ

|I|“|J|“k

αI β JeI ^ ˚eJ “ xα, βydV

Note that ˚ is independent of the choice of ONB with the same orientation and

(2.1) ˚2 “ p´1qkpm´kq “ p´1qkpm´1q

Previously, we define integration of differential forms with respect to a smooth singular simplex.
Now, we review integration of differential forms on smooth manifolds. Let M be an oriented
smooth manifold, i.e., M admits a smooth atlas whose transition functions has positive Jacobians,
for u P AmpMq, we can define integration of u on M by

(1) First, if u vanishes outside a coordinate chart U and u “ f px1, . . . , xmqdx1 ^ ¨ ¨ ¨ ^ dxm, then
ˆ

M
u :“

ˆ
U

f px1, . . . , xmqdx1 ¨ ¨ ¨ dxm.

(2) If we take tραuαPI be the partition of unity subordinated to the oriented atlas, then we define
ˆ

M
u :“

ÿ

αPI

ˆ
Uα

ραu.

The key upshot is that under oriented hypothesis, the change of variable formula shows that the
integration is independent of the choice of coordinates. The key formula for us is Stokes’ formula:

ˆ
M

du “
ˆ
BM

u, u P Am´1pMq.

Now, for an oriented m-dimensional Riemannian manifold pM, gq. By definition, for each p P M,
gp is an inner product on each tangent space Tp M. By duality, g also induces an inner product on
V “ T˚p M and thus on ΛkT˚p M for 0 ď k ď m, which we denote by x¨, ¨y. Since M is oriented, we
denote Riemannian volume form on M (with respect to g) by dVg P AmpMq. We then define Hodge
˚-operator ˚ : AkpMq Ñ Am´kpMq by applying above construction to each T˚p M. By construction,

(2.2) α^ ˚β “ xα, βydVg, α, β P AkpMq
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For simplicity, we now assume that M is closed3 and endow AkpMq an L2-inner product by

(2.3) pα, βq “

ˆ
M
xα, βydVg, @α, β P AkpMq

and we denote }α} “ pα, αq1{2. We define adjoint d˚ : Ak`1pMq Ñ AkpMq of d by

(2.4) pdα, βq “ pα, d˚βq, α P AkpMq, β P Ak`1pMq.

By (2.2), (2.3), and Stokes’ formula, we get

pdα, βq “

ˆ
M
xdα, βydVg “

ˆ
M

dα^ ˚β “

ˆ
M

dpα^ ˚βq ´ p´1qkα^ dp˚βq “ p´1qk`1
ˆ

M
α^ dp˚βq.

Then (2.1) implies

pdα, βq “ p´1qk`1p´1qkpm´1q
ˆ

M
α^ ˚ ˚ pd ˚ βq “ p´1qkm`1pα, ˚d ˚ βq.

This shows that the adjoint d˚ can be expressed into d and Hodge ˚-operator: d˚ “ p´1qkm`1 ˚ d˚.

Definition 1. The Hodge Laplacian 4 : AkpMq Ñ AkpMq on k-forms is defined by by 4 “

dd˚ ` d˚d. A smooth k-form α P AkpMq is harmonic if 4α “ 0 and we denote HkpMq by the space
of harmonic k-forms on M.

One can easily verify that for M “ Rm with Euclidean metric g “
řm

j“1 dx2
j ,

4α “ ´
ÿ

|I|“k

¨

˝

m
ÿ

j“1

B2αI

Bx2
j

˛

‚dxI , @α “
ÿ

|I|“k

αIdxI P AkpMq

This justifies the name Laplcian for Hodge Laplacian 4. Also, notice that 4 is self-adjoint, i.e.,

p4α, βq “ pα,4βq, @α, β P AkpMq.

2.2. Hodge Theorem: Statement and Some Ideas of Proof. Let M be an oriented, closed manifold.
Given a cohomology class rαs P Hk

dRpM, Rq, we wish to find a canonical representative within the
class. If we endow M a Riemannian metric g, then we endow AkpMq a pre-Hilbert space structure
by the L2-norm (energy) by (2.3). One possibility is to require α to have minimal energy among the
cohomology class rαs. For any β P Ak´1pMqwith dβ ‰ 0 and t P R, we find that

}α` tdβ}2 “ }α}2 ` 2tpα, dβq ` t2}dβ}2

“}dβ}2pt` pα, dβq{}dβ}2q2 ` }α}2 ´ |pα, dβq|2{}dβ}2 ď }α}2

iff pα, dβq “ pd˚α, βq “ 0 for any β P Ak´1pMq. Hence, d˚α “ 0. On the other hand,

p4γ, γq “ pdd˚γ, γq ` pd˚dγ, γq “ }dγ}2 ` }d˚γ}2, @γ P AkpMq.

Based on discussion above, we conclude that HkpMq “ kerpdq X kerpd˚q and

Proposition 1. Let pM, gq be an oriented, closed Riemannian manifold, rα0s P Hk
dRpM, Rq be a cohomology

class. Then α P rα0s has minimal energy if and only if α P HkpMq.

Remark 4. Above proposition is the analogous to so called Dirichlet principle for harmonic functions.
Let Ω Ă Rm be a bounded open set. We define Dirichlet energy by

Er f s “
1
2

ˆ
Ω
|∇ f |2dx.

The Euler–Lagrange equation for E is exact the usual Laplace equation 4 f “ 0.

3i.e., M is compact and BM “ H.
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Thus, the question in consideration becomes whether one can find a harmonic representative
among each cohomology class? Hodge theorem asserts that the answer is affirmative:

Theorem 2. Let pM, gq be an oriented, closed Riemannian manifold. For each cohomology class rα0s P

Hk
dRpM, Rq, there exists a unique harmonic representative α P HkpMq with α P rα0s. In other words,

Hk
dRpM, Rq – HkpMq, rα0s ÞÑ α.

An important consequence of Theorem 2 is that it gives a quick proof for Poincaré duality.

