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Abstract

As information proliferates, inference risks for as-yet unstated facts
that require protection rise. This has been called the “mosaicing”
challenge. The costs of manual mosaicing review limit what can
be reviewed, leaving substantial quantities of actually innocuous
information unreviewed, unreleased, and thus unsearchable. This
paper models mosaicing risks in two ways: (1) as multi-hop question
answering in text and (2) as relation inference in knowledge graphs.
However, our focus is not on inference, but rather on inference
prevention. In each case, this is done by dividing the information
space into two parts, a larger part already widely known, and a
smaller review set being considered for potential public disclosure.
The goal for a system is to identify cases in which facts that require
continued protection would be at increased risk of inference if some
item in the review set were disclosed. Results of experiments show
some protection can be achieved with currently known techniques,
but that inference ability may not predict inference prevention well.
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1 Introduction

Our ability to search relies on content having first been shared,
and thus made searchable. There is, however, much that people
are reluctant to share for many reasons, including commercial ad-
vantage, personal privacy, or national security [3, 33, 49]. Sensitive
content is often intermixed with innocuous content that could, if
separable, be freely shared. That has led to a line of work in in-
formation retrieval on detection and removal of sensitive content
before indexing [10, 28], and on search engines that can segregate
sensitive content at query time [40]. Almost all such work has re-
lied on a document independence assumption, making decisions on
what is sensitive for each document in isolation; the one exception
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we know of groups related documents to allow them to be consid-
ered together [31]. In this paper, we push further on developing
automated tools to help reviewers identify inference risks.

Our work is motivated by what has been called the “mosaicing”
problem in declassification, in which the goal is to determine when
content being considered for public release would enable inference
of secrets that require continued protection [37, 38]. Finding cases
where individually releasable facts could together allow undesirable
inferences can be challenging. A same-document mosaicing case
is illustrated in Figure 1. Here we see two sets of redactions to a
classified message sent from William Cockell to Colin Powell in
1987 [32]. While some text is redacted in both versions, different
redaction decisions permit some inference about the secret(s) being
protected. For instance, the left version of the document includes in-
formation about how a previous statement (redacted in that version)
“led to a discussion of the FMS debt restructuring issue” involving
Egypt. On the right, by contrast, references to Egypt are redacted,
but not the question about “whether one or both of the [aircraft]
carriers now in the Med[iterranean Sea] were nuclear” When we
put this together with publicly known information, the reason for
the redactions becomes clearer. A couple of years earlier, the Wash-
ington Post had reported that “Egypt allowed a nuclear-powered
U.S. Navy ship to pass through the Suez Canal for the first time
last weekend in what one official called a ‘breakthrough’ for U.S.
diplomacy” [20]. What we see in this message is a discussion of how
a U.S. offer of debt relief to Egypt might help to secure permission
for nuclear-powered ships to pass through the Suez Canal.

It is straightforward to prevent same-document mosaicing at-
tacks by simply finding prior redaction decisions for the same
document and calling them to the attention of a human reviewer
who is making future redaction decisions [41]. Cross-document
mosaicing attacks pose much greater challenges because we must
search all extant information for tidbits that could be used, in combi-
nation with information in a document being considered for release,
to infer a secret. Mosaicing is further complicated by the inabil-
ity to retract information that has already been released, even if
that substantially reduces the challenge of inferring sensitive in-
formation [1, 37]. We ultimately seek to develop a framework that
can identify and reduce mosaicing risks that have the potential to
help people perform mosaicing review tasks. Our first step toward
that goal is to identify when one system for nominating potential
redactions is better than another. That is our focus in this paper.

We investigate the use of current techniques to characterize
inference risk in both text and knowledge graphs. We divide infor-
mation into two sets on which our inference models operate: (1)
a public set that represents what is already publicly known and
thus must be accommodated and (2) a review set that represents
information not yet public. The attacks we seek to prevent are those
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Figure 1: A simple mosaicing example [32]. The same document was released twice, with different redactions.

made by inference models against our secrets. We call these mod-
els evaluators when used for inference. When used for redaction
(information removal), we refer to a model as a “nominator” Our
principal contributions are formalizing the mosaicing inference
task, presenting comparable evaluation measures for that task in
text and knowledge graphs, and illustrating the impact of redactions
on inference models.

2 Related Work

Sensitive Information Protection. Inference prevention has been a fo-
cus in privacy protection, so we begin there. Considerable work ex-
ists on strategies to limit unique identification of individual entities
in a database [2, 26, 43]. Some, notably k-anonymity and l-diversity,
have been applied to social media graph anonymization [9]. Differ-
ential privacy also protects sensitive information [11, 21], but its
addition of noise is inconsistent with our focus on redaction rather
than obfuscation. We have also seen work on detecting sensitive
documents in IR, as noted above. In graphs, we see substantial
work on manipulating data to protect privacy. Casas-Roma et al.
investigated edge manipulation in unlabeled and undirected social
media graphs [8]. Qian et al. leverage node similarity for inference
in unlabeled graphs, a specialized case of graph completion [39].
Efforts at privacy protection within knowledge graphs exist any
inference of a specific type of relation [13], while our efforts focus
on preventing specific inferences.

