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ABSTRACT

Well tuned Large-Vocabulary Continuous Speech Recogni-
tion (LVCSR) has been shown to generally be more effec-
tive than vocabulary-independent techniques for ranked re-
trieval of spoken content when one or the other approach
is used alone. Tuning LVCSR systems to a topic domain
can be costly, however, and the experiments in this paper
show that Out-Of-Vocabulary (OOV) query terms can signif-
icantly reduce retrieval effectiveness when that tuning is not
performed. Further experiments demonstrate, however, that
retrieval effectiveness for queries with OOV terms can be
substantially improved by combining evidence from LVCSR
with additional evidence from vocabulary-independent Ranked
Utterance Retrieval (RUR). The combination is performed
by using relevance judgments from held-out topics to learn

generic (i.e., topic-independent), smooth, non-decreasing trans-

formations from LVCSR and RUR system scores to probabil-
ities of topical relevance. Evaluated using a CLEF collection
that includes topics, spontaneous conversational speech au-
dio, and relevance judgments, the system recovers 57% of
the mean uninterpolated average precision that could have
been obtained through LVCSR domain tuning for very short
queries (or 41% for longer queries).

Categories and Subject Descriptors: H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval

General Terms: Experimentation

Keywords: speech retrieval

1. INTRODUCTION

Speech retrieval (SR) has perhaps greater potential to rev-
olutionize the way we store and access information than any
other branch of information retrieval: The vast majority of
the information we produce every day is spoken, and yet
speech remains almost completely unsearchable. One key
difficulty which remains is the problem of Out-Of-Vocabulary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGIR’09, July 19-23, 2009, Boston, Massachusetts, USA.

Copyright 2009 ACM 978-1-60558-483-6/09/07 ...$10.00.

91

Douglas W. Oard
University of Maryland
College Park, MD, USA

oard@umd.edu

(OOV) words. A word is said to be OOV if it is not con-
tained within the recognition dictionary of a Large Vocabu-
lary Continuous Speech Recognition (LVCSR) system. From
the perspective of SR, we might rephrase this as, a word is
OOV if it could not be anticipated as a potentially useful
query term when the underlying recognition dictionary was
constructed. Because OOV words tend to be rare, they tend
to be informative, and thus of particular interest for infor-
mation retrieval. And yet while OOV words occur infre-
quently in speech, they are comparatively common in query
formulations. In our topic set, 12% of all words in short
queries (titles) are OOV, and an OOV rate of 12% was also
previously reported for query words in a live search engine,
indexing speech audio from the Web [8]. And OOV words
tend to significantly reduce retrieval effectiveness.

In order to maximize transcription accuracy without un-
duly increasing search complexity, LVCSR systems have over
the years included increasingly larger decoding dictionaries.
The words in these dictionaries must be chosen in view of
a target domain to keep the OOV rate low, but of course
not every potential word may be anticipated. In particular,
when a new topic domain is encountered, the decoding dic-
tionary may be quite poorly matched to the target, making
it very difficult for users to find speech that is relevant to
their information need.

We use this scenario of domain switching (i.e., an LVCSR
system is developed for one topic domain but then used on
another), to create a plausible distribution of OOV terms
for our experiments. We investigate SR systems built with
LVCSR, both when the decoding dictionary has not been
adapted for the topic and when it has. We refer to a system
built using a domain-adapted dictionary as being Domain-
Adapted (DA). When the dictionary has not been extended
for the new topic domain, we refer to the system as be-
ing Out-Of-Domain (OOD). While we expect an SR system
built on DA LVCSR to perform best, and thus consider its
performance an upper bound on retrieval utility, it will for
the foreseeable future remain impossible to build one LVCSR
system having good lexical coverage of all possible topic do-
mains. We emphasize that we are considering a shift in topic
domain, and that other shifts in a collection’s characteristics
(e.g., dialect, age, channel, or signal conditions) may also
present serious difficulties that are beyond our scope.

Research in SR can broadly be divided into two camps:
work focusing on indices of words produced through LVCSR
and those using vocabulary-independent methods such as
phoneme or subword-level indexing. Closed-vocabulary word-



based methods have been the focus of most previous SR
research [6, 28, 24, 3, 15]. This is reasonable, since for
words within an LVCSR system’s dictionary, it is generally
accepted that LVCSR systems are better than vocabulary-
independent systems at detecting spoken terms [5]. Yet be-
cause OOV terms tend to be among the most informative
terms in a topic’s query specification, vocabulary-independent
subword representations have also been considered for ad hoc
SR [19, 30, 39]. Subword representations are attractive pri-
marily because they avoid the OOV problem.