Corollary 1 (Poincaré Duality). Let M be an oriented compact manifold. The bilinear pairing AkpMq ˆ
An´kpMq Ñ R give by pα, βq ÞÑ

´
M α^ β descends to a non-degenerate pairing on de Rham cohmology

Hk
dRpM, Rq ˆ Hm´k

dR pM, Rq Ñ R.

Proof. By Stokes’ theorem, it is clear that the pairing descends to the level of de Rham cohomol-
ogy. We choose a Riemannian metric g on X and identify Hk

dRpM, Rq – HkpMq and Hm´k
dR pMq –

Hm´kpMq by Theorem 2. Notice that Hodge ˚-operator commutes with 4, since β P Am´kpMq,
˚ ˚ β “ p´1qkpm´kqβ and thus

4 ˚ β “ p´1qmpk´1q`1d ˚ d ˚ ˚β` p´1qkm`1 ˚ d ˚ d ˚ β

“p´1qmpm´k´1q`1 ˚ d ˚ d ˚ β` p´1qmpm´kq`1 ˚ ˚d ˚ dβ “ ˚4β.

It follows that ˚ : HkpMq Ñ Hm´kpMq is an isomorphism. Moreover, if α P HppMq and α ‰ 0, thenˆ
M

α^ ˚α “ }α}2 ą 0

Thus, the pairing is non-degenerate. induces an isomorphism ˚ : HkpMq „ÝÑ Hm´kpMq. Combing
with Hodge isomorphism, ˚ : Hk

dRpM, Rq
„
ÝÑ Hm´k

dR pM, Rq. �

In fact, Theorem 2 is deduced from the following stronger statement.

Theorem 3 (Hodge Decomposition). Let pM, gq be an oriented, closed Riemannian manifold. We have an
orthogonal decomposition with respect to (2.3):

(2.5) AkpMq “ HkpMq ‘4pAkpMqq.

Proof of Theorem 2. Given any closed form α0 P AkpMq, we decompose α0 uniquely by (2.5):

α0 “ α`4β “ α` pdd˚β` d˚dβq,

for some β P AkpMq. By assumption, dα0 “ 0 “ dd˚dβ and hence d˚dβ “ 0 since

0 “ pdd˚dβ, d˚dβq “ }d˚dβ}2.

Therefore, α0 “ α` dpd˚βq and α is the unique harmonic representative within rα0s. �

Notice that (2.5) is equivalent to solvability for inhomogeneous equation for Hodge Laplacian.

Theorem 4. Given β P AkpMq, 4α “ β is solvable iff β P HkpMqK.

One direction is clear. If 4α “ β for some α P AkpMq, then for any γ P HkpMq,

pβ, γq “ p4α, γq “ pα,4γq “ 0.

The other inclusion requires some (nowadays standard) PDE techniques. Let us sketch the ideas of
proof. The first step is some functional analytic formalism. Recall that AkpMq is a pre-Hilbert space
with respect to L2-inner product (2.3). Given β P AkpMq, if 4α “ β is solvable, then

pα,4γq “ p4α, γq “ pβ, γq, @γ P AkpMq,
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which is a linear form on imp4q. The essence here is to construct α first in the dual formulation.
Given β P HkpMqK, we define a linear form ` on the subspace imp4q Ă AkpMq by

(2.6) `p4γq :“ pβ, γq, @γ P AkpMq.

Notice that this is well-defined since β P HkpMq: if γ1 P AkpMq with 4γ1 “ 4γ, then γ1 ´ γ P

HkpMq and thus pβ, γq “ pβ, γ1q. The first difficulty is to prove the following estimate:

Proposition 2 (Closed Range). There exists C ą 0 such that }β} ď C}4β} for any β P HkpMqK.

With Proposition 2, we prove that ` is a bounded linear form on imp4q. Indeed, since HkpMq “
kerp4q is a closed subspace, we denote P : AkpMq Ñ HkpMq by the projection. We set θ :“
γ´ Ppγq P HkpMqK. Then 4θ “ 4γ and

|`p4γq| “ |`p4θq} “ |pβ, θq| ď }β}}θ} ď C}β}}4θ} “ C}β}}4γ}.

Hence, by Hahn–Banach theorem, ` can be extended to a bounded linear form ` on AkpMq with the
same norm. In the terminology of PDE, we call a bounded linear operator ` on AkpMq satisfying
(2.6) a weak solution of 4α “ β. The final analytic input is the following proposition.

Proposition 3 (Elliptic Regularity). For any weak solution ` of 4α “ β is actually smooth, i.e., there
exists α P AkpMq such that `pγq “ pα, γq for any γ P AkpMq.

We find HkpMqK “ imp4q, assuming Proposition 2 and 3. We end with a few comments on them.
(1) Proposition 2 is also known as the closed range for if pβ jq

8
j“1 is a sequence such that 4β j Ñ γ

in L2-norm, then Proposition 2 implies that

}β j ´ βk} ď C}4pβ j ´ βkq} Ñ 0, j, k Ñ8.

Hence, tβ ju
8
j“1 is a Cauchy sequence in the pre-Hilbert space AkpMq. A technical point

here is that β j converges a priori to the limit β8 in the completion of AkpMq. By Riesz
representation theorem, β8 is the weak solution of 4β “ γ. By Proposition 3, β8 P AkpMq
and hence 4β8 “ γ. In other words, imp4q is closed.

(2) Both Proposition 2 and 3 depend heavily on the differential operator 4. The type of operators
enjoy these facts are called elliptic operators. A prototype of ellipitc operator is of course the
standard Laplacian on Euclidean space. Proposition 3 is the generalization of the classical
facts that harmonic functions are actually smooth.

(3) The proof for closed range also shows that dimR HkpXq ă 8.
(4) The actual proof of both Propositions requires some knowledge on Sobolev spaces, which

generalizes the notion of derivatives to non-differentiable functions. For definitions and
related results of Sobolev spaces, and details of actual proof to both Propositions, one can
consult Griffths–Harris, Wells, and Warner.