Question Answering. We are particularly interested in Multi-Hop
QA (MHQA), in which the answer to a provided question is not
directly available in the collection but instead must be inferred
from information that may be found in multiple documents [27].
This can include inferential reasoning across a large collection, of-
ten with retrieval and inference components [50, 51]. We focus on
inference in this paper. For inference in MHQA, we can usefully di-
vide approaches into LLM and non-LLM methods. Both generative
LLMs [23, 25] and large BERT-derived language models [16, 17]

see extensive use. Implementations vary, though some approaches
generate small graphs over which they then reason [16, 17, 25], of-
fering some potential for bridging our work on text and knowledge
graphs in the future. Generative approaches are particularly inter-
esting given the upsurge in investment in extremely large models
of this type. While LLM-based approaches have attracted atten-
tion in recent years, the present state of the art on the HotPotQA
dataset with which we experiment is Beam Retriever, a non-LLM
model [51]. Another non-LLM model we looked at used a series of
bi-directional GRUs to process text in the context of a question [14].
That model was used (with a few modifications) as a baseline for
the HotpotQA dataset experiments [50]. We have used both of these
models in our experiments, and describe them in more detail below.
Knowledge Graph Completion. Knowledge graphs are networks of
entities with directed edges denoting relationships between pairs of
entities, typically encoded as (subject, relation, object) triples [39].
The completeness of these graphs is limited, however, so the Knowl-
edge Graph Completion (KGC) task attempts to identify missing
relations in such graphs [12]. KGC can be divided into two broad
categories: transductive and inductive. Transductive approaches
are trained and tested on the same graph, often by learning em-
beddings for triples in the graph [42, 47, 48]. Inductive models, by
contrast, require only that the same types of relations be present in
the training and test graphs. KGC models range from simple statis-
tical approaches [29] to more complex models designed to identify
distinctive aspects of the neighborhood of relations surrounding
a target relation [44]. We focus our work on inductive models be-
cause these models often outperform transductive models, even on
transductive tasks [44, 52], and because transductive models could
require retraining after any proposed redaction.

Adversarial Knowledge Graph Completion. The closest work to ours
in knowledge graphs of which we are aware is that of Pezeshkpour
et al. [35] on adversarial knowledge graph completion. In that work,
they experiment with a restricted class of highly local redactions
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Q: Which actor won a BAFTA Award for their
performance in “The Apartment?”

Public Set Review Set Secret Answer

The first e
Lemmon BAFTA Apartment”
was the lead ceremony won the Jack
actorin “The wEshaklin BAFTA for Lemmon
Apartment.”... 1041... best leading

actor...

Figure 2: We seek to protect Jack Lemmon having won Best
Actor, but his being lead actor in “The Apartment”, and “The
Apartment” winning best lead actor, causes inference risk.

in which the triples to be protected, and the triples that can be
redacted, share a common object entity. Our setting is more general,
allowing redaction of any relation along a path between a secret
triple’s subject and object entities. In practice, only 19% of the
triples we redact in our experiments in Section 4 share a common
object with the secret we are seeking to protect. Although we
focus on relation removal, other adversarial KGC strategies have
also been proposed. Some, such as relation addition [5], entity
addition [7], and relation modification [8] would be inconsistent
with our interest in adding only truthful knowledge graph content
while protecting our secret. Others, such as entity aggregation [19]
and other forms of clustering [22], could be consistent with that
goal, but there is limited scope for application of such techniques in
our task because we treat the large portion of the knowledge graph
that is already public as immutable. With these efforts on adversarial
graph modification [35], we can identify some overlaps in goals and
terminology. However, we also introduce some elements of our own
terminology to better describe our specific task. The "target" based
terminology of adversarial KGC fails to highlight our reason for
preventing inference of this target: its sensitivity to the information
provider. In a similar manner, withholding information does not fit
precisely with the "attack” and "poisoning" terminology prevalent
in work on adversarial KGC.

3 Sentence Redaction in Text

To simulate the problem in text, we started with a well-known
multi-hop QA dataset: HotpotQA [50]. We randomly selected 4,000
question-answer pairs to represent secrets, and we arbitrarily se-
lected one of the two “gold” paragraphs in the set of ten dataset-
provided paragraphs as the review set.! We used the other nine
paragraphs to represent potentially relevant content from the pub-
lic set that we cannot redact. We then employed some inference
model to attempt inference of the secret answer over the full set
of ten paragraphs (i.e., the union of the one-paragraph review set
and the nine paragraphs from the public set). Figure 2 illustrates
this setup. For each secret answer, we exhaustively applied single-
sentence ablation to identify which sentences in the review set
(if any), when redacted singly, would prevent correct inference of
the secret answer by that same model. We call such a sentence a
model’s nomination for redaction. We then deleted a single sentence
nominated by one model and measured the effect of that redaction

1Gold paragraphs are known to suffice for inference; other sets may also suffice.
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on inference of the secret answer by another model. We call that
first model the nominator and the second the evaluator.?

3.1 Methodology

HotpotQA was built using Wikipedia abstracts by providing a start-
ing abstract and the abstracts of pages linked from the starting ab-
stract [50]. It is structured like many other multi-hop QA datasets;
for inference, the dataset presents a system with a set of Wikipedia
abstracts (ten in this case), at least two of which contain informa-
tion needed to answer an associated question. HotpotQA has 90,447
training and 7,405 validation examples, each with a question, the
correct answer, and ten paragraphs, two of which are marked as
the "gold" paragraphs that were used to produce the answer during
dataset creation. The dataset’s creators do not provide a test set
and instead take submissions of systems for an unseen test set that
is not available to the public. We therefore sample our 4,000 secrets
from the validation set.