Our goal, therefore, is to avoid the high costs of domain-
adapting a SR system, while also maintaining retrieval ef-
fectiveness for queries containing OOV words. Naturally,
we’d like to combine the strengths of OOD LVCSR and
vocabulary-independent term detection for SR. We present
a simple model for this evidence combination, in which we
learn monotonically increasing transformations of each sys-
tem’s retrieval scores which may then be easily combined
for ranking pre-segmented passages. This work differs from
previous SR combination efforts [9, 7, 35] in several impor-
tant ways. First, we present the first results of this kind
on the largest publicly available IR test collection of sponta-
neous, conversational, speech, the CLEF 2006/7 CL-SR col-
lection [24]. Second, we utilize a state-of-the-art ranked ut-
terance retrieval method recently reported in [23]. Third, we
consider a new evidence combination approach which learns
a transformation of our retrieval scores to predict relevance,
rather than simply thresholding confidence values for aug-
menting an index or combining scores via arbitrary normal-
izations. Most importantly, we find that our combination of
evidence produces a new ranking which is significantly bet-
ter than either ranking alone. This combination is able to
recover most of the Mean uninterpolated Average Precision
(MAP) lost because of words we were not able to anticipate
in the OOD recognition lexicon.

This paper is organized as follows. First, in Section 2 we
introduce the collection and task we use for our experiments.
In Sections 3 and 4, we introduce our LVCSR-based SR and
RUR systems, respectively. Then, we discuss in Section 5.1
how these system scores may be combined. We present our
experiments and results in Section 6 and conclude with re-
marks in Section 7.

2. SPEECH COLLECTION AND TASK

Although there has been a good deal of work on SR to
date, results from reported experiments have often been dif-
ficult to interpret because of small, synthetic or proprietary
test collections or because they do not incorporate human
assessments of relevance in their evaluation (e.g., a pas-
sage is deemed “relevant” if it contains a specific word or,
more often, if it was staged using a prompt corresponding
to the topic). One notable exception was the TREC Spoken
Document Retrieval (SDR) track, in which topical relevance
judgments made by human assessors were used to compute
standard effectiveness measures for ranked retrieval of news
stories. Although a strict temporal division between LVCSR,
training and ranked retrieval testing did result in some OOV
terms (e.g., names of people or places mentioned in breaking
news), the fact that training and test materials were drawn
from similar sources in a similar time frame tended to miti-
gate vocabulary mismatch effects.
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The lack of a substantial and realistic test collection con-
taining substantial amounts of spontaneous conversational
speech has tended to focus SR research on detecting term
occurrences rather than retrieving informative speech seg-
ments. Previous work in combining LVCSR and vocabulary-
independent SR systems has focused primarily on this term
detection task [12, 14]. Very little previous work has at-
tempted to combine LVCSR and vocabulary-independent
techniques for ad hoc SR [9]. A significant contribution of
this work is that we report the first of these results using
a comparatively large, publicly available test set, the CLEF
2006/7 CL-SR collection. The LDC plans to release the
audio, the LVCSR training transcripts, the information re-
trieval topics and the relevance judgments used for these
experiments in the near future. The topics and relevance
judgments are, however, already available to CLEF partici-
pants through ELDA. We therefore obtained that data from
ELDA, and we obtained the audio and the ASR training
data from IBM Research (where the LVCSR training tran-
scription had originally been performed).

The SR collection contains 272 interviews with survivors
of the Holocaust, used previously by the Cross Language
Evaluation Forum’s cross-language speech retrieval (CLEF
CL-SR) track [24, 20, 34]. We present a brief overview of the
collection here, while the reader is referred to [24] for further
information. Note that the interviews used for training and
testing the speech recognition systems are disjoint from the
SR interview collection.

The test collection’s speech audio was automatically seg-
mented into short utterances for the purpose of running
speech recognition. Longer, topically coherent segments of
the speech were also defined by professional indexers [24].
For comparison, an average utterance is 6.75 seconds (with
a standard deviation of 4.16), while segments average 3.45
minutes (with a standard deviation of 137.9 seconds). There
are 8,104 such segments (corresponding to roughly 589 hours
of conversational speech) and 96 assessed topics. Following
standard TREC conventions, the CLEF CL-SR queries are
fully specified as a title, description, and narrative.