3. COMPLEX MANIFOLDS AND KÄHLER METRICS

3.1. An Interlude on Complex Linear Algebra. We begin with a digression on linear algebra.
(1) Let W be a complex vector space with dimC W “ n. We choose a C-basis te1, . . . , enu so that

W – Cn. Let pz1, . . . , znq P Cn be the corresponding coordinates. By splitting zj into real and
imaginary parts

zj “ xj ` iyj, 1 ď j ď n,
we see that W has a (non–canonical) real vector space structure WR of real dimension 2n with
R-basis te1, , . . . , en, ie1, . . . , ienu. Multiplication by imaginary unit w ÞÑ iw can be identified
as an R-linear endomorphism J : WR Ñ WR whose matrix representation with respect to

above R-basis is given by J “
ˆ

0 ´In
In 0

˙

and satisfies J2 “ ´IdWR
.
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(2) Conversely, given a real vector space V, a linear complex structure J : V Ñ V is a R-linear
endomorphism with J2 “ ´IdV . We can then endow V a C-vector space structure by

pa` ibqv :“ a` bJv, @v P V, @a, b P V.

Notice that if V admits a linear complex structure, then dimR V must be even4. Hence, a
complex vector space is equivalent to a real vector space with a linear complex structure.
Moreover, a R-linear map T : pV, Jq Ñ pV1, J1q is C-linear iff J1 ˝ T “ T ˝ J. Hence, the
category of C-vector space is equivalent to the category of R-vector space equipped with a
linear complex structure.

(3) Another way to obtain a complex vector space from a real one is extension by scalar. Let V be
a real vector space with dimR V “ m. The complexification of V is defined by VC :“ VbR C.
which is a C-vector space. If te1, . . . , emu is a R-basis for V, then te1 b 1, . . . , em b 1u is a
C-basis for VC. This shows that dimC VC “ m. On the complexification VC of V, we can
define (canonical) complex conjugation, which is an anti C-linear map given by

¨ : VC Ñ VC, vb z ÞÑ vb z̄.

and extends additiviely. Notice that V embeds into a R-linear subspace of VC by v ÞÑ vb 1
which can be characterized as the fixed subspace tv1 P VC : v1 “ v1u.

Remark 5. Let W be a C- vector space. There are two ways to define complex conjugation.
(a) We can define a C-vector space W which is the same underlying abelian group as W and

conjugate complex multiplication z ¨w :“ zw for w P W and z P C. Then IdW : W Ñ W
is an anti C-linear isomorphism.

(b) By choosing a C-basis te1, . . . , enu of W, we identify W – Cn. However, Cn “ RnbR C “

Rn ‘ iRn. Hence, we define w “ v ´ iu if w “ v ` iu according to the direct sum
decomposition. Notice that this construction depends on the choice of basis and thus is
not canonical.

(4) Conversely, given a complex vector space W with dimC W “ m with an anti C-linear
involution c : W Ñ W, i.e., c2 “ IdW , the fixed subspace V :“ Wc :“ tw P W : cpwq “ wu is
a R-vector subspace WR, called the real form of W. One can easily show that W “ V bR C.
In other words, a complex vector space W is the complexification of some real vector space
V iff we endow W an anti C-linear involution c : W Ñ W.

Remark 6. Notice that the real form of a complex vector space is not unique. For instance, in
representation theory, slpn, Cq is both the complexification of slpn, Rq and upnq.

(5) Let pV, Jq be a real vector space with linear complex structure of real dimension 2n, which is
equivalent to a complex vector space of complex dimension n by (2). If we complexify V
into VC and extend J to VC by Jpvb zq “ Jpvq b z, then we have eigenspace decomposition:

VC “ V1,0 ‘V0,1, V1,0 :“ tv1 P VC : Jv1 “ iv1u, V0,1 :“ tv2 P VC : Jv2 “ ´iv2u.

Notice that V1,0, V0,1 are C-linear space of (complex) dimension n and complex conjugation
induces a R-linear isomorphism V1,0 – V0,1. Moreover, pV, Jq – pV1,0, iq and pV, Jq –
pV0,1, iq as C-vector space. Here, pV, Jqmeans the conjugate C-vector space5 of pV, Jq.

(6) Let pV, Jq be a real vector space with linear complex structure. We denote V˚ :“ HomRpV, Rq

be the R-dual space of V. Then J induces a linear complex structure on V˚ by

xv, Juy :“ xJv, uy, v P V, u P V˚,

4If dimR V is odd, then there exists a real eigenvalue λ of J. However, J2 “ ´IdV implies λ2 “ ´1, a contradiction.
5Recall that for a C-vector space W, W is also a C-vector space with the same underlying abelian group structure as W

and conjugate complex multiplication z ¨w :“ zw for w P W and z P C.
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where x¨, ¨y : V ˆV˚ Ñ R is the natural pairing. By functoriality of complexification,

pV˚qC :“ pV˚q bR C – HomRpV, Cq – HomCpVC, Cq “: pVCq
˚,

and the induced eigenspace decomposition on pV˚qC is given by

pV˚q1,0 – tu P HomRpV, Cq : Ju “ iuu – pV1,0q˚,

pV˚q0,1 – tu P HomRpV, Cq : Ju “ ´iuu – pV0,1q˚.

Finally, notice that pV˚q1,0 – HomCppV, Jq, Cq.
(7) Again let pV, Jq be a complex vector space. The decomposition VC “ V1,0 ‘V0,1 induces a

decomposition on the exterior algebra (over C):

ΛkVC –
à

k“p`q
Λp,qV, Λp,qV :“ ΛpV1,0 bC ΛqV0,1.

For each 1 ď p, q ď n “ dimCpV, Jq, we identify Λp,qV as a subspace of ΛkVC by

vI b uK ÞÑ vI ^ uK.

and from V1,0 “ V0,1, we see that Λp,qV – Λq,pV.
(8) Let pV, gq be an Euclidean vector space. A linear complex structure J on V is compatible

with g with J P OpV, gq, i.e., gpv, wq “ gpJv, Jwq for any v, w P V. In this case, we set

ωpv, wq :“ gpJv, wq, v, w P V.

