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Abstract

Machine Translation (MT) tools are widely
used today, often in contexts where profes-
sional translators are not present. Despite
progress in MT technology, a gap persists be-
tween system development and real-world us-
age, particularly for non-expert users who may
struggle to assess translation reliability. This
paper advocates for a human-centered approach
to MT, emphasizing the alignment of system
design with diverse communicative goals and
contexts of use. We survey the literature in
Translation Studies and Human-Computer In-
teraction to recontextualize MT evaluation and
design to address the diverse real-world scenar-
ios in which MT is used today.

1 Introduction

Machine Translation (MT) is one of the few NLP
technologies that has been widely available online
for decades. As both translation quality and inter-
net access have improved (Gaspari and Hutchins,
2007), MT has gained a large and diverse user base.
Millions of people use it to communicate across
languages, including in settings where professional
translators or interpreters are not realistically avail-
able (Nurminen and Papula, 2018; Kasperė et al.,
2021; Vieira et al., 2022; Kenny et al., 2022).

As MT becomes increasingly embedded in ev-
eryday tools and tasks, the socio-technical gap be-
tween how the technology is developed and how
it is used in real-world contexts is widening (Ack-
erman, 2000). Whereas initial MT systems were
primarily used to support professional translators
or narrow domains (Hutchins, 2001), today MT
can be used by anyone with internet access in their
daily life (Yvon, 2019; Kenny et al., 2022). How-
ever, MT does not yet fulfill its promise to enable

communication across languages, particularly for
users who may lack the language or domain ex-
pertise needed to make informed use of the trans-
lations (Liebling et al., 2020; Santy et al., 2021;
Valdez et al., 2023). This gap is further ampli-
fied by the rise of translation with general-purpose
large language models (LLMs) (Vilar et al., 2023;
Alves et al., 2024; Kocmi et al., 2024; Hendy et al.,
2023). With such tools, translation can be inte-
grated into broader workflows, where translation
might be covert, making it even harder for users to
assess its reliability. This can result in over-trust
in MT (Martindale and Carpuat, 2018), which is
particularly problematic in high-stakes scenarios
where it can cause harm (Vieira et al., 2021), but
also in under-use of MT tools in cases where they
could be beneficial (O’Brien and Federici, 2019).

We argue that a human-centered approach to MT
is needed: one that broadens what MT systems do
to help users weigh risks and benefits and align
system design with communicative goals. This ap-
proach echoes calls for human-centered AI (Capel
and Brereton, 2023), which includes recognizing
that people are at the heart of the development of
any AI system (Vaughan and Wallach, 2021), em-
phasizing designing AI systems that augment rather
than replace human capabilities, prioritizing human
agency and system accountability (Shneiderman,
2022), and using human-centered design methods
for AI systems (Chancellor, 2023).

To provide a foundation for human-centered MT,
we argue that it is important to adopt an interdisci-
plinary approach that includes Translation Studies
and Human-Computer Interaction (HCI). In this pa-
per, we recontextualize MT research by surveying
relevant literature in these fields. As Green et al.
(2015) point out, the question of how to design
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effective human–MT interaction has been consid-
ered long before HCI, NLP, or AI were formal-
ized disciplines. For example, Kay (1980/1997)
introduced a cooperative interactive system as an
alternative to fully automated translation to replace
professional translators. As MT improved, these
questions were revisited to design mixed-initiative
post-editing interfaces (Green et al., 2013; Koehn
et al., 2014; Briva-Iglesias et al., 2023), highlight-
ing the benefits of designing MT systems to aug-
ment, rather than replace, professional translators’
abilities (O’Brien, 2024). As the MT user base has
expanded from professional translators to profes-
sionals in other disciplines, as well as the general
public (Savoldi et al., 2025), many relevant lessons
can be drawn from theoretical and empirical work
in Translation Studies and HCI. Accordingly, this
survey results from discussions between co-authors
across these fields. Translation studies and HCI ex-
perts identified key insights they wished to share
with the MT researchers. These insights served as
points of connection with the MT literature.

Considering MT’s diverse uses (Section 2), we
synthesize cross-disciplinary insights spanning MT
literacy (Section 3), human-MT interaction (Sec-
tion 4), and translation ethics (Section 5). We then
outline research directions for human-centered MT
evaluation (Section 6) and design (Section 7), il-
lustrating interdisciplinary human-centered MT re-
search with a healthcare case study (Section 8).
Taken together, this provides an interdiscplinary
perspective informing the cycle of human-centered
MT design (Figure 1).

2 Understanding Contexts of Use

To develop human-centered MT, we must first un-
derstand how MT is used in the real world. While
the body of research on users, contexts, and pur-
poses has shown increased growth recently, the con-
siderable size of the user population, estimated in
2021 at more than one billion (Nurminen, 2021a, p.
23), and growing variety of use contexts present a
challenge for synthesizing that research into knowl-
edge that can be used for designing systems that
more directly serve user needs.