We evaluate on multiple topic sets. To allow comparison
with previously published results, we run on 33 evaluation
topics used in CLEF’s 2006 and 2007 CL-SR track [20, 24].
In those 33 topics however, there are only 10 and 12 topics
having OOV terms in their title or title plus description fields
respectively. When reporting on this topic set, we average
across the complete CLEF topic set—including the topics
without OOV terms. This indicates roughly how much MAP
may be lost due to OOV query words in a random selection
of topics. For the remainder of this paper, we refer to this
topic set as the CLEF Topics.

We also run on the 38 topics from the complete topic set
having at least one OOV word in their title and the 49 topics
containing at least one OOV word in their title or descrip-
tion. This topic set is denoted as OOV Topics for the
remainder of this paper.

2.1 Evaluation Measures

We evaluate our system using MAP. Given a ranked list
of segments, the precision at position ¢ in the list is defined
as the proportion of the top ¢ segments relevant to the cor-
responding query. Average Precision (AP) is the average
of the precision values computed for each position contain-



ing a relevant segment. To assess the effectiveness of a sys-
tem across multiple queries, Mean Average Precision is de-
fined as the arithmetic mean of per-query average precision,
MAP = 15 AP,.

Secondly, we report the Fraction of Recovered Mean aver-
age precision (FRM), which we define as

MAP — MAPoop
MAPpas — MAPoop’

where M APp 4 and M APoop are the MAPs associated with
the DA and OOD word-based systems, respectively. The
FRM indicates the proportion of MAP (lost because the dic-
tionary was not adapted) which is recovered by combining
the OOD word system with the vocabulary-independent sys-
tem’s output. Note that, by definition, the DA SR system
achieves an FRM of 100%, while the OOD system has an
FRM of 0%.

Throughout this paper, when we report statistically sig-
nificant improvements in MAP, we are comparing AP for
paired topics using a Wilcoxon signed rank test at a = 0.05.

FRM =

3. LVCSR-BASED SR SYSTEMS

We now present our SR approach using only recognition
lattices from a fixed-vocabulary LVCSR system. We con-
struct systems using both OOD and DA LVCSR, which give
lower and upper bounds respectively on the MAP attainable
for each topic set. It is the scores from this OOD SR system
which we combine with our vocabulary-independent results.
We are thankful to BBN Technologies, who generously per-
mitted the use of their speech recognition system Byblos [26,
17] for this work.

Our OOD dictionary contains about 50,000 words with
manually specified pronunciations, and was previously uti-
lized for conversational telephone and broadcast news speech
transcription. To produce our DA dictionary, we added
words to the OOD dictionary to cover our complete set of
training transcripts, giving a dictionary of 60,378 words. For
training, we use approximately 200 hours of audio tran-
scribed in 197,220 utterances, excerpted from about 800
speakers. We use this complete set for our DA experiments.
For our OOD experiments, we subset the complete set of
transcriptions to exclude any utterances not covered by our
OOD dictionary. This reduces the training set by 12.8%
from 197,220 to 172,027 utterances. In this way, we hope to
model the speaker and channel characteristics, without un-
fairly aiding the OOD acoustic or language models. We train
separate acoustic and language models for the DA and OOD
SR systems. On held-out test data, our DA system obtained
a word error rate (WER) of 32.40. The OOD system’s WER
on the same data was 31.63.

The output of our LVCSR system is a lattice of recogni-
tion hypotheses for each test speech utterance. A lattice is
a directed acyclic graph that is used to compactly represent
the search space for a speech recognition system. Each node
represents a point in time and arcs between nodes indicates
a word occurs between the connected nodes’ times. Arcs are
weighted by the probability of the word occurring, so that
the so-called “one-best” path through the lattice (what a sys-
tem might return as a transcription) is the path through the
lattice having highest probability under the acoustic and lan-
guage models. From these lattices, we compute the expected
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Figure 1: Density of AP for both the OOD and DA
SR systems on 38 title queries with one or more
OOV words and 58 title queries having only IV
words.

count of each word in the corresponding utterance using a
variant of the forward-backward algorithm, implemented in
the SRILM toolkit [31].