We employ four inference models for our experiments; two LLMs
(GPT-40 [34]* and Llama 3.0 70B [46]) and two non-LLM models
(Beam Retriever [51] and the baseline RNN model from the initial
HotpotQA paper [50]). Each LLM is provided one of three prompts,
each of which asks the model to answer the provided question using
only the given ten paragraphs and to explain its reasoning. The first
prompt (1P) designates the review set and asks for a single sentence
from that paragraph that helps explain the model’s response. The
second (2P) is nearly identical but asks for two such sentences,
both from the review set. The third (2A) is similar to 2P, but does
not designate the review set. We tried a number of other prompts,
ranging from slight variations in wording to working entirely with
JSON, but these three prompts provided the best results, both in
correct answers and in identifying sentences for redaction.

Our first non-LLM model is Beam Retriever [51] (“beam” for
short), which is the current state-of-the-art for HotpotQA. It en-
codes and scores different subsets of the context, using DeBERTa
and looking at the top k beams to identify the most useful para-
graphs, and then employs DeBERTa again for encoding and start/end
answer token detection. Our final model, “rnn,” consists of a series of
interconnected RNNs; this was a baseline in the original HotpotQA
paper [50]. Our models span a range of techniques, with different
levels of exposure during training to the Wikipedia content from
which HotpotQA was built (rnn: none, beam: only from DeBERTa
training, LLMs: extensive). In addition to these existing models, we
implemented a simple answer-matching baseline nominator, which
searches for the answer in the review paragraph and lists each of
those sentences as possible nominations. Note that it is incapable
of serving as an evaluator since it lacks inferential capabilities.

For our experiments, we applied the models as nominators and
evaluators in every possible combination. We redacted each sen-
tence in the review set in turn, and noted which changed the nomi-
nator’s answer from correct to incorrect. There are typically about
four sentences in the paragraph that we use to model the review
set, so this is not too expensive for our experiments (although with
large review sets it would be costly). We call this process exhaustive
search for sentence redaction. If we find more than one redaction

2All code and data for this paper is available at https://github.com/nrol138/mosaic_ictir
3We used the 2024-08-06 GPT 4o checkpoint.
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that changes the answer from right to wrong, we arbitrarily se-
lect the first to appear in the review paragraph as the nominated
redaction. While our approach simplifies the task to single-sentence
redaction rather than including cases where multi-sentence redac-
tions are necessary, it provides insight into the viability of our
approach to this problem while avoiding the factorial costs in the
multi-redaction setting.

When we remove a nominated sentence from the review set,
we replace it with “[REDACTED],” in a manner reminiscent of
government redaction of classified information. We then run each
evaluator model on both the unredacted and redacted versions of
the context, and we run our LLMs with every prompt. A nominated
redaction is successful for a given evaluator if, when the nominated
sentence is present, the evaluator is able to correctly answer the
question, but when it is redacted, the model can’t do so.

There are two special cases that we need to consider. Sometimes
a model simply cannot answer a question correctly, whether redac-
tion is performed or not. For the state-of-the-art beam model, that
happens for about one-third of all questions (specifically, 1,278
of our 4,000-question sample). We cannot use such questions to
evaluate the effect of redaction. The other special case is when the
model persists in answering the question no matter which single
sentence we redact from the review set. This can happen for at least
three reasons: (1) the model answers from prior knowledge rather
than from the paragraphs we provide, (2) more than one sentence
in the paragraph that we choose as the review set suffices for the
inference, or (3) no sentence in the review set is needed to perform
the inference because information provided in the other paragraphs
suffices. We can identify these special cases by simply using the
same model as both nominator and evaluator. When a question can
be answered by a model before redaction, we say that the question
has “Exposure” to that model. When a single-sentence redaction
can flip an answer to such a question from right to wrong, we say
that the question exhibits “Reducible Exposure,” since redaction
can reduce the Exposure. Note that both Exposure and Reducible
Exposure can differ for different evaluator models.

3.2 Results

We first address model performance as evaluators, and then inves-
tigate their capability as nominators.

3.2.1 Evaluators. A strong evaluator model would be one that
can answer many questions correctly, and whose ability to answer
questions is robust to redaction of individual sentences from the
paragraph that forms the review set. In other words, for a strong
evaluator, Exposure (called “Total Exposure” in our results tables)
should be high and Reducible Exposure should be low. As Table 1
shows, beam is better than any other model at answering questions
(producing the exact answer that the HotpotQA collection specifies
in 2,722 of 4,000 cases), but rnn is far more robust to single-sentence
redaction (with the lowest Reducible Exposure, just 261 of the
4,000 questions). As a single figure of merit, we can characterize
the inference risk from an evaluator as the difference between
Exposure and Reducible Exposure, which is the portion of the 4,000
cases in which that evaluator model can produce an answer that
no single sentence redaction from the review set could prevent.

Nathaniel Rollings and Douglas W. Oard

By that measure, beam is clearly our strongest evaluator, making
“Irreducible” inferences in 2,083 of 4,000 cases.

We see that every GPT prompt outperforms any Llama prompt,
with both higher Exposure and lower Reducible Exposure. We also
experimented with LLaMA 8B (not shown), finding even lower
Exposure and Irreducible Exposure than Llama 70B. While these
few experiments are not conclusive, they do support our expectation
that larger models are better able to conduct inference, and that
inference by larger models is more robust to changes in the set over
which the inference is performed. With the LLM prompts, there
is a clear tendency toward higher Exposure and lower Reducible
Exposure when the review set is specified in the prompt. This is
true for both GPT and Llama, regardless of whether we ask for one
or for two sentences that support the model’s stated inference.

