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Transient Heat Conduction in a square pipe, with an outer side of L=W=1 unit length and an
inner side of w=L/2=W/2=0.5 unit length. 
Case a) Constant temperature Tout=1 at outer wall & constant temperature Tin=0 at inner wall at
0≤t.
Case b) The outer wall is insulated (i.e., hout=0) and the inner wall is at a constant temperature of
Tin=0 at 0≤t. 
Case c) The outer wall is insulated (i.e., hout=0) and the inner wall is subjected to convection with
Tin.∞=exp(-t/τ)    τ=10, 1000, 100,000 at 0≤t.
     side length=L=1    
y=W+------------------+ 
   |                  | 
   | square pipe wall | 
   |    +--------+    | 
   |    |length=w|    | 
   |    |        |    | 
   |    |        |    | side length=W=1
   |    |  Tin=0 |    |
   |    +--------+    |
   |         |****\   |
   |         |******\ |   * indicates the minimal octant section

y=0+------------------+
  x=0 ........       x=L
  i=0 1 2......      i=nx

Instructor: Nam Sun Wang
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Approximate derivatives with the central difference formula
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Assign model parameters

k 1:= α 5 10 6−
⋅:= Tinit 1:= hin 10:= Tin.inf t τ, ( ) exp
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W
2

0.5=:=

inner channel l
L
2

0.5=:= left & right of inner channel nxin.left nx
L l−

2 L⋅
⎛⎜
⎝

⎞⎟
⎠

⋅ 5=:= nxin.right nx
L l+

2 L⋅
⋅ 15=:=

inner channel w
W
2

0.5=:= bottom & top of inner channel nyin.bottom ny
W w−

2 W⋅
⎛⎜
⎝

⎞⎟
⎠

⋅ 5=:= nyin.top ny
W w+

2 W⋅
⋅ 15=:=



2/10 conduct2D-square-pipe-transient.xmcd

Whole Square Pipe.  If we disregard computation efficiency and resort to brute force, we can simply solve for the
whole pipe with (nx+1)⋅(ny+1) nodes (rather than just a 1/8 section thereof), and we collect the heat balance equations
at all the nodes in the general matrix form dT(t,T)/dt (rather than the standard vector form).  The coding is quite simple --
only three different equations: two for the two boundaries and one for the interior points.
Case a) Constant temperature Tout=1 at outer wall & constant temperature Tin=0 at inner wall at 0≤t.

d2Tdx2 T i, j, ( )
Ti 1+ j, 2 Ti j, ⋅− Ti 1− j, +

Δx2
:= d2Tdy2 T i, j, ( )

Ti j 1+, 2 Ti j, ⋅− Ti j 1−, +

Δy2
:=

dTdt t T, ( ) "initialize & outer wall"

dTdtnx ny, 0←

"interior points"

dTdti j, α d2Tdx2 T i, j, ( ) d2Tdy2 T i, j, ( )+( )⋅←

j 1 ny 1−..∈for

i 1 nx 1−..∈for

"inner pipe conduit & inner wall"

dTdti j, 0←

j nyin.bottom nyin.top..∈for

i nxin.left nxin.right..∈for

dTdt

:=

dTi,j/dt=0 implements Ti,j=constant 

Integrate dT(t,T)/dt /w Euler's method (i.e., explicit method)

critical Fourier No & Δt Fo
α Δt⋅

Δx2

1
4

<= Δtcrit
1
4

Δx2

α
⋅ 125=:= ... be sue to use a Δt that is less than this critical

value.

I.C. T(x,0)=1 Tinit.matrix "initialize"

Tnx ny, 0←

"interior points & outer wall"

Ti j, Tinit←

j 0 ny..∈for

i 0 nx..∈for

"inner pipe conduit & inner wall"

Ti j, 0←

j nyin.bottom nyin.top..∈for

i nxin.left nxin.right..∈for

T

:=

Δt 100:= nt 50:= p 0 nt..:= T 0:= T0 Tinit.matrix:= Tp 1+ Tp dTdt p Δt⋅ Tp, ( ) Δt⋅+:=
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nt FRAME=

Tnt Tnt

Click on the following to play an animation saved from the above plot.  To creat animation, uncomment to "nt:=FRAME";
|Tools|Animation|Record|, "For FRAME from 0 to 50" (which is "nt"); mark the region to be animated by dragging a
rectangle; click on "Animate" button, followed by "Save as" button.  Copy|paste the .avi file.

Reach steady-state in about t Δt nt⋅ 5000=:=
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Case b) Insulated outer wall & constant temperature Tin=0 at inner wall at 0≤t.
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d2Tdy2out T i, j, ( )
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j ny=if

:=

dTdt t T, ( ) "initialize"

dTdtnx ny, 0←

"interior points & outer wall"

dTdti j, α d2Tdx2out T i, j, ( ) d2Tdy2out T i, j, ( )+( )⋅←

j 0 ny..∈for

i 0 nx..∈for

"inner pipe conduit & inner wall"

dTdti j, 0←

j nyin.bottom nyin.top..∈for

i nxin.left nxin.right..∈for

dTdt

:=

Integrate dT(t,T)/dt /w Euler's method (i.e., explicit method).  Change nt until max(T)
is <0.01.  Then go back to see when Tmax=0.01 is reached.