To rank documents using only the expected word counts
from LVCSR, we use a vector-space model with Okapi BM25
weighting [27]. The approach defines a segment d’s retrieval
score (or retrieval status value, RSV) for query q as

Saq = idf(¢:) Cigrar, (@ D)k +1)

i=1 f(qivd)+k1(17b+bm‘;;ldl)7

where the inverse document frequency (idf) is defined as

N — n(ql) + 0.5
n(g)+05

N is the size of the collection, n(g;) is the document fre-
quency for term ¢;, qf; is the frequency of term ¢; in query
q, f(qi,d) is the term frequency of query term ¢; in document
d, |d| is the length of the matching document, and avgdl is
the average length of a document in the collection. As in
previous work [22], we set the parameters to k1 = 1, ks = 1,
b = 0.5. We take as a word’s term frequency, f(¢:,d), the
sum of the word’s expected counts from all lattices within
the segment. Because utterances can cross segments bound-
aries, we place word counts from an utterance in the segment
containing the largest fraction of the utterance. For the pur-
pose of computing document frequency, we define a word to
be present within a segment if f(g;,d) > 0.5.

Now that we have both OOD and DA SR systems (us-
ing BM25), we can investigate how each is affected by the
presence of OOV query words. To illustrate how the sys-
tems are affected differently, we ran both the OOD and DA
SR systems on the complete set of 96 CLEF CL-SR topics.
This complete set includes 58 completely In-Vocabulary (IV)
title queries and 38 title queries having one or more OOV
words. Figure 1 shows the estimated density of AP for each
system on each of the OOV and IV topics sets. First, we
see that the density of AP is similar for the DA system on

idf (q;) = log



both IV and OOV queries. Second, we see that the density
of AP is similar for DA and OOD systems on IV queries.
This is not surprising because the underlying LVCSR sys-
tems are very similar. Finally, we see that the density of
AP for the OOD system on OOV queries is sharply peaked
near AP = 0 and noticeably differs from the AP densities
on the other conditions. As we would expect, this confirms
that the MAP loss between the DA and OOD SR systems
is primarily due to queries with OOV words. If we con-
sider only short (title) queries having one or more OOV
word, we find that a dramatic 71.1% of the DA SR system’s
MAP is lost when using OOD SR. This obviously motivated
special handling of queries with OOV words. To improve
on these queries, we incorporate additional evidence from a
vocabulary-independent RUR system.

4. RUR SYSTEMS

To rank utterances by our confidence that they contain
a term, we use our RUR system reported recently in [23].
The system processes lattices from LVCSR. For our subword
recognition units, we use short sequences of 1-5 phonemes
called phoneme multigrams. Multigrams are learned by choos-
ing a ML segmentation of the training phoneme transcripts
(with all utterances that contain OOV words removed). The
most likely segmentation defines our multigram decoding
dictionary and the segmented corpus is used to retrain acous-
tic and language models for the multigram LVCSR system.
At search time, the RUR system uses a factored phrase-
based machine translation system [10] to hypothesize the
50 most probable degradations of an OOV word’s reference
phoneme sequence and incorporates these alternate pronun-
ciations in its term frequency estimator (ranking function).
While the system had been designed to retrieve utterances,
our goal now is to retrieve segments. Therefore, we sum the
utterance-level term frequency estimates from each utter-
ance in the segment to produce segment-level term frequency
estimates. As in the word-based SR systems, we consider an
utterance to be part of a segment if the majority of the ut-
terance is within the segment. We refer to this system as
the Ranked Utterance Retrieval (RUR) system.

S. COMBINATION METHODS

There are two types of approaches for combining ranked
retrieval results, data-fusion and data-merging. In data-
merging, indices are combined first, and afterwards a single
RSV is computed using the combined index. The difficulty
with this approach is how to transform the term frequency
estimates from each system such that they are commensu-
rate and, thus, combinable. As an example, in [9], scores
above a threshold from a phonetic lattice scanner were sim-
ply added to the index as being present words. This allowed
then-state-of-the-art IR methods to be used, although the
combined performance was not better than either system
alone.

In data-fusion, separate RSVs are computed from each
index before the RSVs are combined. This allows us to use
strong retrieval systems as inputs, but also forces us to make
simplifying assumptions for their combination (e.g., that a
linear combination of RSVs is sensible after normalization).
In this work, we focus on data-fusion approaches. To ad-
dress the RSV transformation problem, we consider a new
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method which learns an appropriate normalization of the
scores. First, we present several data-fusion techniques that
have previously been considered.

