Full-Collection Search with Passage and Document Evidence:
Maryland at the TREC 2021 Conversational Assistance Track

Xin Qian and Douglas W. Oard

University of Maryland, College Park
{xinq, oard}Oumd.edu

Abstract. The University of Maryland (UMD) team submitted four runs to the automatic rewrite
settings of the track, exploring three ideas: (1) indexing both document-scale and passage-scale fea-
tures, (2) using sharding to scale dense retrieval to large collections, and (3) combining results from
sparse and dense methods using re-ranking and result fusion. Compared with the three-stage baseline
pipeline of query rewriting using T5-base, document retrieval using BM25, and passage re-ranking
using monoT5, UMD Run #1 modifies the second stage to retrieve passages rather than documents.
UMD Run #2 retrieves documents in the second stage, but augments each second-stage document with
additional document-scale evidence. UMD Run #3, our best run, fuses the final output of three runs:
UMD Run #1, UMD Run #2, and the organizer-provided baseline. UMD Run #4, fuses results from
TCT-ColBERT (a distilled CoIBERT model) passage retrieval with results from BM25 document re-
trieval as the second stage. The TCT-ColBERT passage retrieval uses sharding to accommodate the
large collection size. In each case, the first stage is the organizer-provided baseline query rewriter, and
the third stage is a re-implementation of the baseline’s third stage, but using monoBERT-large.

1 Introduction

The TREC Conversational Assistance Track (CAsT) is a shared task to study conversational informa-
tion seeking, where an information system engages in conversational exchanges with human users to help
satisfy information needs [2l]. The user guides a human-machine conversation in CAsT, who can freely
choose to introduce a topic, continue on that topic, or shift from one topic to another. Interpreting a current
question in the context of conversational interaction is natural for humans, but challenging for machines.
CAsT operationalizes this interpretation process as query rewriting. The goal is to rewrite a question in a
way containing all of the necessary contexts to answer that question. In 2020, the best result for the au-
tomatic canonical condition (i.e., for automatic query rewriting based on canonical responses) was 0.493
for NDCG @3, quite close to the best result for the manual condition (i.e., for manually rewritten queries),
which was 0.530 for NDCG @3 [3]].

This success motivated development by the track organizers of a three-stage baseline pipeline in CAsT
2021 to which participating systems can be compared. In that pipeline (detailed in Section [3.1)), the first
stage is an automatic question rewriter, implemented using a T5-base model trained on the CANARD
question answering datasetm and the third stage is a pointwise passage re-ranker implemented using Mono-
TS model trained on MS MARCO [9]. For our experiments, we adopted the baseline’s first-stage question
rewriter. We also implemented a simple pointwise re-ranker using monoBERT and consistently used that as
our third stage in our four submitted runs, and we experimented with a different second-stage full-collection
retriever. In keeping with the track guidelines, we measure the relative effectiveness of our second-stage
full-collection retriever using the end-to-end ranking quality of the full three-stage pipeline as an extrinsic
measure of retrieval effectiveness for the conversational assistance task (as detailed in Section4.2).

In this work, we explore two approaches to improve the second (full-collection retrieval) stage. In one
approach (Run #2), we augment the content representation with additional document-level evidence (title
terms and tokenized URL terms) and then use BM25 (k1 = 4.46, b = 0.82, consistent with the organizer-
provided baseline) for full-collection ranked retrieval. In the other approach (Run #4), we use a TCT-
ColBERT bi-encoder (a distilled ColBERT model) to perform late-interaction ranked retrieval using dense
representations in a way that is sufficiently efficient to be performed over the full collection. Given the

Uhttps://github.com/daltonj/treccastweb/tree/master/2021/baselines

https://github.com/daltonj/treccastweb/tree/master/2021/baselines

2 X. Qian and D. Oard

sizes of the collection searched in CAsT, we use sharding to enable parallel processing. In this run, we
augment each passage with the same document-level evidence as in Run #2, adding the same evidence for
each passage from the same document. Traditional and neural methods have complementary strengths, so in
Run #4 we fuse results from TCT-ColBERT (a distilled CoIBERT model) with BM25 (k1 =4.46, b = 0.82)
results using weighted sum fusion before third-stage re-ranking. To encourage diversity, we compute these
BM2S5 results without using the additional document-level evidence.