Notice that ωpw, vq “ gpJw, vq “ gpJ2w, Jvq “ ´gpw, Jvq “ ´ωpv, wq. Hence, ω P Λ2V and

ωpJv, Jwq “ gpJ2v, Jwq “ ´gpv, Jwq “ ´ωpw, vq “ ωpv, wq, @v, w P V.

If we extend ω C-linear to
Ź2 VC, then for v, w P V1,0 or V0,1,

ωpv, wq “ ωpJv, Jwq “ ωp˘iv,˘iwq “ ´ωpv, wq ùñ ωpv, wq “ 0.

As a result, ω P Λ1,1V˚ XΛ2V, called the hermitian form of pV, g, Jq.
(9) Let pV, g, Jq be an Euclidean space with compatible linear complex structure. We set

hpv, wq :“ gpv, wq ´ iωpv, wq, v, w P V.

Then h is clearly R-bilinear and hpv, vq “ gpv, vq ą 0 for v P Vzt0u. Moreover,

hpw, vq “ gpv, wq ` iωpv, wq “ gpv, wq ´ iωpv, wq “ hpv, wq

and hpJv, wq “ gpJv, wq ´ iωpJv, wq “ ωpv, wq ` igpv, wq “ ihpv, wq. Thus, h is a positive
definite hermitian product on pV, Jq.

(10) Alternatively, one can extend g into a hermitian metric on VC by

gCpvb µ, wb λq “ µλgpv, wq, v, w P V, µ, λ P C.

One can easily see that gCpV1,0, V0,1q “ 0 and thus V “ V1,0 ‘V0,1 is an orthogonal decom-
position. However, under the isomorphism pV, Jq – pV1,0, iq, h “ 2gC

ˇ

ˇ

V1,0 .
(11) We now summarize above discussion in coordinates. Let px1, . . . , xnq be a C-basis for pV, Jq.

Then px1, y1 :“ Jx1, . . . , xn, yn “ Jxnq is a R-basis for V. Then

zj :“
1
2
`

xj ´ iyj
˘

, z̄j :“
1
2
`

xj ` iyj
˘

, 1 ď j ď n,

form bases for V1,0 and V0,1 respectively. Dually, if px1, . . . , xnq is a C-basis for pV˚, Jq, then
yj “ Jxj is dual basis for yj and

zj :“ xj ` iyj, z̄j :“ xj ´ iyj, 1 ď j ď n,
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are dual bases for zj and z̄j respectively. Suppose that hpxi, xjq “ hij. Then gCpzj, zkq “
1
2 hjk

and

hpxj, ykq “ hpxj, Jxkq “ ´ihjk, hpyj, ykq “ hpJxj, Jxkq “ hpxj, xkq “ hjk.

Since g “ Re h and ω “ ´ Im h, we see that

ωpxj, xkq “ ωpyj, ykq “ ´ Im hjk, ωpxj, ykq “ Re hjk

gpxj, xkq “ gpyj, ykq “ Rephjkq, gpxj, xkq “ Imphjkq.

Hence, we write

ω “ ´
ÿ

jăk

Imphjkqpxj ^ xk ` yj ^ ykq `

n
ÿ

j,k“1

Rephjkqxj ^ yk.

From zj ^ z̄k “ xj ^ xk ´ ipxj ^ yk ` xk ^ yjq ` yj ^ yk, we see that

(3.1) ω “
i
2

n
ÿ

j,k“1

hjkzj ^ z̄k P Λ1,1V˚ XΛ2V.

If we choose an ONB px1, y1 . . . , xn, ynq for g, then ω “ i
2
řn

j“1 zj ^ z̄j “
řn

j“1 xj ^ yj. We find
that hermitian form determines the Riemannian volume form on pV, g, Jq:

ωn

n!
“

ˆ

i
2

˙n

pz1 ^ z̄1q ^ ¨ ¨ ¨ ^ pzn ^ z̄nq

“x1 ^ y1 ^ x2 ^ y2 ^ ¨ ¨ ¨ xn ^ yn “: dVg P Λn,nV˚ XΛ2nV˚.

(12) As in the real case discussed in section 2, a hermitian product gC on VC induces hermitian
products x¨, ¨yC on ΛkV˚C for all 0 ď k ď 2n. We can then extend Hodge ˚-operator on pV, gq
C-linearly to ˚ :

Źk VC Ñ
Ź2n´k VC which is characterized by

(3.2) α^ ˚β̄ “ xα, βyCdVg, @α, β P ΛkVC.

Since VC “ V1,0 ‘ V0,1 is orthogonal with respect to gC, ΛkV˚C “
À

p`q“k Λp,qV˚ is also
an orthogonal decomposition. Moreover, notice that if γj P Λpj,qj V˚ for j “ 1, 2 with
p1 ` p2 ` q1 ` q2 “ 2n but pp1 ` p2, q1 ` q2q ‰ pn, nq, then γ1 ^ γ2 “ 0. Hence, by (3.2),

˚ : Λp,qV˚ Ñ Λn´q,n´pV˚.

3.2. Complex Manifold and Kähler Metrics. First, we recall the definition of holomorphic func-
tions in several variables. Let Ω Ă Cn be an open set, pz1, . . . , znq be standard complex coordinates on
Cn. We identify Cn – R2n via zj “ xj ` iyj. Hence, TpΩ has R-basis tB{Bx1, B{By1, . . . , B{Bxn, B{Bynu

with linear complex structure J : TpΩ Ñ TBΩ given by

JpB{Bxjq “ B{Byj, JpB{Byjq “ ´B{Bxj, j “ 1, . . . n,

Applying the discussion in previous section, if we consider the complexification pTpΩqC, then
pTpΩqC “ T1,0

p Ω‘ T0,1
p Ω and

B{Bzj “
1
2
`

B{Bxj ´ iB{Byj
˘

, B{Bz̄j :“
1
2
`

B{Bxj ` iB{Byj
˘

: j “ 1, . . . , n

are C-basis for T1,0
p Ω and T0,1

p Ω respectively. Similarly, on contangent space T˚p Ω has R-basis
tdx1, dy1, . . . , dxn, dynuwith linear complex structure