5.1 Baselines

One approach for combining ranked retrieval results is to
simply linearly combine the multiple system scores for each
topic and document. This approach has been extensively ap-
plied in the literature [1, 4, 25, 32] for text IR, with varying
degrees of success, owing in part to the potential difficulty of
normalizing scores across retrieval systems. In [9], this ap-
proach was used to combine results from a now small (20k
word) LVCSR system with scores from a phone lattice scan-
ner. Scores were normalized by the largest score for the input
type. However, the combinations did not improve upon the
best of the non-combined results.

More advanced score normalization methods have also been
proposed for data-fusion, as in [29]. Perhaps the most suc-
cessful of these is known as CombMNZ. CombMNZ has been
shown to achieve strong performance and has been used in
many subsequent studies [11, 18, 2, 13]. In this study, we
use CombMNZ as a baseline for comparison, and following
[13] and [11], compute it in the following way. First, we
normalize each score sq,» for segment d in ranked list r as

Sd,r — min(sy)

Na, = ,
¢ maz(sy) — min(s,)

’

where maz(s,) and min(s,) are the maximum and minimum
scores seen in the ranked list r. After normalization, the
CombMNZ score for a document d is computed as

CombMNZy=»_ Na» x |[Ng>0|.
TER

Here, R is the set of ranked lists to be combined, N, 4 is the
normalized score of segment d in ranked list r, and |Ng > 0|
is the number of non-zero normalized scores given to d in
any ranked list.

Manmatha et al. [16] showed that retrieval scores from IR
systems could be modeled using a Normal distribution for
relevant documents and exponential distribution for non-
relevant documents. However, in their study, fusion re-
sults using this comparatively complex normalization ap-
proach achieved performance no better than the much sim-
pler CombMNZ.

A simple rank-based fusion technique is interleaving [33].
In this approach, the highest ranked document from each list
is taken in turn (ignoring duplicates) and placed at the top
of the new, combined list. We use this as a second baseline
for comparison.

Chiefly for the purpose of analysis, we also consider a triv-
ial backoff approach as a final baseline. That is, we rank all
queries using the OOD SR system unless they have at least
one OOV term, in which case we backoff and rank them only
by their RUR score.

5.2 Combining by Transformations of RSV

We now present our combination approach. Recall, we aim
to combine an OOD SR RSV from Section 3 and an RUR
RSV from Section 4 to predict a new segment’s probability
of relevance. Suppose we had estimates for both the condi-
tional probability of a segment’s relevance given its LVCSR-
based score, P(rel|W), and its probability of relevance given



a vocabulary-independent system’s score for an OOV title
term T', P(rel|T). Assuming independence between W and
T, we could then compute the probability of a speech seg-
ment’s relevance given both W and T as

P(rel|W,T) o< P(rel|W)P(rel|T) (1)
where the relation is proportionality since we are only inter-
ested in ranking the segments.

Unfortunately, the RSVs obtained from our word-based
SR system are not in fact probabilities of relevance. At most,
we can say that, in general, a larger RSV ought to mean that
a segment is more likely to be relevant. As a solution to this
problem, we propose learning a smooth and monotonically
increasing transformation f of the RSVs to map us from W
to P(rel|W). Specifically, our model is

Bo + f(W), (2)

where f is constrained to be a smooth, monotonically in-
creasing function and rel is binomial. Equation 2 is an ex-
ample of a generalized additive model. Note, separate mod-
els are learned for OOD SR RSVs and RUR RSVs. We
represent the smooth f using a cubic smoothing spline, and
monotonicity is ensured by modifying the standard quadratic
programming problem for cubic smoothing splines with a set
of linear constraints, as described in [37].

In general, queries may have multiple title and description
OOV terms. Accordingly, we extend Equation 1 to

E(rel) =

P(rel|W,T, D) 3)

(rel|D; ]

t vy

[17

i=1

d

IIr

P(rel|w)* (rel|T)

where A,y parametrize the contribution from each evidence
source! and t,d denotes the number of OOV terms from
each field type (possibly zero). We refer to this approach of
Combining by Monotonic Normalizing Transformations as
CMNT.