We compare each of these approaches to two baseline approaches. The full-collection search in our
re-implemented low baseline (Run #1) is passage-level BM-25 (k1 = 0.82, b = 0.68). Our results show
that Run #2 and Run #4 both statistically significantly outperform Run #1 by Mean Average Precision
(MAP), although (because of our use of monoBERT-large rather than monoT5) our Run #1 yields results
numerically (but not statistically significantly) below the organizer’s baseline by every measure in Table [3).
As a high baseline, our Run #3, uses reciprocal rank fusion to combine the ranked lists from Run #1, Run
2 and the organizers’ baseline, statistically significantly outperforming all three of those component ap-
proaches by normalized Discounted Cumulative Gain (nDCG@500). Run #4 also statistically significantly
outperforms both Run #1 and Run #2 by nDCG@500. Finally, we also locally scored three post hoc runs,
including one in which we augmented both the second-stage retriever from Run #1 and the third-stage
re-ranker with the additional document-level evidence. As shown in Table[d] that post hoc run statistically
significantly outperforms Run #1 by nDCG @500, thus further illustrating the potential benefit of indexing
title and URL terms. Our other two post hoc runs serve to illustrate the substantial benefit of the baseline
(first-stage) question rewriting that we have used.

The remainder of this paper describes our techniques in greater detail. We start with the problem settings
for TREC CAST, then provide details on our systems, followed by results and analysis.

2 Task

In the submission category automatic rewrite, specifically, with the raw utterance and canonical responses,
the input is a raw utterance Uy, the conversational context prior to the current k-th utterance consist-
ing of raw utterances U’ = {U;,Us,...,Ur_1}, and canonical system responses to each of those utter-
ances denoted R’ = {Ry,Ry,...,Ry_1}. For each raw utterance Uy, the task is to retrieve a list of passages
P = { P, +Pky,---} as relevant responses to the utterance. While an initial retrieval pass, the second stage
of our three-stage pipeline, can use traditional IR techniques for efficiency, a competitive system will pre-
sumably do a final-pass, often the third-stage of our pipeline, using a more expensive re-ranker, where
the system will learn and do inference with a re-ranker model M that scores the probability of a passage
p being relevant in the context of the current utterance Uy, denoted as Mi(rel = 1|p,U;,U’,R’). The col-
lection to be retrieved from is in general heterogeneous, constructed from several document collections
C ={C,,C,,...}. For CAsT 2021, there are three such collections: an English Wikipedia dump, Version 1
of the MS MARCO document collection, and the Washington Post (WaPo) collection, where WaPo is a
new addition this year. Table[T|summarizes some statistics for these three parts of the CAsT 2021 collection.

Table 1: Statistics of the CAsT 2021 collection.
Wikipedia MS MARCO WaPo

Documents 5.0M 3.2M 0.7M
Passages 20.0M 22.0M 3.8M
Avg # Passages per Document 4.0 7.0 53

Full-Collection Search with Passage and Document Evidence 3

3 System Design

As noted above, all of our systems are patterned on the three-stage baseline pipeline in the track guide-
linesﬂ(l) query rewriting using T5-base; (2) document retrieval using BM25 followed by segmentation to
passages; (3) passage re-ranking using monoTS5. In this section, we describe the components we developed
and the ways we used those components together in our submitted runs.

3.1 Baseline Architecture: Query rewriting, retrieval, and re-ranking

The baseline architecture uses a TS5-base model [8] to generate automatic question rewrites. All of our
systems do the same—when given a query, along with the conversational context (including canonical
responses), we rewrite the query with the same pre-trained T5-base question rewriter publicly available
on Huggingface. This TS rewriter is trained on the CANARD dataset [4], which includes 40K questions to
train models for question-in-context rewriting. Each instance in the CANARD dataset contains a question
together with prior questions and answers, and a human-created rewritten question.