A classical framework distinguishes three use
types (Hovy et al., 2002): assimilation, in which
MT helps users get the gist of content in a foreign
language (e.g., browsing news, triage) without re-
quiring perfect quality; dissemination, in which MT
content is shared with others, demanding higher
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Figure 1: This paper reviews the literature relevant to
the cycle of human-centered machine translation design,
drawing from Translation Studies, HCI and MT/NLP.

quality (e.g., public announcements); and commu-
nication, in which MT supports live or interactive
multilingual exchanges (e.g., chat, classrooms).

A wealth of MT research projects have con-
sidered different use cases over the years, but
without much information sharing across settings:
classroom speech translation (Lewis and Niehues,
2023), healthcare (Khoong et al., 2019; Valdez and
Guerberof-Arenas, 2025), crisis response (Lewis
et al., 2011; Escartín and Moniz, 2019), interna-
tional patent processes (Nurminen, 2020), migra-
tion scenarios (Vollmer, 2020; Vieira, 2024; Pięta
and Valdez, 2024), research and academic writ-
ing (Bowker and Ciro, 2019b; Ehrensberger-Dow
et al., 2023; Bawden et al., 2024), customer sup-
port (Gonçalves et al., 2022), literary MT (Karpin-
ska and Iyyer, 2023; Zhang et al., 2025a), and
CAT/localization (Koehn et al., 2014; Lin et al.,
2010), and intercultural collaboration platforms
(Ishida, 2016). The examination of these con-
texts of use alone suggests some considerations
that should impact MT design, beyond the general
purpose of translation: risk management (error tol-
erance varies by domain), synchrony (real-time vs.
delayed), urgency, shelf life, audience, interaction
dynamics, modality/accessibility, and overtness of
MT use (e.g., covert use of MT on a multilingual
website or embedded in another application).

We also lack a deeper understanding of who
uses online MT tools and how. Nurminen (2021a)
estimates that 99.97% of MT users are not pro-
fessional translators. “Machine Translation Sto-
ries” illustrate diverse uses by individuals from all
walks of life, from music students translating old
Italian arias to people using MT in their profes-
sional life (Nurminen, 2021b). A survey of 1,200
UK residents shows high satisfaction with MT for
low-stakes uses but highlights a demand for bet-
ter quality (Vieira et al., 2022). Another survey
of 2,520 UK public service professionals reveals
that 33% had used MT in their work, predomi-



nantly within health and social care sectors, but
also across legal, emergency, and police services
(Nunes Vieira, 2024). Formal training was un-
common, leading many professionals to rely on
personal devices and publicly available tools like
Google Translate and ChatGPT. But user needs
are not met equally across socioeconomic and ge-
ographic contexts. For instance, interview studies
showed that MT applications do not support ef-
fective cross-lingual communication for migrant
workers in India and immigrant populations in the
U.S., resulting in significant negative impacts on
their daily lives (Liebling et al., 2020).

Human-centered MT should not just respond
to direct user needs (Gasson, 2003), but consider
more broadly how people are affected by MT, in-
cluding the languages and perspectives of marginal-
ized populations (Bender and Grissom II, 2024),
and considering both direct and indirect stakehold-
ers (Friedman and Hendry, 2019, p. 39). These
include recipients of translated content (whether
overtly marked as MT or not), institutions us-
ing MT at scale (Koponen and Nurminen, 2024),
writers of source texts (Taivalkoski-Shilov, 2019;
Lacruz Mantecón, 2023), MT practitioners (Robert-
son et al., 2023), language learners, and broader lan-
guage communities given evidence that language
evolves through automation (Guo et al., 2024).

This complexity calls for further investigation of
MT in context and for organizing use cases into a
taxonomy that balances general-purpose develop-
ment with contextual needs.

3 Machine Translation Literacy

Translation Studies research highlights a need for
promoting machine translation literacy (Bowker
and Ciro, 2019b) given the wide gap between how
translation is approached by people within ver-
sus beyond the language professions. Professional
translators have been trained in translation, which
usually also involves acquiring a domain special-
ization (Scarpa, 2020), such as legal, medical or
technical translation. As people, professional trans-
lators also have deep knowledge of the language
pair in question, and the type of real-world knowl-
edge and cultural knowledge that is necessary when
translating between languages and cultures. Trans-
lators can bring all this information to bear on their
understanding of the source text. They compensate
for shortcomings in the source text (e.g., they can
clarify the intended meaning of a sentence with

poor punctuation or where a homophone has erro-
neously been used). Professional translators also
operate within a sort of decision-making frame-
work because they request (or even require) a trans-
lation brief from their client or employer (Munday
et al., 2022). The translation brief is essentially a
set of instructions and information that helps the
translator to make sensible choices. For instance,
the brief contains information about the intended
purpose of the translation, where it will be pub-
lished, who will read or use it, what the target
reader’s background (language variety, culture, ed-
ucation level) is. All of this information allows the
translator to make informed decisions.