Jpdxjq “ dyj, Jpdyjq “ ´dxj, j “ 1, . . . , n,

and the complexification pT˚p ΩqC “ T˚1,0
p Ω ‘ T˚0,1

p Ω with dual basis tdzj :“ dxj ` idyju
n
j“1 and

tdz̄j :“ dxj ´ idyju
n
j“1, respectively.
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For f P C1pΩ, Cq, we can write the differential d fp P HomRpTpΩ, Cq – pT˚p ΩqC as

d fp “

n
ÿ

j“1

B f
Bxj
ppqdxj `

n
ÿ

j“1

B f
Byj
ppqdyj “

n
ÿ

j“1

B f
Bzj
ppqdzj `

B f
Bz̄j
ppqdz̄j.

Definition 2. We say f is holomorphic if d fp P Λ1,0T˚p Ω for any p P Ω. Equivalently,
(a) d fp P HomCpTpΩ, Cq, i.e., d fp is C-linear.
(b) f satisfies Cauchy–RIemann equation B f {Bz̄j “ 0 on Ω for j “ 1, . . . , n.

We denote OpΩq by the set of holomorphic functions on Ω.

A C1-map F “ pF1, . . . , Fmq : Ω Ñ Cm is called holomorphic if each Fj P OpΩq. Hence,
dFppT1,0

p Ωq Ă T1,0
FppqC

m and dFppT0,1
p Ωq Ă T0,1

FppqC
m. Now, we recall

Definition 3. A complex manifold X of (complex) dimesnon n is a smooth manifold of (real) dimen-
sion 2n with a holomorphic atlas , i.e., there exists an open covering tUαuαPI and homeomorphism
σα : Uα Ñ Cn onto some open set Vα such that the transition maps

σαβ :“ σα ˝ σ´1
β : σβpUα XUβq Ñ σαpUα XUβq

are holomorphic, @α, β P I. We write σα “ pz1, . . . , znq, called local complex coordinates on Uα.

For x P X, say x P Uα for some α P I, we define holomorphic tangent space TxX to be TσαpxqqVα

with linear complex structure defined as above. Since transition maps are holomorphic, dpσαβqσβpxq
is a C-linear isomorphism and thus is independent of the choice of σα.

On the other hand, X has a underlying smooth manifold structure and thus TxX has a underlying
real vector space structure, denoted by Tx,RX. The discussion above on open sets in Cn can be
applied to X in a direct manner and generalize to bundle level:

CTRX :“ TRXbR C “ T1,0X‘ T0,1X, TX – T1,0X, TX – T0,1X;

CT˚RX “ T˚1,0X‘ T˚0,1X, ΛkpCTXq “
à

p`q“k
Λp,qT˚X.

When X is a complex manifold, we always denote AkpXq by the smooth sections of ΛkpCTXq, i.e.,
the complex-valued differential forms, and AkpX, Rq by the real ones. A smooth section of Λp,qT˚X
is called a pp, qq-form. We denote Ap,qpXq by the space of pp, qq-forms. We also have

AkpXq “
à

p`q“k
Ap,qpXq.

For α P Ap,qpXq, we can locally write α with respect to a local complex coordinates

α “
ÿ

|I|“p,|J|“q

αI JdzI ^ dz̄J .

If we extend exterior derivative to complex-valued form d : AkpXq Ñ Ak`1pXq and restrict to Ap,q,
then we can decompose d “ B` B̄, where

B : Ap,qpXq Ñ Ap`1,qpXq, Bα “
ÿ

|I|“p,|J|“q

n
ÿ

j“1

αI J

Bzj
dzj ^ dzI ^ dz̄J

B̄ : Ap,qpXq Ñ Ap,q`1pXq, B̄α “
ÿ

|I|“p,|J|“q

n
ÿ

j“1

BαI J

Bz̄j
dz̄j ^ dzI ^ dz̄J .

Since d2 “ 0 and d2 “ B2 ` B̄B ` BB̄ ` B̄2 are in types pp` 2, 0q, pp` 1, q` 1q, and pp, q` 2q, we have

B2 “ B̄2 “ B̄B ` BB̄ “ 0.
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Notice that for p “ 0, kerpB̄q “ OpXq, the space of holomorphic functions on X. For p ą 0,
kerpB̄q “ ΩppXq, the space of holomorphic p-forms on X, the holomorphic section of Λp,0T˚X.
Clearly, on a coordinate open set U, α P ΩppXq can be locally written as

α|U “
ÿ

|I|“p

αIdzI , αI P OpUq.

Hence, for each 0 ď p ď n, we obtain a complex

pAp,‚pXq, B̄q : 0 Ñ ΩppXq Ñ Ap,0pXq B̄ÝÑ Ap,1pXq BÝÑ ¨ ¨ ¨ Ñ Ap,npXq Ñ 0.

The q-th cohomology of the complex is called the q-th Dolbeault cohomology of X:

(3.3) Hp,qpXq “ kerpB̄ : Ap,qpXq Ñ Ap,q`1pXqq{impB̄ : Ap,q´1pXq Ñ Ap,qpXqq.

As in the case of de Rham case, we call α P Ap,qpXq is B̄-closed if B̄α “ 0 and B̄-exact if α “ B̄β for
some β P Ap,q´1pXq.

Remark 7. An important fact is that we also have B̄-Poincaré Lemma, also known as Dolbeault–
Grothendieck Lemma, which says that on any open set U Ă Cn and α P Ap,qpUq with B̄α “ 0,
then there exists a ”suitable” open set V Ă Cn β P Ap,q´1pUq so that B̄β “ α on V. Hence, the
corresponding complex on the sheaf level is exact.