As input to the rewriter, we provide the current utterance (user question), all previous utterances, and
(at most) three most recent canonical system responses. We concatenate these inputs using the special
separator token (|||), and the model then generates a rewritten query.

With the rewritten query, our simplest systems then perform full-collection retrieval using BM25, re-
turning the top-1000 indexed units. We have two options for the indexed units, corresponding to two gran-
ularities:

— Run #1: Passages are segmented from documents as pre-processing, using the same passage chunker as
in the organizers’ baseline, then indexed, and retrieved using BM25 with default Anserini parameters
(k1 =0.82, b = 0.68, Figure|I).

— Run #2: Full Documents (without segmentation) are indexed, and retrieved using BM25 with orga-
nizers’ baseline parameters (k1 = 4.46, b = 0.82, Figure . The retrieved documents are then chunked
into passages in the same way as in Run #1. Note that because 1000 documents are retrieved, this
results in more than 1000 passages.

Our third stage re-ranks the list of passages generated by the second stage using a pointwise monoBERT-
large model that was pre-trained on MS MARCO. We used monoBERT-large rather than a monoT5 model
used in the organizers’ baseline because our pilot experiments showed limited improvements from using
monoT5-base rather than monoBERT-large. In retrospect, a better choice might have been either (1) the
monoT5-large model, which was found to outperform monoBERT-large by the winning team at CAsT
2020 [3], or (2) the duoBERT-1arge two-stage pipeline for leveraging both pointwise and pairwise training
that yielded strong results for another high-scoring team at CAsT 2020 [5].

3.2 Augmenting with Additional Document-Level Evidence

In Run #2 and Run #4 we experiment with adding additional document-level features to the second-stage
(full-collection) retrieval process. Each collection includes a URL and some form of title for each docu-
ment. In the Washington Post collection, the title is the headline of the news story. In the Wikipedia dump,
the title is the HTML title field for the Wikipedia page. For the MS MARCO collection, we used the title
field formatted in the raw collection tsv file. Table [2] lists examples. We tokenized both titles and URLs
using Lucene’s default English analyzer.

The University of Waterloo (which was called to our attention by this year’s TREC Deep Learning
Track) reported substantial improvements (around 20 points absolute on recall@100 on dev set queries)
from the use of additional content (which in their case also included section headers; we did not use the
section headers in the augmented MS MARCO collection). This report was our inspiration for exploring
the use of additional document-level evidence for all three CAsT collections. The inspiration also motivated

2https://github.com/daltonj/treccastweb/tree/master/2021/baselines
3 Note, however, that in section,ﬁ‘we show that our rewriter actually generates different rewrites!
4https://huggingface.co/castorini/t5-base-canard

https://github.com/daltonj/treccastweb/tree/master/2021/baselines
https://huggingface.co/castorini/t5-base-canard

Segmented
assage
Index,

Second-stage
monoBERT re-ranking

4 X. Qian and D. Oard

Rewritten query Rewritten query Rewritten query

@t-sitage BM25 Metadata First-stage BM25 D ‘
retrieval * Doc. retr\eval First-stage BM25 ense retrieva Dense.

Index’, ___retrieval . passages w/ maxP) w/ maxP) assage

Index
N N
Rassade -~ List Intersection

#N Doc Doc
#1 #N

Doc

#1

g

“ Second-stage
monoBERT re-rankin /ST\
Ranked list econd-stage
monoBERT re-rankin

Ranked list

Ranked list

Run #1 Run #2 Run #4

Fig. 1: Compared with the baseline pipeline of question rewriting (T5-base), document retrieval (BM25),
and then passage re-ranking (monoBERT-large), our Run #1 modifies the second-stage indexing unit to be
passages rather than documents. Run #2 indexes documents in the second stage, but augments each docu-
ment with document-level evidence. Run #3, our best run (not shown here), fuses the final output of Runs
#1, #2, and the organizer-provided baseline. Run #4 fuses TCT-ColBERT (a distilled ColBERT model)
passage retrieval with BM25 document retrieval as the second stage, using sharding to accommodate the
large collection size.

a post hoc experiment in which we also used this additional document-level evidence during (third-stage)
re-ranking. This additional evidence might help in two ways: it might add terms not present in the text,
or it might serve to reinforce (i.e., up weight) important terms present in both the text and the additional
evidence.

