Alginic acid can be either water soluble or insoluble depending on the type of the associated salt. The salts of sodium, other alkali metals, and ammonia are soluble, whereas the salts of polyvalent cations, e.g., calcium, are water insoluble, with the exception of magnesium. The alginate polymer itself is anionic (i.e., negatively charged) overall. Polyvalent cations bind to the polymer whenever there are two neighboring guluronic acid residues. Thus, polyvalent cations are responsible for the cross-linking of both different polymer molecules and different parts of the same polymer chain. The process of gelation, simply the exchange of calcium ions for sodium ions, is carried out under relatively mild conditions. Because the method is based on the availability of guluronic acid residues, which will not vary once given a batch of the alginate, the molecular permeability does not depend on the immobilization conditions. Rather, the pore size is controlled by the choice of the starting material.
2 Na(Alginate) + Ca++ -------> Ca(Alginate)2 + 2 Na+The ionically linked gel structure is thermostable over the range of 0-100ºC; therefore heating will not liquefy the gel. However, the gel can be easily redissolved by immersing the alginate gel in a solution containing a high concentration of sodium, potassium, or magnesium. Maintaining sodium:calcium <= 25:1 will help avoid gel destabilization. In fact, it is recommended by alginate vendors to include 3mM calcium ions in the substrate medium. On the other hand, citrate or phosphate pH buffers cannot be effectively used without destabilizing the alginate gel.
Alginate is currently widely used in food, pharmaceutical, textile, and paper products. The properties of alginate utilized in these products are thickening, stabilizing, gel-forming, and film-forming. Alginate polymers isolated from different alginate sources vary in properties. Different algae, or for that matter different part of the same algae, yield alginate of different monomer composition and arrangement. There may be sections of homopolymeric blocks of only one type of monomer (-M-M-M-) (-G-G-G-), or there may be sections of alternating monomers (-M-G-M-G-M-). Different types of alginate are selected for each application on the basis of the molecular weight and the relative composition of mannuronic and guluronic acids. For example, the thickening function (viscosity property) depends mainly on the molecular weight of the polymer; whereas, gelation (affinity for cation) is closely related to the guluronic acid content. Thus, high guluronic acid content results in a stronger gel.