For the results in Table 1, we used exhaustive search to select the
sentence in the review set to redact, but in a large-scale application,
we would need a more targeted approach. However, we find that
when we prompt an LLM to suggest which sentence in a specific
paragraph to redact, it is no better than random. Specifically, G1P
(GPT with the 1P prompt) suggested a protective redaction for 54%
of the cases in which protection was possible (530 of 990), and L1P
also made a good suggestion in 54% of such cases. When we ask the
model to suggest two sentences, G2P made a good choice 49% of
the time and L2P did so 62% of the time, slightly edging out random
guessing. G2A did only slightly worse than G2P at finding a good
sentence to redact in the review set (43% vs. 49%), despite having to
consider ten times as many sentences.* The beam model can also
identify supporting sentences, and it recommends a good redaction
in the review set in 94% of possible cases (602 of 639). Together,
these results indicate that while asking LLMs to nominate sentences
might scale reasonably well to larger review sets, systems designed
specifically for this inference task are currently much better at
suggesting specific sentences.

3.2.2  Cross-Model Nomination. So far, our analysis has focused on
finding strong evaluators when the nominator and evaluator are the
same model (and for LLMs, the same prompt). In reality, however,
we want to find nominators that can reduce the inference abilities
of many evaluators, because we can’t be sure which evaluator
model might be tried by someone who wishes to perform inference.
This cross-model nomination scenario is the focus of the right
side of Table 1. There, we use percentages to show the fraction of
the Reducible Exposure for each evaluator that can be achieved
by any particular nominator. That fraction is always 100% when
the nominator and evaluator are the same, so we omit those 100%
values on the main diagonal for improved readability. Notably,
we immediately see that our answer-matching baseline is never
the optimal nominator, despite having access to information (the
answer) that no other model is provided.

We see that other models struggle to achieve large reductions
in Exposure for beam. To take a specific example, when beam is
the evaluator, G1P reduces its Exposure less than half as well as
beam itself could have done (specifically, G1P reduces the Exposure
of beam by 285, which is 44.6% of 639), and no other nominator
does even that well. Just examining the bolded values (the highest

“4For L2A vs. L2P the same comparison is 58% vs. 62%.
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Table 1: Model effectiveness for 4,000 exact match answers with exhaustive search for sentence redaction. Total Exposure
is fraction of secrets inferred without redaction; Reducible Exposure is maximum possible absolute reduction in Exposure
(achieved using the evaluator model as nominator). Percentages show fraction of Reducibility achieved by some other nominator.
G: GPT-40, L: Llama 3 70B, 1 or 2: number of requested sentences, P (present) or A (absent): whether review paragraph is
specified in prompt. A * indicates a significant (p > 0.05) improvement by the binomial test over all prompts using the same
model while a T indicates significance over all other models, but not necessarily over different prompts of the same model.

Nominator’s Fraction of Evaluator’s Reducible Exposure?

Total Irreducible Reducible | Answer GPT Llama Non-LLM
Evaluator | Exposurel | Exposure] Exposure| | Match? G1P G2P G2A | L1P L2P L2A beam rnn
G1P 2370 1380 990 34.8% - 60.1%*7  50.8% | 41.9% 40.1% 36.8% 289% 11.0%
G2P 2330 1454 876 37.7% 68.5%" " - 59.8% | 43.8% 41.9% 37.7% 32.3% 12.2%
G2A 2255 1415 840 38.2% 61.8% 64.3%" - 43.6% 41.3% 37.6% 32.4% 12.0%
L1P 1935 903 1032 38.3% 44.1% 41.2% 38.8% - 57.8%*" 50.8% 24.6% 10.4%
L2p 1845 808 1037 36.9% 41.4% 38.2% 36.6% | 56.8% - 71.2%*" | 245% 10.2%
L2A 1748 781 967 38.0% 42.1% 38.8% 37.6% | 555% 78.3%"" - 24.7% 10.0%
beam 2722 2083 639 34.0% 44.6%" 42.6% 40.7% | 34.0% 35.4% 32.2% - 15.2%

rnn 1697 1436 261 38.3% 42.5% 42.1% 39.5% | 37.2% 38.4% 34.5% 38.7% -

percentage achieved by any nominator against that row’s evalu-
ator) we see a block diagonal structure for the LLMs: when any
GPT prompt is the evaluator, some other GPT prompt is the best
other nominator, when any Llama prompt is the evaluator, some
other Llama prompt is the best other nominator. In other words,
the difference between LLMs is greater for this purpose than is
the difference between these prompts. We also see that beam and
rnn are poor nominators across the board, a combination of differ-
ing (beam) and anemic (rnn) redactions. Because LLMs and beam
choose different sentences to redact, we might, in future work, also
want to look at ensembling LLM and non-LLM models in an effort
to improve the Reducible Exposure for an unknown evaluator.

Diving deeper into the LLM results, we see that G1P is the best
GPT prompt as a nominator, except when the evaluator is G2A
(where G2P does non-significantly better). We see something similar
with Llama, where L1P does best as a cross-model nominator in
most cases, but it differs in being significantly worse at nominating
against other Llama models. Nonetheless, the consistency of this
result leads us to speculate that present LLMs do better with shorter
inference chains, so asking for one sentence in support may be a
bit better than asking for two for the cross-model case.