Collection URL Title/headline

https://en.wikipedia.org/w/index.php?title=0rigin200

Wikipedia £%20the%20domestic%20doggoldid=908221312

Origin of the domestic dog

https://www.sciencedaily.com/releases/2014/01/140107

MS Marco 102634 . htm

Cancer Statistics 2014: Death rates continue to drop

https://www.washingtonpost.com/sports/colleges/danny
WaPo -coale-jarrett-boykin-are-a-perfect-1-2-punch-for-vi
rginia-tech/2011/12/31/gIQAAaW4SP,tory.html

Danny Coale, Jarrett Boykin are a perfect 1-2 punch for
Virginia Tech

Table 2: Examples of additional document-level evidence from titles and URLs.

3.3 Dense Retrieval and Sharding

Neural ranking methods using dense representations have been shown to achieve better recall than tradi-
tional ranking methods that rely on sparse representations, such as the BM25 model that we used in Run
#1 and Run #2 [6]. Recently, fairly effective neural bi-encoders that are sufficiently efficient for use with
moderately large collections have been introduced. Scaling such approaches up to collections of the size
of CAsT 2021 still requires some parallelism, however. We therefore combined sharding with an efficient
neural bi-encoder. The key idea in this approach is to perform shallow-depth retrieval on shards, using
an efficient approximate nearest neighbor on dense representations that are computed separately for each
query and each document. The hope is that this would improve recall over that achieved using sparse meth-
ods, although achieving that benefit depends on the relevant documents being reasonably well distributed

Dense.

Passage

N shards

Index.

https://en.wikipedia.org/w/index.php?title=Origin%20of%20the%20domestic%20dog&oldid=908221312
https://en.wikipedia.org/w/index.php?title=Origin%20of%20the%20domestic%20dog&oldid=908221312
https://www.sciencedaily.com/releases/2014/01/140107102634.htm
https://www.sciencedaily.com/releases/2014/01/140107102634.htm
https://www.washingtonpost.com/sports/colleges/danny-coale-jarrett-boykin-are-a-perfect-1-2-punch-for-virginia-tech/2011/12/31/gIQAAaW4SP_story.html
https://www.washingtonpost.com/sports/colleges/danny-coale-jarrett-boykin-are-a-perfect-1-2-punch-for-virginia-tech/2011/12/31/gIQAAaW4SP_story.html
https://www.washingtonpost.com/sports/colleges/danny-coale-jarrett-boykin-are-a-perfect-1-2-punch-for-virginia-tech/2011/12/31/gIQAAaW4SP_story.html

Full-Collection Search with Passage and Document Evidence 5

across the shards. Sharding also reduces GPU memory requirements, making it possible to fit each shard
into our compute infrastructure’s 200GB memory limit.

A dense encoder based on the Transformer model has length limitations on its input, so we first divide
documents into passages as in Run #1. We then augment each passage with the additional document-level
evidence for the document from which the passage was extracted. Next, we divide the passage collection
into 200 shards of equal size, with 17 shards from the Washington Post collection, 100 shards from MS
MARCO, and 82 shards from Wikipedia. When performing this sharding, we respect passage boundaries,
but not document boundaries, and we assign passages to shards in order, without randomization.