In contrast many MT users have no background
in translation. They may not have the necessary lin-
guistic knowledge, domain or cultural knowledge
required to evaluate the adequacy of the translated
text. They may have misconceptions about trans-
lation (Bowker, 2023), e.g., seeing it as an exact
science or a task that can be done by any bilingual.
They might not realize the importance of the trans-
lation brief. In short, they lack MT literacy, which
has been defined as “knowing how MT works, how
the technology can be useful in a particular context,
and what the implications are of using it for various
purposes” (O’Brien and Ehrensberger-Dow, 2020).

This highlights the necessity of MT literacy and
motivates a key direction in Human-Centered MT:
designing tools that promote informed and respon-
sible use, especially by lay users. Current tools
lack this, but we will see that the existing literature
provides a starting point.

4 Empirical Studies of MT Outside
Professional Translation

Translation Studies and HCI offer extensive em-
pirical research on human-MT interaction within
various contexts, beyond professional translation.
It reveals existing user strategies for using poten-
tially imperfect MT, interventions that have already
shown promise, and open research directions.

Post-editing The most studied human-MT inter-
action setting is probably post-editing, where peo-
ple edit raw MT to improve it. It has received
significant attention in the context of professional
translation (Cadwell et al., 2016; Briva-Iglesias
et al., 2023, among others), but it is also performed
by other users, for instance when they translate
their own source text as a writing aid in academic
settings (Bowker, 2020a; Xu et al., 2024; O’Brien



et al., 2018) or for scientific dissemination (Bawden
et al., 2024). There is evidence that even monolin-
gual users can interpret and revise MT output when
provided with background knowledge or transla-
tion options (Hu et al., 2010; Koehn, 2010).

When users do not understand the target lan-
guage, post-editing is not an option, but they still
face a decision about whether to publish or share
the raw MT outputs. Zouhar et al. (2021) studies
the impact of augmenting raw MT with backtrans-
lation, source paraphrasings and quality estimation
feedback in such “outbound translation” settings,
and show that backtranslation feedback increases
user confidence in the produced translation, but not
the actual quality of the text produced.

Augmented Outputs for Gisting Several studies
show that augmenting MT outputs can improve
comprehension and engagement, particularly when
MT is used for understanding the gist of a text.
Highlighting key words in source and target texts
can improve people’s ability to understand difficult
translations (Pan and Wang, 2014; Grissom II et al.,
2024), and adding emotional and contextual cues
promotes engagement with social media posts in a
foreign language (Lim et al., 2018).

Research has also shown that users sometimes
access outputs from multiple MT tools to better un-
derstand the errors associated with each individual
output and, in doing so, enhance overall compre-
hension (Anazawa et al., 2013; Nurminen, 2019;
Robertson et al., 2021). Other research has also
indicated positive effects from exposure to outputs
from multiple MT tools (Xu et al., 2014; Gao et al.,
2015). Human-centered tools for MT gisting might
therefore involve MT tools that embed a second
MT tool directly into their user interface (Nurmi-
nen, 2020; Martindale and Carpuat, 2025), or per-
haps automatically show two outputs as a low-cost
means of enhancing users’ perceived transparency.

Source Understanding People use MT not only
to gain access to texts across language boundaries,
but also to augment and ensure their understanding
of texts that are in languages they have limited
competence in (Nurminen, 2021a). They might
position a source text and its translation side-by-
side and refer to both while reading, or they may
look at both original and translated messages in
an MT-mediated conversation (Nurminen, 2016).
Recognizing this tendency, human-centered MT
tools could make it easy to access original texts
alongside their machine-translated versions, and

provide affordances to compare them easily.

MT-mediated Communication HCI research
has studied MT-mediated communication, and how
the use of MT affects not only performance, but
also interpersonal dynamics. Empirical evidence
shows that people develop their own strategies to
compensate for imperfect MT, such as adapting
what they say (e.g., by employing redundant ex-
pressions and suppressing lexical variation in lan-
guage use) (Yamashita and Ishida, 2006; Hara and
Iqbal, 2015), using back-translation to assess out-
puts in a language they do not understand (Ito et al.,
2023), or simply relying on their holistic under-
standing of the conversation to fill in gaps where
the MT output does not make sense (Robertson and
Díaz, 2022). Even when effective, these strategies
come at a cost to communication: people commu-
nicate less naturally and authentically (Yamashita
and Ishida, 2011) and might get misleading sig-
nals on translation quality (Tsai and Wang, 2015).
Imperfect translations also affect interpersonal dy-
namics between interlocutors, increasing the risk
of participants misinterpreting their task partner’s
intent (Lim et al., 2022), misattributing commu-
nication breakdowns to human vs. MT-generated
errors (Gao et al., 2014; Robertson and Díaz, 2022),
and misassessing one another’s contribution to the
collaborative task (Xiao et al., 2024).