3.2.3 Overall Remarks. Our experiments with HotpotQA provide
several useful insights into the characterization of mosaicing in-
ference risk. First, measuring Reducible Exposure is a useful way
of characterizing that risk. When used in a nominator/evaluator
framework, we can identify the strongest inference model, upper
bound the effectiveness of redaction against a particular evaluator,
and measure the relative effectiveness of other redaction nomina-
tion models. We also observed differences between specific models,
and while improved models in the future can change specific results,
we expect that this evaluation framework will remain useful.
While our experiments with text offer useful insights, there are
several reasons why we might prefer a more highly structured set-
ting for further experiments. First, although HotpotQA matches our
needs to a useful degree, its design requires that we encode a secret
as a question-answer pair. There may be many ways of creating
such pairs, but HotpotQA’s structure led us to model each distinct
secret using just one question-answer pair. Second, in HotpotQA

each question-answer pair is independent. But in reality, secrets
may cluster; Maxwell Smart had many more secrets than did Char-
lie Brown. Modeling that kind of clustering might be useful because
protecting secrets might be easier (or harder!) if they tend to be
near each other in some sense. Third, though text bodes well for
realism (since many things that need to be reviewed for declassifi-
cation are written text), it poses a number of confounds, such as
repetition, redundancy, and synonymy, that conspire to complexify
our models despite our desire for tighter experimental controls.
Finally, inference on text brings its own challenges, including the
training set leakage we have highlighted in LLMs and, to a lesser
degree, in beam. For these reasons, we find it useful to augment
what we have learned in text by exploring another approach to
mosaicing in a more controlled setting, knowledge graphs.

4 Relation Redaction in Knowledge Graphs

We model the redaction problem in knowledge graphs as follows:
given an existing knowledge graph representing public information,
a set of new triples being considered for release, and a secret relation
that is in neither of those sets (depicted in Figure 3), our task is
to redact the one relation in the review set that provides the most
support for inference of the secret. We call this the Most Dangerous
Relation (MDR). This approach allows us to identify the most useful
potential single redaction. Note the difference here from the setup
in text: we ask not whether a redaction prevents a correct inference,
but rather whether it makes that correct inference less likely.

4.1 Methodology

To simulate the problem, we start with a dataset widely used in
KGC research: FB15k-237 [45]. We first select 150 subject, relation,
object triples from among its training set relations to be our secrets
and then randomly sample one-third of the remaining training set
relations as our review set from which we may elect to redact a
relation to protect a secret; the remaining two-thirds of the dataset’s
training set is the immutable public knowledge graph. We then train
three KGC models on only the public graph and ask each trained
model to perform inference over the union of the public graph and
the review set in an attempt to infer a secret. For each secret, we use
ablation to determine the one relation in the review set on which
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each KGC model most depends when making this inference (i.e., the
MDR), and we consider that MDR to be that model’s nomination
for redaction. We then delete the relation nominated by that one
model, and measure the effect of that deletion on inference of the
secret by each evaluator model.

4.1.1 Dataset. FB15k-237 was built from FB15k by removing in-
verse links. For instance, if A has a married to link to B, there may
be an inverse link indicating B is married to A. While inverse links
are natural, removing them requires our models to make more
nuanced inferences. We use the training set of the FB15k-237 V1
inductive split, which has 4,245 triples and 180 relation types [44].
As FB15k-237 is commonly used in KGC research, it provides a base
on which the performance of all our models has been characterized.

4.1.2  Evaluation. Each of our models can score any triple formed
by adding a new relation between two existing entities, and we can
use these scores to rank any set of triples. We form such a set by
adding our secret triple to 100 other confounds found using negative
sampling, (presumably incorrect) triples that are also not present in
the graph. If an inference algorithm ranks our secret above all of the
confounds, we consider it fully exposed. If some of the confounds
rank above it, that’s good. The more the better. As a measure of
Exposure, we use the reciprocal rank of the secret in the list of
101 triples. Negative sampling is commonly used for KGC evalua-
tion [36, 44, 52], stemming from early work on Noise-Contrastive
Estimation [18, 30]; it was called “uniform negative sampling” in
the seminal TransE work on knowledge graph embedding [6].

We perform negative sampling by randomly selecting 50 triples,
each with the actual secret’s relation and object, but a random
incorrect subject, and another 50 with the secret’s actual subject and
relation, but a different object. Random selection results in many
improbable triples among the set of confounds, but we see that as a
feature, not a bug, since ranking an improbable confound ahead of
our secret indicates strong protection. For example, convincing a
model that a book is more likely to have won the Best Actor award
than is the actor Jack Lemmon would indicate Jack’s secret is safe.

Our goal is not just to measure how well a KGC model performs
inference, but, importantly, how well we can use some KGC nomi-
nator model to prevent inference of a secret by some KGC evaluator
model. Just as in text, we measure the nominator’s effectiveness as
Reducible Exposure against a particular evaluator. The Reducible
Exposure is the reduction in the reciprocal rank of our secret (since
lower reciprocal rank indicates a better protected secret), as mea-
sured by the evaluator model, after removing the MDR identified
by our nominator model. Given a relation nominated for removal,
we run the evaluation model against the review set and the public
graph, but with the nominated link removed from the review set,
much as we did in our text experiment. Here, however, we observe
the reduction in reciprocal rank of the secret in the evaluators’
rankings of the secret among the confounds rather than just ob-
serving whether or not the observer answers a question correctly,
as we did in text. Specifically, we compute Exposure as the mean
reciprocal rank of the secret among the confounds for the evaluator
model before redaction, and the Reducible Exposure as the mean
reduction in reciprocal rank that results from redaction of the MDR:

Nathaniel Rollings and Douglas W. Oard

Figure 3: Some relations in a knowledge graph. Red are secret,
green are public, and blue are review set. We seek to protect
against the same inference as in Figure 2.
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where re, is the rank of secret i for evaluator e without redaction,
rn; is the rank of secret i for evaluator e after redaction of the
MDR from nominator n, and k is the number of secrets (150). As
with text, Reducible Exposure is maximized when the nominator
and evaluator are the same. To see how well other models do, we
compute the fraction of same-model Reducible Exposure that some
other nominator can achieve, again expressing that as a percentage.