0 Ñ Ωp
X Ñ Ap,0

X Ñ Ap,1
X ¨ ¨ ¨ toAp,q

X Ñ 0

Moreover, Ap,q
X is acyclic since we can multiply a pp, qq-forms by partition of unity. Hence, we obtain

Dolbeault theorem which is complex analogue of de Rham theorem:

HqpX, Ωp
Xq – Hp,qpXq.

Now, we discuss the metric structure on a complex manifold. A hermitian metric h on a complex
manifold X is a smooth positive definite hermitian bundle metric on holomorphic tangent bundle
TX. That is, in terms of local coordinates pz1, . . . , znq on a coordinate open set U, we can write

h “
n
ÿ

j,k“1

hjkpzqdzj b dz̄k, hjk P C8pUq,

and phjkpzqq is a positive-definite hermitian matrix for each x P U. Following the discussion as
in previous section, h is equivalent to a Riemannian metric g “ Re h on TX or ω “ ´ Im h P
A1,1pXq X A2pX, Rq locally given by

ω “
i
2

ÿ

jăk

hjkdzj ^ dz̄k.

Definition 4. Let X be a complex manifold.
(i) A hermitian manifold is a pair pX, ωq, where ω is a smooth, positive-definite real p1, 1q-form,

called a hermitian metric, hermitian form, or fundamental p1, 1q-form associated to h.
(ii) A hermitian metric is called Kähler if dω “ 0.

(iii) X is called a Kähler manifold if X admits a Kähler metric.

We know that if ω is a hermitian metric, then one can express Riemannian volume form by

dVω “
ωn

n!
Since ω is real, dω “ 0, Bω “ 0, and B̄ω “ 0 are equivalent. In local coordinates, Bω “ 0 means

Bhjk

Bzl
“
Bhlk

Bzj
, 1 ď j, k, l ď n.

Using this, one can show existence of holomorphic normal coordinates for Kähler metric.
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Theorem 5. Let pX, ωq be a hermitian manifold. Then ω is Kähler iff for any x P X, there exists local
holomorphic coordinates pz1, . . . , znq centered at x so that hjk “ δjk `Op|z|2q.

The proof is quite standard so we omit (see Wells or Griffths–Harris, or many other textbooks).
We end this section by discussing some examples and non–examples for Kähler manifolds.

Example 1. The most important example for us is complex projective space CPn. We have a natural
Kähler metric given by Fubini–Study metric:

p˚ωFS “
i

2π
BB̄ logp|ξ0|

2 ` ¨ ¨ ¨ ` |ξn|
2q,

where pξ0, . . . , ξnq P Cn`1 and p : Cn`1zt0u Ñ CPn is the projection. Let z “ pξ1{ξ0, . . . , ξn{ξ0q be
the local coordinates on U0 “ trξ0 : ¨ ¨ ¨ : ξns P CPn : ξ0 ‰ 0u – Cn. Then ωFS satisfies

ωFS “
i

2π
BB̄ logp1` |z|2q,

ˆ
CPn

ωn
FS “ 1.

Example 2. Let pX, ωq be a Kähler manifold. If ι : Y ãÑ X is a complex submanifold, then ωY :“ ι˚ω
is still a positive definite real p1, 1q-form on Y. Moreover, since dι˚ω “ ι˚dω “ 0, ωY defines a
Kähler metric on Y. Particularly, any non-singular smooth projective variety is Kähler.

Example 3. A complex torus is a quotient X :“ Cn{Λ, where Λ is a lattice of rank 2n. Then X is
a compact complex manifold. Moreover, any positive hermitian form ω “ i

ř

1ďjăkďn hjkdzj ^ dz̄k
with constant coefficients defines a Kähler metric on X.

Notice that dω “ 0 imposes topological constraints on compact Kähler manifolds. Indeed, since
volgpXq “

´
X ωn{n! ą 0, for 1 ď k ď n, ωk cannot be exact for

´
X ωn{n! “ 0 by Stokes’ formula.

Hence, rωks ‰ 0 in H2k
dRpX, Rq.

Example 4. Let X “ pC2zt0uq{Γ, where Γ :“ tλn : n P Zu acts on C2 by pz1, z2q ÞÑ pλnz1, λnz2q.
One can show that X is a compact complex manifold and X is diffeomorphic to S1 ˆ S3. Thus,
H2pX, Rq “ 0 and hence, X cannot be Kähler.

4. KÄHLER IDENTITIES AND HODGE DECOMPOSITION ON COMPACT KÄHLER MANIFOLDS

4.1. Operators on Kähler Manifolds and their Commutation Relations. Let pX, ωq be a hermitian
manifold. As mentioned before, gC induces a hermitian inner product x¨, ¨yC on ΛkpCT˚x Xq and we
can define Hodge ˚-operator with respect to ω by

˚ : Ap,qpXq Ñ An´q,n´ppXq,

which is a C-linear isometry and satisfies α^ ˚β̄ “ xα, βyCdVω. If X is compact, then we can endow
a L2-inner product on Ap,qpXq by

pα, βq :“
ˆ

X
xα, βyCdVω, @α, β P Ap,qpXq.

Thus, we can define adjoint d˚ “ ´ ˚ d˚ : Ak`1pXq Ñ AkpXq as before as well as

B˚ “ ´ ˚ B̄˚ : Ap`1,qpXq Ñ Ap,qpXq, B̄˚ “ ´ ˚ B˚ : Ap,q`1pXq Ñ Ap,qpXq.

From d “ B` B̄, we also have d˚ “ B˚ ` B̄˚. Hence, we can define Hodge Laplacian 4 “ dd˚ ` d˚d
as well as B-Laplacian and B̄-Laplacian:

4B :“ B˚B ` BB˚, 4B̄ :“ B̄˚B̄ ` B̄B̄˚.

Now, we define the spaces of harmonic pp, qq-forms for Hodge Laplacians Hp,qpXq :“ HkpXq X
Ap,qpXq and for B,B̄-Laplcian:

Hp,q
B
pXq “ tα P Ap,qpXq : 4Bα “ 0u, Hp,q

B̄
pXq :“ tα P Ap,qpXq : 4B̄α “ 0u
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By definition, 4B̄ “ 4B and thus Hp,q
B̄
pXq “ Hq,p

B
pXq. Granting the fact that 4, 4B, and 4B̄

are elliptic operators, we can proceed exactly same as Hodge theorem for compact Riemannian
manifolds to show the following Hodge decompostion for for a compact hermitian manifolds.