Trust Lay users’ trust in MT is largely shaped by
their perception of how MT-as-a-black-box func-
tions, not just its intrinsic quality. Identical trans-
lations can be perceived differently when labeled
machine vs. human-generated (Asscher and Glik-
son, 2021), and people might assign inconsistent
ratings to the MT outputs before vs. after the label
is disclosed (Bowker, 2009). Not all MT errors
impact user trust equally: fluency or readability
errors tend to lower trust more than adequacy er-
rors, even though the latter can be more misleading
when users rely on MT-generated meanings to in-
form their actions (Martindale and Carpuat, 2018;
Popović, 2020). Factors like language proficiency,
subject knowledge, and MT literacy influence how
users perceive MT quality in gisting contexts (Nur-
minen, 2021a). MT literacy has also been shown to
play a significant role in shaping translators’ trust
in MT (Scansani et al., 2019).

Taken together, this body of work highlights
that building truly human-centered MT systems
demands much more than generating fluent and ad-
equate translations. It requires aligning system de-



sign with real-world communication practices, de-
veloping interaction strategies that empower users,
and supporting their ability to assess risks in ideally
independent and time-sensitive ways. Crucially, it
also means empirically studying how these systems
affect stakeholders, not just in terms of task perfor-
mance, but also in how they shape interpersonal
dynamics and shared understanding.

5 Ethicality of MT

The social implications of MT use extend beyond
its immediate usefulness, bringing us into the realm
of ethics. What does it mean for MT to be ethical?
Surveying major frameworks of translation ethics
(Koskinen and Pokorn, 2020) provides a founda-
tion for addressing this question, highlighting the
inherent multiplicity and conflicting perspectives
in determining what is right or wrong in practice
(Chesterman, 2001; Lambert, 2023).

For example, some approaches base translation
ethics on strictly representing the original text’s
“precise” meaning and form, at all costs and un-
der all circumstances (Newmark, 1988). Other ap-
proaches emphasize a functional ethics of service,
where ethical translation is defined by the transla-
tor’s adherence to the requester’s instructions, even
if this means changing the source text or using it
as mere inspiration (Holz-Mänttäri, 1984). Oth-
ers prioritize alterity and social justice, viewing
translation as a tool to challenge social and polit-
ical inequalities by reframing communities’ iden-
tity and values; in this case, ethical action might
even involve refusing to translate the source text
(Robinson, 2014). Several other translation ethics
frameworks exist, each revolving around different
priorities and values (Koskinen and Pokorn, 2020).

Today’s influential ethical frameworks also im-
ply that the translator’s ethical response is necessar-
ily situation- and text-dependent (Pym, 2012). By
this we mean that for different texts, and in different
situations, the ethical decision – whichever ethical
framework one follows – may take different shapes.
MT ethics, then, are no less situation-contingent
than issues of MT usability or effectiveness.

Finally, a typology of the main approaches to
translation ethics also reveals how some ethics are
largely regional, or field-specific, inasmuch as they
stem from the particular features of translation as
a medium for intercultural communication (Pym,
2012, p. 57). In contrast, other approaches are
more general in their concerns and values, and not

intrinsic to the field of translation as such. Along
these lines, it could be argued that a useful imple-
mentation of human-centered ethical evaluation in
the case of MT should involve the compartmental-
ization of MT ethics from general AI ethics, and
the preference for regional frameworks of ethics
for MT (Asscher, 2025, p. 102–109). This implies
a give-and-take between MT ethics oriented to the
specificities of translation, on the one hand, and
universal ethics, reminiscent of the general proto-
cols of AI ethics proposed so abundantly in recent
years, on the other hand (Floridi et al., 2018).

Relating these ethical insights to MT can ap-
ply to both the increasingly autonomous decision-
making of the tool itself, and the social conditions
that underpin its development and maintenance
(Asscher, 2025, p. 98–101). The development
and use of MT has already had vast consequences
for many stakeholders. The ownership and distribu-
tion of anonymized translation data needed for the
development of MT systems, and the re-use of this
data to fine-tune MT, are some of the issues at stake,
as there is currently no compensation for the origi-
nal human translators who created the data, and MT
systems serve causes that are opaque to these trans-
lators and might contradict their values (Moorkens,
2022, p. 123–126). Issues of confidentiality and
privacy are also pertinent, as personal translation
data is utilized to train MT systems without regu-
lation, rendering this data potentially identifiable
(Nunes Vieira et al., 2022). The risks involved
in high-stakes use of MT may strain the question
of the moral and legal responsibility even further,
for example in medical and legal situations, where
translation errors may be particularly consequential
(Vieira et al., 2021). Then, there are the sometimes
problematic uses of MT in the professional transla-
tion workflow, and the broader issues of sustainabil-
ity of the translation industry and environmental
concerns (Bowker, 2020b; Skadin, a et al., 2023;
Shterionov and Vanmassenhove, 2023). MT ethics
also apply to the cultural and gender bias of con-
temporary LLMs (Gallegos et al., 2024), which
may be manifested in translation, or the censor-
ship recently enacted in some generative AI tools
concerning certain charged historical occurrences,
reinforcing unequal power relations across cultures
(Wang et al., 2025; Bianchi et al., 2023).