For the specific dense encoder, we used the TCT-ColBERT model, which is publicly available on Hug-
gingfaceE] This is a distilled version of ColBERT that replaces ColBERT’s MaxSim operation with a less
expensive dot product, improving efficiency while retaining most of the ColBERT model’s effectiveness.
ANN search is performed with FAISS, the dense vector similarity search library. This process produces a
score for each passage. We then calculate each document score using maxP (i.e., the largest of its passage
scores). Independently, BM25 (on document terms only, with no augmentation) also produces a score for
each document. We combine the two scores using weighted CombSUM, giving 100% of the weight to the
Augmented TCT-ColBERT MaxP score and 10% of the weight to the BM25 score, as recommended in the
TCT-ColBERT documentation]

Unlike our other submitted runs, in Run #4 we perform third-stage re-ranking on a per-shard basis, for
all passages from the top-scored documents in each shard. Because we want a final depth-1000 ranking
over the full collection, we then essentially take the union of the top-scoring 50 passages from each of the
200 shards. Although the same passage can not appear in two shards, we actually perform this union by
doing CombMAX fusion using the polyfuse librarym The procedure is illustrated in Figure

Stage three re-ranking was performed on shards rather than the union of the collection for reasons of
implementation convenience, and we expect this effect to be small in practice. Because we use the same
pointwise monoBERT-large re-ranker for all our submitted runs, performing third-stage re-ranking on a
per-shard basis is guaranteed to produce the same final ranking as would have resulted from re-ranking
the union of the shards, down to at least rank 50. Below rank 50, quantization effects could result in the
omission of some passages that might otherwise have been highly ranked.

Indexing Time Query Time
r====-= _/" = =\ ___________ 1
I | \ G
Document 1 \ e n ——» Re-ranking ——
. 1 7
Collections | - [enselistsparse st
WaPo !

—

Retrieval Results
per shard Fusion
(depth =N’) from shards

N(=200) dense
encoded shards

Fig.2: An illustration of Run #4, using sharding and combining dense with sparse retrieval.

S|castorini/t ctcolbert-v2-hnp-msmarco

6 No normalization is performed before we apply weighted CombSUM; in future work we plan to more fully explore
the design space for fusion techniques.
7https://github.com/rmit-ir/polyfuse

castorini/tct_colbert-v2-hnp-msmarco
https://github.com/rmit-ir/polyfuse

6 X. Qian and D. Oard

3.4 Fusion

Fusing the results from two or more runs is often an effective technique to improve ranking quality [7]. We
tried two fusion techniques.

Run #3: To establish a high baseline, we combine the results from Run #1, Run #2, and the organizer’s
baseline. We use reciprocal rank fusion (RRF) with £ = 60, which has been shown to be fairly robust [1].

Run #4: As described in Section sharding produces multiple ranked lists, one per shard. We do
weighted CombSUM fusion within each shard to combine the results from dense retrieval (using TCT-
ColBERT) and sparse retrieval (using BM25). The recombination of results from multiple shards is also a
fusion operation [[10], although a simple one using CombMAX because the shards are logically disjoint.

3.5 Summary of Submitted Runs

Submitted runs are four system variants built from combinations of the above techniques, as Figure
illustrates.

Run #1: Baseline BM25 implementation with passage index;

Run #2: BM25 with document index, augmented with additional document-level evidence;
Run #3: Reciprocal rank fusion of Run #1, Run #2, and the organizer’s baseline;

Run #4: Fused dense and sparse retrieval with sharding.

4 Results and Analysis

In this section, we describe the evaluation process, present and discuss our results.

4.1 Evaluation

We submitted a ranked list of passages for each run, but inconsistencies in passage definitions made
passage-based evaluation impractical this year. The organizers thus chose instead to perform relevance
judgments and evaluation at document scale. This was done by mapping ranked lists from passages to doc-
uments using MaxP (i.e., by replacing passage identifiers with the document identifier from that passage
and then deduplicating the resulting document ranking by removing lower-ranked duplicates). This resulted
in shallower judgment pools, and it required some changes to the relevance judgment guidelines to avoid
penalizing the presence of extraneous information. We have implemented these changes to evaluate two
post hoc runs that we report with (first-stage) question rewriting omitted, and a third post hoc run in which
we augmented the passage representation used for (third-stage) re-ranking with additional document-scale
evidence. Our other results are reported as they were received from the track organizers.