Figure 2 shows transformations f(W) and f(T') learned
using Equation 2 on one fold of a leave-one-out cross-fold
validation. On the bottom, the estimated density of normal-
ized RSVs? for both relevant and non-relevant segments are
shown, for RSVs both from OOD SR and RUR (the density
estimates are heavily smoothed for visualization purposes).
As we expect, the relevant and non-relevant segments are
strongly mixed while relevant segments tend to have mod-
estly larger RSVs. We note, however, that the OOD and
RUR RSVs have very different RSV distributions. On top,
the probability of relevance given the RSVs (e.g., P(rel|W))
is shown for both the OOD SR and RUR system. Proba-
bility of relevance is constrained to increase monotonically

Tt may be objected that OOV title and description terms
may be weighted differently, while the OOD SR system does
not know which terms are in the title and which are in the de-
scription. We evaluated this concern by running additional
trials constraining v = 1 and found no significant effect. A
possible explanation is that, since OOV words tend to be
good predictors of relevance, knowing which topic field an
OOV word occurs in provides little additional information.
Details are in [21].

2For plotting purposes, we normalize the RSVs by the largest
RSV obtained by any segment.
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Figure 2: Bottom: the distribution of normalized
RSVs for relevant and non-relevant segments from
one cross-validation fold for both the OOD SR and
RUR systems. Top: the smooth, monotonic trans-
formations f learned via Equation 2.

with RSV. Note that both transformations have very dif-
ferent shapes. For example, the transformation learned on
RUR RSVs flattens out for large RSVs (where the ratio of
relevant to non-relevant RSV densities is small). For the
largest normalized RSVs, we see that the probability of rele-
vance given the OOD system’s largest RSV is about twice as
large as the probability of relevance given the RUR system’s
largest RSV. This is to be expected. First, because some
topics still contain discriminative OOD words (in addition
to their OOV words), the largest OOD RSVs are likely to
be good discriminators for relevant segments. On the other
hand, RUR is a harder task so that we would expect CMNT
to have less confidence about the predictive strength of RUR
RSVs.

To apply Equation 3 we must choose values of A,~. Our
approach is simply to choose the parameters that give the
best MAP in a leave-one-out cross-validation on the training
queries. We sweep over \,~y, on the intervals 0 < A < 100
and 0 <y < 100.

6. RESULTS

For our combined system, we consider as baselines CombMNZ,

interleaving and backoff, as discussed in Section 5.1. We also
consider our new approach, CMNT, defined in Section 5.2.
The smooth transformations were learned using the mgcv
package available for R [36], which fits the model using pe-
nalized likelihood maximization [38]. We use leave-one-out
cross-validation (leaving out queries).

6.1 Title-Only Runs

Table 1 shows the title-only results from our experiments.
We report on both the CLEF 2006,/2007 set (having only 10
or 33 OOV queries) and the complete set of 38 topics having
one or more OOV title word (OOV Topics). For comparison,
on the CLEF Topics set, the best title-only submission at
CLEF CL-SR 2006 achieved a MAP of 0.0495 using the pro-



List(s) Combination OOV Topics CLEF Topics

Ax

oL <

omA Method MAP FRM MAP FRM

v no comb. 0.0158 0.0 0.0439 0.0
v no comb. 0.0278 30.7 — —

v v CombMNZ 0.0151 -1.8 0.0454 27.3

v v interleaving 0.0250 23.7 0.0464 45.5

v v backoff — — 0.0480 75.1

v v CMNT 0.0382 57.5 0.0490 93.6

v no comb. 0.0547 100.0 0.0494 100.0

Table 1: Title run results from 38 topics having at
least one OOV word and the results on the CLEF
2006/2007 test collection.

vided, DA ASR word transcripts [20].> Our DA system, on
the same topic set, achieves roughly the same MAP (0.0494).

First, we observe that neither CombMNZ nor interleav-
ing is able to improve upon the best of the systems used
alone (recall, the systems alone are the OOD SR and RUR
systems). We suspect this is most likely because the RSVs
from each system have very different distributions, so that
more principled score normalization is necessary. This mo-
tivates our combination approach using monotonic normal-
izing transformations of the RSVs.

If we combine evidence using the backoff approach, we
see from Table 1 that our RUR system achieves a statisti-
cally significantly higher MAP than the OOD LVCSR system
alone. We also see an improvement using the same combi-
nation approach for the CLEF Topics set. We expect this
simple approach works here because title queries tend to be
short, so that an OOV query word often means the OOD
SR RSV will not provide much information for ranking the
segments.