Considering these points, human-centered MT
research must pursue richer assessments of the
moral consequences of its use in society. Studies of
MT ethicality are valuable regardless of immediate



implementability and can inform business and sci-
entific leadership in governing the field and shaping
MT agency and social implications.

6 Human-Centered MT Evaluation

MT evaluation has focused on benchmarking sys-
tems, or rating individual outputs, using automatic
or human ratings of translation quality as ground
truth (White and O’Connell, 1993; Koehn and
Monz, 2006; Graham et al., 2013; Läubli et al.,
2020; Freitag et al., 2021). Some recent propos-
als call for broadening its scope to measure social
and environmental impact in addition to perfor-
mance (Moorkens et al., 2024; Santy et al., 2021).
A human-centered approach can draw from concep-
tualizations of the translation process and product
quality from Translation Studies (Liu et al., 2024),
and HCI methodology for evaluating systems in
their socio-technical context (Liebling et al., 2022).

From Generic to Situated MT A key shift is
from generic, context-independent evaluation to-
ward situated assessments of fitness-for-purpose
and stakeholder impact. Holistic quality scores
(Graham et al., 2013) are already complemented
by fine-grained annotations such as MQM (Lom-
mel et al., 2014), which account for error severity
in a generic way. In contrast, Translation Studies
work emphasizes evaluating translations based on
their suitability for their intended purpose rather
than adhering to a one-size-fits-all notion of qual-
ity (Bowker, 2009; Chesterman and Wagner, 2014;
Colina, 2008). The impact of MT errors thus needs
to be assessed in context (Agrawal et al., 2024), as
general benchmarks may obscure rare but extreme
errors (Shi et al., 2022). Expert knowledge might
be required, for instance, to determine whether an
adequacy error poses a clinical risk (Khoong et al.,
2019), or to assess social harms such as gender bias
(Savoldi et al., 2021, 2024), name mistranslation
(Sandoval et al., 2023), and lack of cultural aware-
ness (Yao et al., 2024). Providing an “evaluation
brief” (Liu et al., 2024) can describe the circum-
stances surrounding the translation creation, who it
is for, and how it is intended to be used. Evaluation
through question answering is another way to as-
sess if translations preserve important information
(Ki et al., 2025a; Fernandes et al., 2025) and to let
users make their own assessments of the impact of
errors in their context of use (Ki et al., 2025b).

From Annotation to Human Studies Human
studies that incorporate MT within the relevant
end-user task can help us assess the impact of MT
more comprehensively. Such tasks might align
closely with the production and understanding of
translations, such as post-editing MT (Castilho and
O’Brien, 2016; Castilho and O’Brien, 2017; Baw-
den et al., 2024; Savoldi et al., 2024), reading com-
prehension (Jones et al., 2005; Scarton and Spe-
cia, 2016; Xiao et al., 2025b), gisting (Nurminen,
2021a) or triage tasks (Martindale and Carpuat,
2022). MT might be a tool in support of another
task, such as information exchange in teams (Ya-
mashita and Ishida, 2006), social media consump-
tion (Lim et al., 2018), hiring (Zhang et al., 2022)
or housing information seeking (Xiao et al., 2025a),
and everyday conversations (Robertson and Díaz,
2022). As Santy et al. (2021) show, in such real-
world cases, machine-aided translation systems can
bring significant value to end-users. Nevertheless,
this value is often contextualized within trade-offs
among time, performance, and computational cost,
especially given the limited technical accessibility
and important occurrence of low-resource language
settings.