The primary evaluation measure is normalized Discounted Cumulative Gain at position 3 (nDCG@3),
which focuses only on the top 3 results, and which gives decreasing weight to results in positions 2 or 3.
nDCG @5, nDCG@500 and Mean Average Precision at 500 (MAP@500) are also reported to characterize
results even lower in the ranked list. All evaluation measures are reported as averages over the computed
measure for each query (i.e., for each evaluated conversational turn).

4.2 Results

Table [3] summarizes the results for our submitted runs. We also include best and median from the TREC
website, averaged over judged topics, as well as results from the organizers’ baseline. ‘*’ indicates a sta-
tistically significant improvement over the organizers’ baseline using a two-sided paired 7-test at p < 0.05
with Bonferroni correction. Similarly, ‘f’ indicates a statistically significant improvement over Run #1, and
‘0’ over Run #2. Locally scored results of post hoc runs without the query formulation stage are also shown

Full-Collection Search with Passage and Document Evidence 7

Table 3: Results for submitted runs. ‘*’ indicates significant improvement over the organizers’ baseline, ‘{’
over Run #1, ‘0’ over Run #2. Results without question rewriting were scored locally.

nDCG@3 nDCG@5 nDCG@500 MAP@500 Judging priority

Best 0.8067 0.7716 0.7668 0.5483 —
Median 0.3820 03872 04499 0.2431 —
Baseline 0.4357 04265 0.5036 0.3135 —
Run #1 0.3875 03764 04625 02619 2
wo rewriting 0.2216 0.2100 0.2613 0.1435 —
Run #2 0.3985 03904 0.4784 0.2811F 2
wo rewriting 0.1888 0.1878 0.2375 0.1257 —
Run #3 0.4252% 0.4275% 0.5388*1° 0.32217¢ 3
Run #4 0.3768 0.3744 0.51167 0.28417 1

as contrastive conditions.

Effect of first-stage question rewriting: The improvements from question rewriting shown in Table[3]are
quite substantial. Comparing Run #1 or #2, with and without (wo) rewriting, illustrates this simple ablation
study. Question rewriting brings very substantial absolute improvements of 0.16 or 0.21 in nDCG@3 for
Run #1 or Run #2, respectively, with similar benefits observed for other measures.

Benefit of augmentation with document-level evidence: Table[d]shows a benefit from augmenting pas-
sages with terms from the title and URL of the document from which the passage was drawn. In this case,
the additional evidence was used in both the second-stage retrieval and the third-stage re-ranking. The
0.029 absolute apparent improvement in nDCG@3 is not statistically significant, but the comparable im-
provements in nDCG@5 and nDCG @500 are both statistically significant. One caveat to this analysis is
that computing evaluation measures on documents rather than passages, as has been done this year, may
favor the addition of document-level evidence. Note that we can not tell with this study design whether the
benefit results from the effects of augmentation on the second-stage retrieval, the third-stage re-ranking, or
both. Comparing to Run #2, which used augmentation only in second-stage retrieval, is confounded by the
fact that Run #2 indexed documents rather than passages for stage two. Note also that because the same
document-level evidence is indexed repeatedly for each passage from the same document, there is some
additional storage overhead for the index, (in this case, a relative increase of 9%).

Benefit of fusion: Comparing Run #3 to Runs #1, #2, and the organizer’s baseline, we see that the fused
run (Run #3) statistically significantly outperforms every individual run in the combination by nDCG @500,
with an absolute improvement of 0.035 over the best of the three constituent runs. No statistically signif-
icant improvement over the best of the three constituent runs was observed for nDCG@3 or nDCG@5,
however, indicating that the benefit observed in nDCG @500 occurs later in the ranked list.

Table 4: Benefit of retrieval from a non-augmented passage index (Run #1) vs. a passage index augmented
with document title and URL terms (scored locally). ‘%’ indicates a statistically significant improvement
over Run #1.