AkpXq “ HkpXq‘4pAkpXqq, Ap,qpXq “ Hp,q
B̄
pXq‘4B̄pA

p,qpXqq, Ap,qpXq “ Hp,q
B
pXq‘4BpAp,qpXqq,

which is orthogonal with respect to L2-norm on AkpXq and Ap,qpXq. Thus, we have HkpX, Cq –

HkpXq and Hp,q
B̄
pXq – Hp,q

B̄
pXq. Also, we have dimC HkpXq, dimC Hp,q

B̄
pXq, dimC Hp,q

B
pXq ă in f ty.

Proposition 4 (Kodaira–Serre Duality). Let pX, ωq be a compact hermitian manifold. The bilinear pairing

Ap,qpXq ˆ An´p,n´qpXq Ñ C, pα, βq ÞÑ

ˆ
X

α^ β

descends to a non-degenerate paring on Hp,q
B̄
pXqˆHn´p,n´q

B̄
pXq Ñ C. Particularly, Hp,q

B̄
pXq – pHn´p,n´q

B̄
pXqq˚.

Proof. For α P Ap,qpXq, γ P An´p,n´q´1pXq, since α^ γ P An,n´1pXq, we have

dpα^ γq “ B̄pα^ γq “ B̄α^ γ` p´1qp`qα^ B̄γ.

Hence, if β, β1 are B̄-closed and β1 “ β` B̄γ, then by Stokes’ theorem,ˆ
X

α^ β1 “

ˆ
X

α^ β`

ˆ
X

α^ B̄γ “

ˆ
X

α^ β` p´1qp`q
ˆ

X
dpα^ γq “

ˆ
X

α^ β.

Similarly, the pairing is independent of representative of the Dolbeault cohomology class rαs P
Hp,q
B̄
pXq. Therefore, the pairing descends to the Dolbeault cohomology level. Similar to the proof of

Poincaré duality, one notice that ˚4B̄ “ 4B˚ and thus

˚ : Hp,q
B̄
pXq Ñ Hn´q,n´p

B
pXq.

Since Hn´q,n´p
B

pXq “ Hn´p,n´q
B̄

pXq, α ÞÑ ˚α maps Hp,q
B̄
pXq Ñ Hn´p,n´q

B̄
pXq. Finally, notice that

Hp,q
B̄
pXq Ñ Hp,q

B̄
pXq Ñ C is non-degenerate since

´
X α^˚α “ }α}2 ą 0 if α ‰ 0. Therefore, the result

follows from Hp,q
B̄
pXq – Hp,q

B̄
pXq. �

However, for compact hermitian manifolds pX, ωq,
(a) HkpXqmay not respect the bidgree decomposition.
(b) Hp,q

B̄
pXq, Hp,q

B
pXq, and Hp,qpXqmight be different.

Both issues will be resolved when ω is a Kähler. The key is the Kähler identities we now discuss.
Now, we assume that pX, ωq is a Kähler manifold. We define Lefschetz operator

(4.1) L : Ap,qpXq Ñ Ap`1,q`1pXq, α ÞÑ ω^ α.

and its adjoint Λ :“ ´ ˚ L˚ : Ap`1,q`1pXq Ñ Ap,qpXq satisfying

(4.2) xLα, βyC “ xα, Λβy, @α P Ap,qpXq, β P Ap`1,q`1pXq.

Theorem 6 (Kähler Identities). Let pX, ωq be a Kähler manifold. Then

rB̄˚, Ls “ iB, rΛ, B̄s “ ´iB˚;(4.3)

rB˚, Ls “ ´iB̄, rΛ, Bs “ iB̄˚.(4.4)

Proof. Notice that (4.4) follows from (4.3) by taking complex conjugation and rΛ, B̄s “ ´iB˚ follows
from rB̄˚, Ls “ iB by taking adjoint.

Now, we sketch the proof rB̄˚, Ls “ iB for the case wheb X Ă Cn is a bounded open set with
standard Kähler metric ω “ i

řn
j“1 dzj ^ dz̄j. For α “

ř

|I|“p,|J|“q αI JdzI ^ dz̄J P Ap,qpCnq,

Bα “
ÿ

|I|“p,|J|“q

n
ÿ

k“1

BαI J

Bzk
dzk ^ dzI ^ dz̄J , B̄α “

ÿ

|I|“p,|J|“q

n
ÿ

k“1

BαI J

Bz̄k
dz̄k ^ dzI ^ dz̄J .
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Notice that for v “
ř

|K|“p,|L|“q vKLdzK ^ dz̄L, xu, vyC “
ř

|I|“p,|J|“q uI JvI J and thus

pu, vq “
ˆ

X

ÿ

|I|“p,|J|“q

uI JvI JdV

where dV “ ωn{n! “ 2npdx1 ^ dy1 ^ ¨ ¨ ¨ dxn ^ dynq. Then one can directly compute that

B̄˚α “ ´
ÿ

|I|“p,|J|“q

n
ÿ

k“1

BαI J

Bzk
ιB{Bz̄k

dzI ^ dz̄J “: ´
n
ÿ

k“1

ιB{Bz̄k

Bα

Bzk
.

Here, ιB{Bz̄k
α is the interior multiplication of B{Bz̄k into α. Then we get

rB̄, Lsα “ ´
n
ÿ

k“1

ιB{Bz̄k

ˆ

B

Bzk
pω^ αq

˙

`ω^
n
ÿ

k“1

ιB{Bz̄k

Bα

Bzk
.

Since ω has constant coefficients, B
Bzk
pω^ αq “ ω^ Bα

Bzk
and therefore

rB̄˚, Lsα “ ´
n
ÿ

k“1

ιB{Bz̄k

ˆ

ω^
Bα

Bzk

˙

´ω^

ˆ

ιB{Bz̄k

Bu
Bxk

˙

“ ´

n
ÿ

k“1

`

ιB{Bz̄k

˘

^
Bu
Bzk

.