As an example, consider the graph in Figure 3. If we seek to mea-
sure the degree to which we can protect the (Jack Lemmon, Won,
BAFTA Best Actor) secret, one confound might be (Jack Lemmon,
Won, Cleveland). If our secret triple was initially at rank one, but
after the nominated single-relation redaction from the review set
it drops to rank two, behind this one confound but ahead of all
other confounds, the reduction in reciprocal rank would be 0.5. If,
however, the secret was initially at rank 10, with nine confounds
ranked above it, a further reduction of one rank to rank 11 would
produce a reduction in reciprocal rank of just 0.009.

4.1.3  Secret Selection. We start by randomly selecting relations
as potential secrets. Of course, random selection may select some
“secrets” that would provide little insight into our approaches to
inference prevention, in part because random selection may not
model the properties of actual secrets well (see section Section 4.3
for experiments with an alternative approach to secret selection).
A potential secret that all models can infer using only the public
graph will result in Irreducible Exposure since we cannot withhold
information that is already public. This happened in 21 of the 150
cases. Second, if no model can infer the secret when using both the
public graph and the review set together, before any redaction, then
the secret is already safe, at least against the models we have tested,
and no further improvement is possible. This happened in 46 of the
150 cases. Finally, if no single relation redaction from the review
set can prevent inference of a secret by any model, then multiple
redactions would be required, and that is outside the scope of our
experiments in this paper. This happened in 35 of the 150 cases.
Of the 150 randomly selected potential secrets, 48 passed all three
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Figure 4: Reducible Exposure per secret for each evaluator. The 48 secrets are in increasing order of relation type frequency.

filters. We used the full set of 150 secrets to compute Exposure and
Reducible Exposure, but this set of 48 “measurable” secrets is the
focus of our more detailed analysis in Figure 4.

4.1.4  Inference Models. We chose a diverse set of three inductive
KGC models that each operate quite differently, none of which were
exposed to our secrets during training. To enforce that, we train
each model using only the public graph and then perform inference
on the public graph plus the review set. It is our use of inductive
models that makes such a process possible.

Our first inference model, RuleN, is a simple statistical model [29].
RuleN samples the occurrences of each relation type and observes
the frequency with which different relation sequences (called “rules”)
are found between the subjects and objects of this relation type.
Like many inductive approaches, RuleN only considers the relations
along a path, not the nodes through which a path passes. The score
for RuleN’s prediction is simply the frequency at which the highest-
scoring rule present in the sample was observed. This rule-based
approach makes it straightforward to identify RuleN’s MDR, since
only relations along paths that contain the highest-scoring rule can
impact RuleN.

Graph Inductive Learning (GralL) [44] is our second model. GralL
is an inductive model focused on the relations surrounding the se-
cret. It trains a graph neural network to characterize neighborhoods
in the graph. This approach can potentially capture far more nu-
ance than RuleN, although it requires extensive computation to
reason over many possible relation types, a problem when training
on large graphs. Moreover, GralL does not identify a specific path
on which the MDR would be found as a byproduct of its reasoning,
so we exhaustively check the effect on GralL’s inference of each
possible single-relation redaction in a three-hop neighborhood. The
relation that produces the largest reduction in Exposure is selected
as GralL’s MDR.

Our third model is the Neural Bellman-Ford Network [52], which
we call “Bellman-Ford” for short. Based on a generalized Bellman-
Ford algorithm for identifying shortest paths to any point in a
graph, this model learns ways in which paths can be represented
and combined. Like RuleN and GralL, Bellman-Ford considers only
relation paths, and is thus an inductive model. However, it is faster
to train than GralL, and Zhu et al.[52] have also suggested an

approach for estimating the relative impact of each path on its
overall decision, potentially simplifying our search for the MDR.
In our result tables, we refer to these models as RN (RuleN),
Gr (GralL), and BF (Bellman-Ford). We restrict the neighborhood
considered by each model to three hops in our experiments, which
has been reported as a suitable choice for each when performing
the KGC inference task on this collection [44, 52]. We consider each
nomination model alone and in a two-model ensemble. When en-
sembling models for nomination, we use reciprocal rank fusion with
the standard parameter (60) to merge results from each model [15].
We then select the relation with the largest reciprocal rank after
reciprocal rank fusion as the joint nomination. Despite the poten-
tial for two of our models (RuleN and Bellman-Ford) to constrain
the search space, we use exhaustive search of all potential single-
relation redactions in the three-hop neighborhood of the secret
relation with every model. This improves comparability by avoid-
ing confounds from errors in Bellman-Ford’s path impact estimates.

4.2 Results

Table 2 and Figure 4 show our results.

4.2.1  Evaluators. Figure 4 shows per-secret Reducible Exposure
for each of the 48 secrets that have Reducible Exposure for at least
one of our evaluator models. Among those evaluators, RuleN ex-
periences the largest number of changes, followed by GralL, and
then Bellman-Ford in a distant third place. However, the magnitude
of the changes exhibits the inverse behavior: while Bellman-Ford
sees fewer changes in rank from a single-relation redaction, it sees
the three most extreme changes, with GralL seeing the next largest
change magnitudes. This pattern matches the reported relative
inference ability of the models on the KGC inference task: Bellman-
Ford outperforms GralL [52], and GralL outperforms RuleN [44]. As
expected (since those comparisons were also made using negative
sampling), this pattern can also be seen in the Exposure measures
in Table 2. This correlation makes sense, since large reductions in
reciprocal rank are only possible when the secret being protected
was very highly ranked to begin with.