Index size nDCG@3 nDCG@5 nDCG@500 MAP@500

Original index (Run #1) 66G 03875 0.3764 0.4625 0.2619
Augmented index + re-ranking 72G 0.4162 0.4100% 0.4815% 0.2770

8 X. Qian and D. Oard

Benefit of combining dense and sparse retrieval: As Table |§| shows, Run #4, which combines dense and
sparse retrieval, achieves a statistically significant improvement of 0.033 over Run #2, our most closely
comparable sparse-only run, by nDCG@500. However, we note no improvement from Run #2 to Run #4
in nDCG@3 or nDCG@5, indicating that the benefits we observe in nDCG@500 are coming later in the
ranked list. Note also that as we have shown with Run #3, fusion can be useful even when both runs use
sparse retrieval, and our study design is not able to separate that effect from specific benefits that may be
accruing from using dense retrieval in the set of runs being fused.

Efficiency: The end-to-end throughput for all three stages of the Run #1 (passage-as-indexing-unit) and
Run #2 (document-as-indexing-unit) pipelines are 47.3 and 304.6 seconds per query, respectively. As Ta-
ble [2] shows, the average number of passages per topic varies between 4 and 7, and this factor of 6 or so
in end-to-end processing time is thus dominated by the fact that the document-as-indexing-unit pipeline
results in the generation of more passages that require re-ranking.

4.3 Case Study

Table[5]shows some examples of automatic question rewriting and a comparison with the manually rewrit-
ten questions.

Turn Original Manual Official Ours

1 . . 1 just h T i for
I just had a breast biopsy for just had a breast biopsy fo What are the most common
cancer. What are the most . What are the most common
cancer. What are the most types of cancer in regards to 0
types of cancer?

common types of breast . p
common types? 0 ypes breast biopsy?
cancer?

2 Once it breaks out, how likely Once it breaks out, how likely is Once the cancer breaks out, how likely is it to spread?
is it to spread? lobular carcinoma breast cancer
to spread?
3 How deadly is it? How deadly is lobular How deadly is LCIS? How deadly is lobular
carcinoma 1in situ’ carcinoma 1n situ?
4 What? No, I want to know about the deadliness of lobular carcinoma in situ. What is the deadliness of I want to know about the
lobular carcinoma in situ? deadliness of lobular

carcinoma in situ.

5 Wow, that’s better than I ‘Wow, that’s better than I thought. What are common treatments for lobular carcinoma in situ?
thought. What are common What are common treatments for
treatments? lobular carcinoma in situ?
6 How does it behave How does LCIS behave How does LCIS behave How does lobular neoplasia
differently from PLCIS? differently from PLCIS? differently from ALH and behave differently from
PLCIS? PLCIS?
7 ‘What makes lobular cancer distinct? ‘What makes lobular cancer ~ What makes lobular cancer
distinct from PLCIS? distinct?
8 For the first stage, what are For the first stage of lobular

For the first stage, what are
the alternatives to surgery?

For the first stage of IdC, what

s carcinoma, what are the
are the alternatives to surgery?

alternatives to surgery?

the alternatives to surgery for
invasive lobular cancer?

9 No, I meant - what are the No, I meant for lobular carcinoma.
No, I meant for lobular. alternatives to surgery for
stage 1 invasive lobular cancer

10 Does freezing tumors work as an Does freezing work for breast cancer?
Does freezing work? alternative to surgery for stage 1
invasive lobular cancer?

Table 5: Original questions for one example topic, compared with the manually rewritten “silver standard”,
the automatically rewritten question from the organizers’ baseline, and our automatically rewritten ques-
tion. We note that in seven of the ten turns, our automatic rewrite differs from the automatic rewrite used
in the organizers’ baseline, despite our effort to closely replicate the usage of a T5-base model from their
description. IdC = Invasive ductal carcinoma.