Using CMNT to combine our OOD LVCSR and multigram
RUR systems, we achieve an FRM of 57.5 on title queries
with OOV terms. This improvement is statistically signif-
icant with respect to the OOD SR system alone (a state-
of-the-art baseline which does not address the OOV prob-
lem). We also find that, on the OOV Topics set, CMNT
significantly improves upon using RUR alone or combining
evidence by simple normalizations (e.g., CombMNZ). These
baselines are a sample of previous state-of-the-art methods
for systems that do specifically address the OOV query word
problem.

Figure 3 shows the improvements obtained for each topic.
On top, we see the difference in AP between the DA and
OOD SR systems for each topic, sorted by the difference
in AP. In the middle, with the topics in the same sort or-
der, the difference in AP between the CMNT system (using
multigram RUR) and the OOD SR system is shown. We
see that the largest improvements for the CMNT system are
predominately in topics with larger differences between DA
and OOD MAP. This is as we would expect.

3The same set of topics was also used in the 2007 CLEF
CL-SR, although no comparable scores (i.e., using only ASR
transcripts and title queries) were reported [24].
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Figure 3: Per-query analysis for OOV T queries.
The 10 Topics within the 33-topic CLEF Topics set
are shown in darker gray. Top: the difference in AP
between the DA and OOD SR systems, where topics
are sorted by size of difference. Bottom: Using the
same sort order, the difference in AP between the
CMNT system using RUR and the OOD SR system.

mean()) sd(\) MAP.; #im

12.8 29.6  0.0394 0.97

Table 2: Mean and standard deviation of CMINT
parameter ) found in the oracle study for OOV title
queries. MAPy.: is the MAP obtained using the
optimal settings of A\ for each topic. The proportion
of MAP,.;: obtained in the non-oracle evaluation,

MAP -
AP, 1S also shown.

In Figure 3, we also see that, for a very few topics, the
OOD system obtains a higher MAP than the DA system. In
the most extreme case, OOD SR improved over DA SR by
0.0323 MAP, for the title query The liberation of Buchen-
wald and Dachau. One possible explanation for this may be
that the terms Buchenwald and Dachau are rare—and there-
fore highly weighted by BM25, but they are not good dis-
criminators for segments dealing specifically with the camps’
liberation.

6.1.1 Combination Parameter \

To select our combination parameter A for CMNT, we have
used held out data in a leave-one-out cross-fold validation.
We also want to know, however, how sensitive the optimal
choice of A is to different test topics. To evaluate this, we
run an additional oracle experiment where we now select A
to give the best possible AP for each topic. Table 2 shows
the mean and standard deviation of A\ chosen for each topic.
Also shown is the MAP attained by choosing the best pos-
sible values for A\ for each topic, MAPps:, and the propor-
tion of MAPpes: obtained when A was chosen fairly in the
experiments reported above, #f;t. First, we note that
the standard deviation is large. The optimal setting of A for
most topics is zero, because OOD SR RSVs are often of little
use when the title query contains an OOV word. However, a
few queries contain discriminative in-vocabulary words that
cause the system to benefit from the contribution from the
OOD SR system (thus increasing variance in A). Secondly,
we see that when we chose A in the fair evaluation reported



List(s) Combination OOV Topics CLEF Topics

Ax

oL <

omA Method MAP FRM MAP FRM

v no comb. 0.0466 0.0 0.0374 0.0
v no comb. 0.0221 -70.0 — —

v v CombMNZ 0.0449 -4.9 0.0392 14.2

v v interleaving 0.0365 -28.9 0.0362 -9.4

v 7 backoff — — 0.0309 -51.2

v v CMNT 0.0611 41.3 0.0447 57.8

v no comb. 0.0816 100.0 0.0501 100.0

Table 3: TD run results from 49 topics having at
least one OOV word in their title or description field
and the TD results on the CLEF 2006/2007 test col-
lection.

above, we were able to obtain most (97%) of the MAP that
we could have obtained if we had instead used the best possi-
ble X for each topic. This suggests our combination approach
is not particularly sensitive to choice of A.

6.2 Title Plus Description Runs

Table 3 lists our title plus description results. Looking at
CLEF Topics first, we see that our DA system achieves a
MAP of 0.0501. For comparison, the best TD result from
the CLEF 2006 CL-SR track (using speech recognition tran-
scripts only) reported a MAP of 0.0381 on the same topic
set [20]. For the 2007 CLEF CL-SR track, this collection was
again used and the best reported TD MAP was 0.0512 [24].
We also note that MAP from TD queries on the OOV Top-
ics set is considerably higher than the title-only counterpart.
As in the title-only run, both CombMNZ and interleaving
do not yield a MAP measurably higher than the best of ei-
ther system alone (the apparent improvement in MAP using
CombMNZ on CLEF Topics is not statistically significant).