Another observation from Figure 4 is that each evaluator has
some secrets on which only it experiences rank changes. Even
where overlap occurs, Reducible Exposure varies substantially be-
tween evaluators. We also see differences between models on secrets
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with more or less common relation types. The 48 secret relations in
Figure 4 are sorted from most common type (film release region) to
least common type (music track contribution role). Reducible Expo-
sure for RuleN exhibits little dependence on how common or rare
the relation type is, but Bellman-Ford exhibits a clear preference
for mid-range relation types (i.e., those with higher entropy).

The left side of Table 2 shows evaluation model results. We see
that the strongest evaluator is Bellman-Ford, because it achieves the
highest Exposure and the lowest Reducible Exposure. We can also
see the impact of RuleN’s smaller but more numerous reductions
in reciprocal rank in its greater Reducible Exposure than either
other evaluator. The larger Reducible Exposure for RuleN indicates
its inference can be affected by redaction to a greater degree (on
average) than that of GralL, and the same analysis indicates GralL’s
inference can be affected more than Bellman-Ford’s.

4.2.2 Cross-Model Nomination. As the right side of Table 2 shows,
RuleN seems to be the best other nominator against both our
strongest evaluator (Bellman-Ford) and against GraIL. When the
evaluator is the same, we can conduct a paired t-test for statistical
significance. Doing so, we find that RuleN is significantly better
than Bellman-Ford as a nominator (when GralL is the evaluator),
but that RuleN is statistically indistinguishable from GralL when
Bellman-Ford is the evaluator. This lack of significance may result
from the small number of samples (17) when Bellman-Ford is the
evaluator, however. RuleN’s impressive nomination performance
against other evaluators results from one simple fact — if a nom-
inator sees no difference for a secret, it can’t make a redaction
nomination. As Figure 4 shows, RuleN chooses some relation to
redact for 26% more secrets as GralL, and more than twice as many
secrets as for Bellman-Ford. When doing cross-model nomination,
we see that breadth beats depth. This premium on breadth suggests
that using a nominator ensemble might be worth exploring. As the
far right column in Table 2 shows, ensembling the other two (non-
evaluator) models using reciprocal rank fusion was never better
than the better of the two models being combined. There may, how-
ever, still be a case to be made for ensembles, particularly in settings
without a single best nominator, as we observed in Section 3.

4.3 Preferential Attachment for Secret Selection

In practice, we expect secrets to exhibit a degree of locality be-
cause some topics, such as plans for future monetary policy, may
involve many secrets. We can model that locality using preferen-
tial attachment [4, 24]. To explore the impact of differences in the
distribution of secret relations, we selected 150 new secrets using
a greedy method in which half the time we select a relation that
shares a subject or an object with at least one other secret; the other
half of the time we select a relation at random. When selecting a

Table 2: Model effectiveness for 150 secret relations chosen
randomly, with exhaustive search for relation redaction. RN:
RuleN, Gr: GralL, BF: Bellman-Ford.

Total

Reducible

Nominator’s FractionT

Evaluator | ExposureT Exposure| | RN Gr BF | Both
RN 0.211 0.041 - 77.8% 67.0% | 74.5%
Gr 0.372 0.028 57.2% - 40.1% | 51.8%
BF 0.395 0.012 77.1%  53.2% - 53.3%

Nathaniel Rollings and Douglas W. Oard

relation with a shared subject or object, the selection probability is
the count of previously selected secret relations sharing that node.
This approach encourages large clusters of secrets to develop.

As Table 3 shows, this changes things quite a bit. Effects on
Exposure vary, with two models (RuleN and GralL) seeing increases,
suggesting this is an easier condition for those models. All models
saw an increase in Reducible Exposure, indicating redactions can be
more effective in such cases, and there are now substantially more
secrets (72) for which redaction can affect at least one of the models.
GralL is now the best evaluator, and it is also the best cross-model
nominator against both of the other evaluator models.

While work remains to be done on realistically modeling the dis-
tributions of real secrets (which will surely vary), these experiments
make it clear that how secrets are distributed in a real collection can
be consequential for both nominator and evaluator performance.
One approach would be to perform experiments on information
that is actually secret, but reproducing such results might require
waiting decades for the test set to be released! Better would be
to first study the Swiss-cheese distributions of actual secrets, and
then to share the recipe for replicating that Swiss-cheese pattern
in other collections. With such test sets, we could focus our work
on experiments closer to the real problem.

4.4 Inference on Larger Graphs

While our experiments to this point have focused on the ability
of a nominated redaction from one model to make inference more
difficult, we also need to consider scalability to larger knowledge
graphs. Some models, like RuleN, are designed to employ sampling
and may (with progressively lower sampling rates) thus scale to
large graphs. Other models, like GralL, lack sampling in their base-
line implementation and struggle with larger graphs (GralL has an
estimated run time on the full FB15k-237 dataset of over a month
using a V100 GPU [52]). Exploring larger and more complex graphs
will require more efficient approaches to inference. Our redaction
task has a key difference from KGC that we can exploit to this
end: we only care about our small number of secret relations in the
graph, and these are potentially constrained to only a few relation
types. As a result, we only need models that can predict specific
relation types. If we focus the training of models on a small number
of relation types, we can substantially reduce the training required
and thus improve the scalability of these models.

To test this hypothesis, we focus on our least efficient model,
GralL. Since the scalability bottleneck is training the inference
model, we return to the original KGC task on the full V1 (and
later V4) FK15k-237 data rather than our public/review/secret splits.
This approach provides more training and testing data, and en-
ables straightforward transitions to the other FB15k-237 divisions,
However, we choose the relation types on which we train and test

Table 3: Model effectiveness for 150 secret relations chosen
with preferential attachment; exhaustive relation redaction.