While the manual rewrites demonstrate desired rewriting effects, the automatic rewrites achieve some
useful improvements:

Full-Collection Search with Passage and Document Evidence 9

Utterance Simplification: Question rewriting simplifies colloquial utterances into a single-sentence,
interrogative sentence, as in turns 1 and 4, making terms re-weighted.

Pronoun Resolution: Question rewriting expands pronouns such as replacing it with lobular carci-
noma breast cancer, or expanding the abbreviation LCIS. However, this effect only appears from turn 3,
but not earlier, possibly due to our context concatenation approach in which inference is on three previous
canonical responses.

Clause Addition: Question rewriting adds clauses based on the context to complement the original
utterance, where the meaning of the whole query is substantiated. Examples include turns 1 and 8, where
we see the most common types of cancer, and the first stage of lobular carcinoma.

5 Conclusion

In this work, we present our submissions to TREC CAsT 2021. Run #3, our best run, fuses the final
output of Run #1 doing indexing on passages, Run #2 doing retrieval on documents and augmenting each
document in the index with additional document-level evidence, and the organizer’s baseline. That run
achieves a comparable nDCG@3 to the organizer’s baseline, and it statistically significantly outperforms
the organizers’ baseline by nDCG@500. Run #4 is also interesting because it fuses dense retrieval with
sparse retrieval, using sharding to accommodate the large collection size, thus beginning our exploration of
an important design space.

References

1. Aslam, J.A., Montague, M.: Bayes optimal metasearch: a probabilistic model for combining the results of multiple
retrieval systems. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. pp. 379-381 (2000)

2. Culpepper, J.S., Diaz, F., Smucker, M.D.: Research frontiers in information retrieval: Report from the third strate-
gic workshop on information retrieval in Lorne (SWIRL 2018). In: ACM SIGIR Forum. vol. 52, pp. 34-90. ACM
New York, NY, USA (2018)

3. Dalton, J., Xiong, C., Callan, J.: Trec cast 2019: The conversational assistance track overview. arXiv preprint
arXiv:2003.13624 (2020)

4. Elgohary, A., Peskov, D., Boyd-Graber, J.: Can you unpack that? learning to rewrite questions-in-context. In:
Empirical Methods in Natural Language Processing (2019)

5. Gemmell, C., Dalton, J.: Glasgow representation and information learning lab (GRILL) at the conversational
assistance track 2020. In: Proceedings of the Twenty-Ninth Text REtrieval Conference. NIST Special Publication,
vol. 1266. National Institute of Standards and Technology (NIST) (2020)

6. Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., Yih, W.t.: Dense passage retrieval
for open-domain question answering. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). pp. 6769-6781 (Nov 2020)

7. Lillis, D., Toolan, F., Collier, R., Dunnion, J.: Probfuse: a probabilistic approach to data fusion. In: Proceedings of
the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.
pp- 139-146 (2006)

8. Lin, S.C., Yang, J.H., Nogueira, R., Tsai, M.F., Wang, C.J., Lin, J.: Conversational question reformulation via
sequence-to-sequence architectures and pretrained language models. arXiv preprint arXiv:2004.01909 (2020)

9. Nogueira, R., Jiang, Z., Pradeep, R., Lin, J.: Document ranking with a pretrained sequence-to-sequence model.
In: Findings of the Association for Computational Linguistics: EMNLP 2020. Association for Computational
Linguistics, Online (Nov 2020)

10. Voorhees, E.M., Gupta, N.K., Johnson-laird, B.: The collection fusion problem. In: Proceedings of the Third Text
Retrieval Conference (TREC-3). pp. 95-104 (1995)

	Full-Collection Search with Passage and Document Evidence: Maryland at the TREC 2021 Conversational Assistance Track
	Introduction
	Task
	System Design
	Baseline Architecture: Query rewriting, retrieval, and re-ranking
	Augmenting with Additional Document-Level Evidence
	Dense Retrieval and Sharding
	Fusion
	Summary of Submitted Runs

	Results and Analysis
	Evaluation
	Results
	Case Study

	Conclusion