We saw on title-only queries that a trivial backoff combina-
tion, in which we used the OOD system for all IV queries and
only the vocabulary-independent system for OOV queries,
worked better than the OOD SR system alone. Using the
longer TD queries however, we see from Table 3 that this
approach does not improve over OOD SR. This is not sur-
prising because the TD queries have additional, useful IV
words which are ignored when the OOD RSVs are not uti-
lized for ranking.

Measured on OOV Topics, our CMNT approach using
RUR achieved a MAP of 0.0611, with an FRM of 41.3. As
before, this gain is statistically significant.

7. CONCLUSION

We introduced a new approach to combining search re-
sults from multiple ranked retrieval systems. In particular,
we combined ranked lists of segments from an SR system us-
ing OOD LVCSR and from a vocabulary-independent RUR
system. By learning a smooth, monotonically increasing nor-
malization of each systems’ retrieval status values, we pro-
duced a combined ranked list that improved, with statistical
significance, MAP on an established set of SR topics over
either system used alone. Because DA SR systems often can
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not be constructed (e.g., in open-domain speech retrieval set-
tings or because of costs), our goal was to recover MAP lost
when we are constrained to use OOD systems. On a set of
topics containing OOV title words, by combining systems,
we recovered 57.5% of the MAP lost. On TD queries con-
taining OOV words, our best system recovered 41.3% of the
MAP lost. This is illustrated in Figure 4, which shows MAP
for each query set using short (title only) and longer (title
plus description) queries, with each of the OOD, CMNT and
DA SR systems. We found that the MAP obtained using
our new combination scheme was significantly greater than
several previously studied SR techniques, including combi-
nation by backoff, combinations using less-principled score
normalizations, and of course OOD SR.

00D SR
m CMNT
DA SR

T Ooov

TD OO0V TCLEF TD CLEF

Figure 4: MAP for OOD, CMNT, and DA exper-
iments on each test condition. Note, the leftmost
two groups of bars show T and TD results using the
OOV Topics set. On short (T) queries with OOV
terms, we observe 71.1% of MAP is lost by using
the OOD rather than DA SR system. By combining
OOD SR with RUR we are able to recover 57.5% of
this lost MAP.

When focusing on the OOV problem, SR researchers have
often evaluated systems using collections and query sets that
are not representative of real problems: many RUR papers,
for example, use all present words as their test query set—
while we wouldn’t expect RUR, to be the system of choice for
most words, i.e., words inside an OOD dictionary. In gen-
eral, the problem of creating a reasonable set of OOV words
is quite difficult, because of interaction effects with other,
in-vocabulary, words (e.g., the SR system might unfairly re-
trieve speech using remaining words that co-occur with the
artificially OOV words). We avoided these difficulties by us-
ing a real dictionary, but one that was not adapted to our
topic domain. By extending this OOD dictionary to include
all words found in a rather generous set of speech transcrip-
tions (200 hours being far more than one could afford for
most topic domains), we produced our DA dictionary and
SR system. Together, these SR systems gave bounds on the
MAP achievable without special handling of realistic OOV
words. This, in turn, allowed for a simplified analysis of our
combination approach’s utility (using FRM). We consider
this experimental framework to be an important contribu-
tion of this work.

While we improved MAP with respect to an OOD word-
based SR system, a gap remains between our combined sys-
tem’s MAP and the MAP from the DA SR system. We
attribute this primarily to two causes. First, vocabulary-
independent spoken term frequency estimates are not as re-
liable as those from LVCSR. If we can anticipate a word
when constructing the LVCSR system, it is best to include
the word in the LVCSR dictionary and language model—



although of course anticipating the word may not be possi-

ble.

Second, our combination approach does not model de-

pendencies between the multiple retrieval status values. For
example, we weighted the contribution from each OOV term
equally, even though we know that different words should
have different effects on the probability of a segment’s rel-
evance. We also assumed independence in our combination
approach when in fact we would expect RSVs from differ-
ent systems to be highly dependent. Finally, the gains we
obtained required that models be trained for predicting rel-
evance. This required costly relevance judgments and we do
not yet know how sensitive CMNT is to the amount of avail-
able training data. We expect each of these difficulties will
provide a fruitful venue for our future investigations.
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