From Static Benchmarks to Iterative Design
Evaluations with human users do not only occur
at the end of a project; rather, they drive the itera-
tive refinement cycle of the entire human-centered
design process. This process typically begins with
needs-finding studies to identify the social prob-
lem that technical solutions aim to resolve (Gao
and Fussell, 2017; Gao et al., 2022; Xiao et al.,
2024) It is often followed by co-design activities,
where existing tools are used as technology probes
to elicit inputs from targeted user groups on MT
design. This provides empirical evidence to frame
and prioritize technical problems to be addressed.
Subsequent phrases include usability testing or clin-
ical trials after each round of system development
to determine the degree of success (Khoong and Ro-
driguez, 2022). There exist a wealth of frameworks
to guide this process, including Human-centered
design, Participatory Design, and Value Sensitive
Design (Friedman and Hendry, 2019), all of which
foreground the values of direct and indirect stake-
holders, and provide strategies for accounting for
potential value conflicts and trade-offs. MT eval-
uation can also draw from frameworks for trust-
worthy AI, particularly methods for studying men-
tal models (Bansal et al., 2019), trust calibration



(Vereschak et al., 2021), and how a human-AI work
system performs (Hoffman et al., 2023). These ef-
forts aim to ensure that MT systems can account
for the complex dynamics between system outputs,
user interpretations, and downstream consequences,
thereby requiring interdisciplinary collaborations
and tailored study designs.

7 Human-Centered MT Design

This section outlines emerging techniques that can
reframe MT as a contextual, potentially interactive
process responsive to users’ needs, moving beyond
traditional sequence transduction. It provides a
richer toolbox to support MT literacy (Section 3)
and build on past empirical studies of human-MT
interaction (Section 4).

Richer Inputs, Many Outputs Human-
Centered MT must adapt outputs to the audience
and context. Research has already explored con-
trolling formality (Sennrich et al., 2016; Rippeth
et al., 2022), style (Niu et al., 2017; Agarwal
et al., 2023; Wang et al., 2023), complexity
(Agrawal and Carpuat, 2019; Oshika et al., 2024),
and personalization (Mirkin and Meunier, 2015;
Rabinovich et al., 2016). Adaptation may also
require explaining content (Srikanth and Li, 2021;
Han et al., 2023; Saha et al., 2025), or warning
about cultural misunderstandings (Pituxcoosuvarn
et al., 2020; Yao et al., 2024). However, it remains
unclear how users and other stakeholders can guide
systems in proactive and ecologically valid ways.

More contextual inputs are needed, similar to
translator briefs (Castilho and Knowles, 2024). MT
work has considered incorporating domain knowl-
edge (Clark et al., 2012; Chu and Wang, 2018),
style labels (Sennrich et al., 2016; Niu et al., 2017),
example translations (Xu et al., 2023; Agrawal
et al., 2023; Bouthors et al., 2024), and terminol-
ogy (Alam et al., 2021; Michon et al., 2020). Some
also address long-form (Karpinska and Iyyer, 2023;
Peng et al., 2024) and conversational translation
(Bawden et al., 2021; Pombal et al., 2024). How-
ever, these efforts usually consider one dimension
of context at a time; we still need more holistic ap-
proaches that take a broad view of context (Castilho
and Knowles, 2024) and incorporate knowledge
and feedback needed for culturally appropriate out-
puts (Tenzer et al., 2024; Saha et al., 2025).

An Iterative Translation Process LLMs en-
able multi-stage translation workflows, including

pre-editing, evaluation, and post-editing (Briakou
et al., 2024; Alves et al., 2024). Pre-editing
involves rewriting source texts to improve MT
output (Bowker and Ciro, 2019a; Štajner and
Popović, 2019; Ki and Carpuat, 2025), while post-
editing—either human or automatic—is studied
widely (Lin et al., 2022; Vidal et al., 2022; Ki and
Carpuat, 2024). Yet, most work remains system-
centric. Interactive approaches designed for profes-
sional translators (Green et al., 2013; Briva-Iglesias
et al., 2023) suggest benefits from involving lay
users with diverse goals and levels of proficiency.

Scale & Context How can we specialize mod-
els for specific contexts while reaping the benefits
of scale (Team et al., 2022; Johnson et al., 2017;
Vilar et al., 2023; Kocmi et al., 2024)? Work in
this direction could build on efforts to structure
resources for horizontal (across languages) and ver-
tical (across domains) generalization (Ishida, 2006;
Rehm, 2023), and techniques to support task (Ye
et al., 2022; Alves et al., 2024), language (Blevins
et al., 2024; Riley et al., 2023), and domain and
terminology (Segonne et al., 2024) specialization
in LLMs.

Decentering MT Centering people means recog-
nizing that MT is often just one part of a broader
workflow, where the MT output is not the end
product. MT today often participate in content
co-production with humans, rather than only for
source-to-target conversion. This can be done via
synchronized bilingual writing (Crego et al., 2023;
Xiao et al., 2024) or using translation as an aid
for scientific writing (O’Brien et al., 2018; Steiger-
wald et al., 2022; Ito et al., 2023). In those set-
tings, even when translating an abstract, the trans-
lation might be more of an adaptation than a literal
translation (Bawden et al., 2024). Translation can
be implicit or partial, when supporting simultane-
ous interpreters (Grissom II et al., 2024), enabling
natural translations practices of bilinguals (Zhang
et al., 2025b), or searching for texts written in a
foreign language given a native language query
(Galuščáková et al., 2022; Nair et al., 2022). In
those settings, human-MT interface design is crit-
ical for lay users to remain aware of features of
the targeted content and to develop strategies for
navigating it (Petrelli et al., 2006). The need for in-
telligent interface design is particularly pronounced
in LLM-powered multilingual communication and
user interactions with conversational agents, where
models must interpret and generate content for fluid



language use while adapting to user goals, styles,
and cultural norms. To support this, a prompt engi-
neering playground with customized MT and user
interfaces may enhance the accessibility of LLMs
for a broader population (Mondshine et al., 2025).