Δt 50:= nt 1000:= p 0 nt..:= T 0:= T0 Tinit.matrix:= Tp 1+ Tp dTdt p Δt⋅ Tp, ( ) Δt⋅+:=

The highest temperature is at the corners. nt 830:= max Tnt( ) 0.01= Tnt( )
0 0, 

0.01=

Δt nt⋅ 41500= For constant temperature at the inner wall, it takes ~41,500 time units to reach Tmax=0.01

Tnt( ) 0〈 〉T 0 1 2 3 4 5 6

0 0.01 0.01 -39.886·10 -39.196·10 -38.366·10 -37.508·10 ...
=

Check (be sure a different step size does not affect the results):

Δt 100:= nt 500:= p 0 nt..:= T 0:= T0 Tinit.matrix:= Tp 1+ Tp dTdt p Δt⋅ Tp, ( ) Δt⋅+:=

The highest temperature is at the corners. nt 415:= max Tnt( ) 0.01= Tnt( )
0 0, 

0.01=

Tnt( ) 0〈 〉T 0 1 2 3 4 5 6

0 0.01 0.01 -39.736·10 -39.057·10 -38.24·10 -37.394·10 ...
=
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Tnt Tnt

T20 T20
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Case c) Convection boundary condition at the inner wall 
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arbitrary number because we are not
concerned about the inner channel.
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d2Tdy2in T i, j, t, τ, ( )
2 Ti j 1−, ⋅ 2 1 Δy

hin
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j nyin.bottom=if

Ti j 1+, 2 Ti j, ⋅− Ti j 1−, +

Δy2
nyin.bottom j<( ) j nyin.top<( )⋅if

2 Ti j 1+, ⋅ 2 1 Δy
hin

k
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j nyin.top=if

:=

←⎯ Should be 0 or any other
arbitrary number because we are not
concerned about the inner channel.

dTdt t T, τ, ( ) "initialize"

dTdtnx ny, 0←

"interior points & outer wall"

dTdti j, α d2Tdx2out T i, j, ( ) d2Tdy2out T i, j, ( )+( )⋅←

j 0 ny..∈for

i 0 nx..∈for

"inner pipe conduit & inner wall"

dTdti j, α d2Tdx2in T i, j, t, τ, ( ) d2Tdy2in T i, j, t, τ, ( )+( )⋅←

j nyin.bottom nyin.top..∈for

i nxin.left nxin.right..∈for

dTdt

:=
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Integrate dT/dt(t,T) /w Euler's method (i.e., explicit method) Δt 100:=

I.C. T(x,0)=1 Tinit.matrixi j, 
Tinit:= Change nt until max(T) is <0.01.  Then go back to see when Tmax=0.01 is reached.

Iteration on time t Reset Start with initial condition, iterate with Euler's method

τ 10:= nt 1000:= p 0 nt..:= T 0:= T0 Tinit.matrix:= Tp 1+ Tp dTdt p Δt⋅ Tp, τ, ( ) Δt⋅+:=

The highest temperature is at the corners. nt 710:= max Tnt( ) 0.01= Tnt( )
0 0, 

0.01=

Δt nt⋅ 71000= For τ=10, it takes 71,000 time units to reach Tmax=0.01

Tnt Tnt

τ 1000:= nt 1000:= p 0 nt..:= T 0:= T0 Tinit.matrix:= Tp 1+ Tp dTdt p Δt⋅ Tp, τ, ( ) Δt⋅+:=

The highest temperature is at the corners. nt 720:= max Tnt( ) 0.01= Tnt( )
0 0, 

0.01=

Δt nt⋅ 72000= For τ=1000, it takes 72,000 time units to reach Tmax=0.01

Tnt Tnt
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τ 100000:= nt 5000:= p 0 nt..:= T 0:= T0 Tinit.matrix:= Tp 1+ Tp dTdt p Δt⋅ Tp, τ, ( ) Δt⋅+:=

The highest temperature is at the corners. nt 4800:= max Tnt( ) 0.01= Tnt( )
0 0, 

0.01=

Δt nt⋅ 480000= For τ=100,000, it takes 480,000 time units to reach Tmax=0.01

Tnt Tnt

Although it takes different amount of time (71K, 72K, & 480K time units for τ=10, 1000, & 100,00, respectively) to reach
Tmax=0.1, the temperature profiles are all similar.  For small values of τ that is of the order of Δt, there is very little
difference in the transient behavior.  For Δt<<τ, the time constant in Tin.inf adds another layer of dynamics and time-lag
to the temperature response.