Total Reducible | Nominator’s FractionT ‘

Evaluator | Exposure] Exposure| | RN Gr BF
RN 0.228 0.053 - 56.1% 48.1%
Gr 0.403 0.037 48.3% - 46.3%
BF 0.305 0.018 26.0% 56.8% -
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Table 4: Improvement in training time for Focused Grail.

Dataset | Relations Model Total Exposure]  Training Time|
GralL 0.659 218.70 minutes

V1 4.245 Focused GralL 0.581 5.41 minutes
GralL 0.649 7,747.62 minutes

V4 27,203 Focused GralL 0.640 20.64 minutes

from among those present in our V1 secrets. We modified GralL’s
subgraph creation to only consider relations of one type. Since each
secret has just one relation type, this design matches our one-secret-
at-a-time evaluation approach. We selected 22 of the 26 relation
types of our randomly selected secrets in Section 4.2 from the V1
split (omitting 4 types not present in the V1 test set), and we sub-
sampled 17 relation types at random from those secrets for use in
V4. For each relation type, we trained the model on FB15k-237
V1 using only the 3 hop subgraphs around relations of only that
specific type. We then performed the inference task, restricting the
cases on which it was tested to test set triples containing our target
relation type. We call this system Focused GralL. Our Exposure mea-
sure remains useful in this setting, but it as a macroaverage, first
by relation and then by relation type, so more and less common
relation types contribute equally.

As expected, training time scales linearly with the proportion of
the graph represented by a secret’s relation type, with our tested
relation types averaging a respective 2.1% and 1.9% of the V1 and
V4 splits on a GTX 1080, with 8GB of VRAM, although there is
some overhead in the initial processing of the graph. In practical
applications, we might expect sets of secrets to include more than
one relation type. Our approach could be applied in such cases
by training one model per relation type or by training on just the
subset of the relation types from the full collection that span the
secrets that require protection. The timing data in Table 4 shows
training all 22 Focused models on V1 would be nearly twice as fast
as full GralL training, although training the 180 modified models
needed to cover all relation types in V1 would take substantially
longer than full GralL training. This approach is thus most useful
when the types of relations under consideration are limited. The
measured Exposure differences between GralL and Focused GralL
are not statistically significant by a two-sided paired ¢-test for V1
or V4, with about as many wins as losses across relation types. Of
the 22 relation types in V1, reciprocal rank increased for 9 and
decreased for 11 (2 saw no change). Moreover, on the larger V4 set,
the measured difference in the mean across 17 relation types is quite
small. There are several possible sources of variation, including the
simpler learning task in Focused GralL (one vs. many rather than
many vs. many) and changes to the distribution of positive and
negative training subgraphs. To check for systematic differences, we
performed redaction nomination experiments using five randomly
selected V1 secrets, comparing each redaction nominated by the
Focused GralL model to the redaction nominated by the full GralL
model. We observed identical nominations for each of these secrets.

4.5 Overall Remarks

Our knowledge graph experiments support the usefulness of Re-
ducible Exposure as an evaluation measure, albeit with different

SSubsampling was done for practical reasons, since full GralL is very slow on V4.
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details to leverage more nuanced measurements of rank among
confounds rather than answer correctness, and we found our nomi-
nator/evaluator framework could be usefully applied without modi-
fication. As expected, the more highly structured knowledge graph
setting also offered greater scope for additional experimentation,
including on system combination, secret selection, and scalability.

5 Limitations

First, we note that there are no guarantees beyond the specific
models we have tested, for both text and knowledge graphs. While
we saw strong performance of some models as nominators and
others as potentially strong evaluators, other models, and in par-
ticular models that don’t yet exist, could change these results. It is
largely this challenge that has discouraged experimental work on
detecting mosaicing risks before now—no matter what we do, we
still won’t know what we don’t know. While that remains true, we
note that we regularly use models that are imperfect for a number
of tasks, including, for example, search. Review backlogs are large
and growing, in part because the review process is expensive, and
in part because some inference risks could be highly consequential.
In such settings, even imperfect solutions may well be useful. Addi-
tionally, our focus on single-sentence or single-relation redaction
has simplified the real task, in which several redactions might be
needed to prevent an inference. Of course, single-redaction systems
could be cascaded in a greedy manner to address this challenge,
but we leave the more general (and more computationally complex)
task of finding optimal redaction sets to future work. Finally, we
note that our knowledge graph evaluation has focused on identify-
ing which models are better or worse, both as nominators and as
evaluators, and not yet on where to draw the line about how much
inference risk is acceptable. This is fundamentally a policy question
since, while preserving secrets is important, the ultimate goal of the
review process is to release what can safely be released. Otherwise,
we would simply never release anything. We can, however, inform
the policy development process by creating evaluation measures
that can help to characterize how much assistance an automated
system can actually provide to a human reviewer. For that, we will
need to move from ranked measures of relative risk to something
closer to an actual risk-reward tradeoff framework.

6 Conclusion

We have introduced a method for reducing the likelihood of in-
ference, adapting existing inference models to protect secrets by
nominating information for redaction, and characterizing the risks
to secrets through a flexible Exposure and Exposure reduction
framework. We have done this in both same-model (i.e., same nom-
inator and evaluator) and cross-model settings, in both text and
knowledge graphs. We found that there is no one model that rules
them all—sometimes the strongest evaluator is not the best choice
as a nominator (when the evaluator model differs). We also found
that the distribution of secrets has a substantial impact on inference
model performance. Finally, we developed a method to adapt mod-
els to exploit aspects of our problem that enable them to overcome
existing limitations in handling large data. Our results indicate this
is a promising area of study, with considerable opportunities for
further research.
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