Risk Management Reliable MT should help
users weigh the benefits of MT against the risks it
may pose. Quality estimation techniques designed
for explainability have provided a good foundation
toward this goal (Fomicheva et al., 2021; Guer-
reiro et al., 2023; Briakou et al., 2023; Specia et al.,
2018). That said, growing evidence from user stud-
ies shows that more work is needed to identify
and assess risks (Koponen and Nurminen, 2024),
generate actionable feedback in user-specified con-
texts (Zouhar et al., 2021; Mehandru et al., 2023),
determine when and how to disclose the use of
MT (Simard, 2024; Xiao et al., 2024), provide
useful descriptions of model properties (Mitchell
et al., 2019), promote MT literacy among lay users
(Bowker and Ciro, 2019a), and support the devel-
opment of accurate user mental models (Bansal
et al., 2019; Xiao et al., 2025b). Frameworks from
human-centered explainable AI, such as seamful
design (Ehsan et al., 2022), can help pinpoint gaps
between system affordances and the needs of hu-
man stakeholders, fostering better alignment.

Multimodality Most work surveyed here has
focused on text translation, but human-centered
MT must incorporate multiple modalities, such as
speech, images, and gestures, reflecting the way
people communicate. In addition to speech transla-
tion (Akiba et al., 2004; Agarwal et al., 2023) and
its connection to simultaneous interpretation (Gris-
som II et al., 2014; Wang et al., 2016), prior work
has considered the role of vision in translating im-
age captions and video-guided translation (Specia
et al., 2016; Sulubacak et al., 2020), as well as mul-
timodal interfaces to support post-editing (Herbig
et al., 2020). Pre-trained language models that en-
compass speech (Radford et al., 2022; Ambilduke
et al., 2025) and vision (Radford et al., 2021; Chen
et al., 2024) open new research directions. Further
research with a human-centered perspective might
include developing adaptive interfaces that detect
errors (Han et al., 2024), seamlessly integrate multi-
ple modalities and support repair (Sulubacak et al.,
2020), thereby enabling more natural and effective
human-computer interactions.

In sum, while existing work offers a rich toolbox
for human-centered MT, more research is needed

on designing interactions that preserve user agency
and support effective, trustworthy use. This in-
cludes new interfaces that balance simplicity and
flexibility, and foundational work on training mod-
els for controllability and context-awareness.

8 Case Study: Toward Reliable
Translation for Clinical Care

Research on MT for clinical settings illustrates
how human studies can drive the cycle of human-
centered MT (Section 6) by understanding specific
contexts of use (Section 2) to guide interface and
model design decisions (Sections 4,7).

Understanding Needs Language barriers are a
major source of healthcare disparities (Cano-Ibáñez
et al., 2021), yet access to professional interpreters
remains limited (Flores, 2005; Ortega et al., 2023).
MT can potentially support clinical care, but reli-
ability is a critical concern: MT errors can cause
serious harm in, for example, discharge instructions
from emergency departments (Khoong et al., 2019;
Taira et al., 2021), pediatric care (Brewster et al.,
2024) or urology (Rao et al., 2024), with disparate
impact across languages. Yet, MT frequently medi-
ates interactions between healthcare providers and
patients in practice (Genovese et al., 2024). While
dedicated MT tools have been developed for clini-
cal settings (Starlander et al., 2005; Bouillon et al.,
2005), generic apps such as Google Translate are
still most commonly used (Nunes Vieira, 2024). In
face of challenges such as time constraints, cultural
barriers, and medical literacy gaps, clinicians de-
velop their own workarounds when using MT, such
as back-translation or relying on non-verbal cues
to assess understanding (Mehandru et al., 2022).