Since ιB{Bz̄k
ω “ ´idzk, we get

rB̄˚, Lsα “ i
n
ÿ

k“1

dzk ^
Bu
Bzk

“ iBu.

Finally, for general pX, ωq and any x P X, if we choose holomorphic normal coordinates pz1, . . . , znq

centered at x as in Theorem 5, above calculation go through with error term

rB̄˚, Lsα “ iBα`Op|z|q,

for pp, qq-form α supported in a neighborhood of x. Particularly, rB̄˚, Lsαpxq “ iBαpxq, for x P X. �

Corollary 2. If pX, ωq is Kähler, then

rB, B̄˚s “ rB̄, B˚s “ 0(4.5)
4 “ 24B̄ “ 24B,(4.6)

and 4 commutes with ˚, B, B̄, B˚, B̄˚, L, Λ.

Proof. We have rB, B̄˚s “ ´irB, rΛ, Bss and Jacobi identity implies

´rB.rΛ, Bss ` rΛ, rB, Bss ` rB, rB, Λss “ 0.

Hence, ´2rB, rΛ, Bss “ 0 and rB, B̄˚s “ 0. The second relation rB̄, B˚s “ 0 is the adjoint of the first.
Next,

4B̄ “ rB̄, B̄˚s “ ´irB̄, rΛ, Bss.

Since rB, B̄s “ 0, Jacobi identity implies ´rB̄, rΛ, Bss ` rB, rB̄, Λss “ 0. Hence,

4B̄ “ rB,´irB̄, Λss “ rB, B˚s “ 4B.

From (4.5),we have 4 “ rB` B̄, B˚` B̄˚s “ 4B `4B̄ `rB, B̄˚s` rB̄, B˚s “ 4B `4B̄. Finally, rB,4Bs “

rB˚,4Bs “ rB̄,4B̄s “ rB̄
˚,4B̄s “ 0 and r4, ˚s “ 0 are immediate. Furthermore, rB, Ls “ Bω “ 0

together with Jacobi identity implies

rL,4Bs “ rL, rB, B˚ss “ ´rB, rB˚, Lss “ irB, B̄s “ 0.

By taking adjoint, r4B, Λs “ 0. �
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4.2. Hodge Theory on Compact Kähler Manifolds. Now, we assume that pX, ωq is a comapct
Kähler manifold. The identity 4 “ 24B̄ shows that 4 is homogeneous with respect to bidegree,
Hp,q
B̄
pXq “ Hp,qpXq, and that there is an orthogonal decomposition

(4.7) HkpXq “
à

p`q“k
Hp,qpXq.

As 4B̄ “ 4B “ 4B̄, we have Hp,qpXq “ Hp,qpXq. Using Hodge theorem for de Rham and Dolbeault
cohomology, we get Hodge decomposition on compact Kähler manifolds:

HkpX, Cq –
à

p`q“k
Hp,q
B̄
pXq,(4.8)

Hp,q
B̄
pXq – Hq,p

B̄
pXq.(4.9)

A priori, it is not clear that the decomposition is independent of the choice of Kähler metrics. We
now show the following result known as BB̄-Lemma which will deduce that this is the case.

Lemma 2. Let pX, ωq be a compact Kähler manifold. For a d-closed pp, qq-form α, TFAE
(a) α is d-exact.
(b) α is B-exact.

(b)’ α is B̄-exact
(c) α is BB̄-exact, i.e., there exists v P Ap´1,q´1pXq such that α “ BB̄v.
(d) α P Hp,qpXqK.

Proof. (c)ñ(a),(b),(b)’ and (a), or (b) or (b’)ñ (d) are obvious. It suffices to show that (d)ñ (c). As
dα “ 0, we have Bα “ 0 “ B̄α “ 0. Since α P Hp,qpXqK, there exists β P Ap,q´1pX such that α “ B̄β.
By Hodge decomposition for 4B:

Ap,q´1pXq “ Hp,q´1pXq ‘ imp4Bq,

we can write β “ h ` pBB˚ ` B˚Bqu for some u P Ap,q´1pXq. Let v :“ B˚u P Ap´1,q´1pXq and
w “ B˚u P Ap`1,q´1pXq. Therefore, by (4.5),

α “ B̄Bv` B̄B˚w “ ´BB̄v´ B˚B̄w.

However, as Bu “ 0 and B˚B̄w P ker BK, B˚B̄w “ 0 and hence α “ B̄Bv. �

Corollary 3. (4.8) is independent of the choice of Kähler metric.

Proof. Let ω1 be another Kähler metric on X. We denote Hp,qpX, ωq and Hp,qpX, ω1q be the harmonic
forms with respect to ω and ω1 respectively. Given a Dolbeault cohomology class rα0s P Hp,q

B̄
pXq, we

denote α P Hp,qpX, ωq and α1 P Hp,qpX, ω1q be the corresponding harmonic representative of rα0s.
By definition, there exists γ P Ap,q´qpXq such that α “ α1` B̄γ. However, dB̄γ “ dpα´ α1q “ 0 shows
that B̄γ P Hp,qpXqK by Hodge decomposition for 4. Hence, B̄4 P imp4q and thus α, α1 represent
the same de Rham cohomology class. �

We denote Betti number and Hodge number by

bk “ dimC HkpX, Cq, hp,q :“ dimC Hp,q
B̄
pXq.

Then (4.8), (4.9), and Kodaira–Serre duality implies

bkpXq “
ÿ

p`q“k

hp,q, hp,qpXq “ hq,p, hp,qpXq “ hn´p,n´qpXq.

Particular, this gives another topological constraints for compact Kähler manifolds

Corollary 4. If X is a compact manifold, then b2k`1pXq is even.

Proof. This follows from b2k`1pXq “ 2
řk

p“0 hp,k`1´ppXq. �
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