Research Directions Generic MT tools thus of-
ten fall short in clinical care, and needs-findings
studies motivate research into integrating pre-
translated medical phrases, multimodal commu-
nication support, and interactive tools to assess
mutual understanding. A human study evaluated
feedback mechanisms to assist physicians in assess-
ing the reliability of MT outputs in clinical settings,
finding that quality estimation tools generally im-
prove physicians’ reliance on MT but fail to detect
the most clinically severe errors (Mehandru et al.,
2023). Complementary efforts focus on developing
custom MT approaches that prioritize reliability
and verifiability, by using vetted canonical phrases
to scaffold the translation (Bouillon et al., 2017) or



guide users in crafting better MT inputs (Robert-
son, 2023). While these works focus on text-based
MT, many healthcare use cases also warrant con-
sideration of interaction using speech (Spechbach
et al., 2019), sign language (Esselink et al., 2024)
and pictographs (Gerlach et al., 2024). Cultural
differences significantly impact the style and con-
tent of communication in healthcare (Kreuter and
McClure, 2004; Brooks et al., 2019) and is another
area where much research is needed. Khoong and
Rodriguez (2022) further outline key domains for
future research, including developing interactive
tools for different types of communication; enhanc-
ing risk assessment, and assessing understanding
and patient satisfaction on top of MT correctness.

9 Conclusion

Recontextualizing MT through Translation Stud-
ies and HCI highlights that truly supporting real-
world needs demands understanding translation
as a socio-technical process and designing user-
centric tools. Each field offers important insights,
and their synergy fuels new research.

Translation Studies provides theoretical and em-
pirical frameworks for contextualizing assessments
of translation quality, accounting for user diversity,
and for framing translation as a process of situated
decision-making that can inform our view of MT as
it becomes part of increasingly diverse workflows.
HCI complements this by focusing on real-world
user experience with translation technologies, em-
phasizing needs, interface design, feedback, and
collaboration in multilingual interactions. Both
fields offer methods to evaluate stakeholder percep-
tions and behaviors, but mostly study the off-the-
shelf MT and NLP tools which limits the space
of interaction design. Conversely, MT/NLP offers
a rich toolkit of generation, adaptation, and eval-
uation techniques, which are developed with less
focus on user experience and context.

Interdisciplinary collaboration enables a shift to-
wards genuinely human-centered systems, where
users are active agents in a "machine in the loop"
process. This approach poses key technical chal-
lenges for MT: how to personalize translation out-
puts, how to support interaction and control, how
to model trust and adaptation, how to balance gen-
eralization and responsiveness to context, and how
to sustain human agency in language use. Insights
from HCI and Translation Studies help frame and
prioritize these challenges. Together, they point

toward more expansive conceptualizations of MT
technology, enabling situated and socially meaning-
ful communication, and greater real-word impact.

Limitations

Scope This survey is not exhaustive. While we
aimed to highlight diverse perspectives, we cannot
cover the breadth of the literature across Trans-
lation Studies, Human-Centered Interaction, Ma-
chine Translation and Natural Language Process-
ing. To narrow down the scope, we facilitated dis-
cussions between experts in these disciplines to
highlight connections and tensions across fields.
We used the take-aways from these discussions
to prioritize this survey. Furthermore, human-
centered MT can draw upon insights and method-
ologies from many other disciplines, including lin-
guistics and sociolinguistics, cognitive science and
psychology, information science, communication
studies, and education.

Language Resource Disparities Unequal cover-
age and quality of MT techniques across languages
remains a fundamental limitation which must be
taken into account to develop human-centered MT.
Many methods discussed, particularly in Section 7,
are currently more feasible for high-resource lan-
guages. However, employing human-centered de-
sign methods and focusing on specific use cases
can help develop strategies to mitigate disparities
in translation quality across various languages, do-
mains, and dialects (Santy et al., 2021).
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Federico Gaspari, Rudolf Rosa, Riccardo Superbo,
and Andy Way. 2023. Deep Dive Machine Trans-
lation. In Georg Rehm and Andy Way, editors, Eu-
ropean Language Equality: A Strategic Agenda for

Digital Language Equality, pages 263–287. Springer
International Publishing, Cham.

Hervé Spechbach, Johanna Gerlach, Sanae Ma-
zouri Karker, Nikos Tsourakis, Christophe Combes-
cure, and Pierrette Bouillon. 2019. A Speech-
Enabled Fixed-Phrase Translator for Emergency Set-
tings: Crossover Study. JMIR Medical Informatics,
7(2):e13167.

Lucia Specia, Stella Frank, Khalil Sima’an, and
Desmond Elliott. 2016. A Shared Task on Multi-
modal Machine Translation and Crosslingual Image
Description. In Proceedings of the First Conference
on Machine Translation: Volume 2, Shared Task Pa-
pers, pages 543–553, Berlin, Germany. Association
for Computational Linguistics.

Lucia Specia, Carolina Scarton, Gustavo Henrique Paet-
zold, and Graeme Hirst. 2018. Quality Estimation
for Machine Translation. Morgan & Claypool Pub-
lishers.

Neha Srikanth and Junyi Jessy Li. 2021. Elaborative
Simplification: Content Addition and Explanation
Generation in Text Simplification. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 5123–5137, Online. Association
for Computational Linguistics.

Sanja Štajner and Maja Popović. 2019. Automated
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