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Abstract— In this paper we study the problem of exponential synchro-

nization for one of the most popular models of coupled phase oscillators,

the Kuramoto model. We consider the special case of finite oscillators

with distinct, bounded natural frequencies. Our first result derives a

lower bound on the coupling gain which is necessary for the onset of

synchronization. This bound improves the one derived by Jadbabaie

et al. [8]. We then calculate a lower bound on the coupling gain that

is sufficient to guarantee oscillator synchronization and derive further

sufficient conditions to ensure exponential synchronization of the angular

frequencies of all oscillators to the mean natural frequency of the group.

We also characterize the coupling gain that is sufficient for the oscillator

phase differences to approach any desired compact set in finite time.

Index Terms— multi-agent systems, synchronization, Kuramoto oscil-

lators, exponential stabilization, cooperative control.

I. INTRODUCTION AND BACKGROUND

Collective synchronization has long been observed in biological,

chemical, physical and social systems. This phenomenon is observed

when the individual frequencies of coupled oscillators converge to a

common frequency despite differences in the natural frequencies of

the individual oscillators. Examples in biology and physics include

groups of synchronously flashing fireflies [1], crickets that chirp in

unison [20], and Josephson junctions [23]. Collective synchronization

was first studied by Wiener [22], who conjectured its involvement

in the generation of alpha rhythms in the brain. It was then taken

up by Winfree [24] who used it to study circadian rhythms in

living organisms. Winfree’s model was significantly extended by

Kuramoto [10], [11] who developed results for what is now popularly

known as the Kuramoto model. An elegant summary of Kuramoto’s

work, and later attempts to answer the questions that were raised by

his formulations, can be found in [17].
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The Kuramoto model consists of a population of N oscillators

whose dynamics are governed by the following equations

θ̇i = ωi +
K

N

N∑

k=1

sin(θk − θi), i = 1, . . . , N (1)

where θi is the phase of the ith oscillator, ωi is its natural frequency,

and K > 0 is the coupling gain. The problem is then to characterize

the coupling gain K so that the oscillators synchronize.

Definition 1.1: The oscillators are said to synchronize if

lim
t→∞

|θ̇i(t)− θ̇j(t)| = 0 ∀i, j = 1, . . . , N

Recently, control theoretic methods have been used in [2], [3],

[7], [8], [14], [15], [16], [21], [19] to address the synchronization

phenomenon. Stability analysis was carried out for a unidirectional

ring of oscillators with Kuramoto-type dynamics in [15]. In [14],

the authors demonstrated that only phase locking solutions, where

the phases differences correspond to (−π
2
, π

2
), can be locally asymp-

totically stable, and a condition for guaranteeing local asymptotic

stability was derived. Control and graph theoretic methods were used

in [8] to analyze Kuramoto oscillators for an arbitrary bidirectional

graph topology. The authors derived a coupling gain KL necessary

for the existence of the phase-locked state in the traditional Kuramoto

model (all-to-all connectivity). It was also shown that there exists a

large enough coupling gain K so that the vector of phase differences

locally (−π
2
, π

2
) converges to an unique constant. Recently, local

exponential stability of the phase-locked state in the Kuramoto model

was studied in [12].

There are some important questions still associated with the Ku-

ramoto model and they form the motivation for this paper. It has been

observed via numerical simulations that for a large enough coupling

gain K, the oscillator frequencies exponentially synchronize to the

mean natural frequency of the group. Local exponential stability of

the Kuramoto model has recently been studied in [12]. However,

till date there is no global analysis that shows that the oscillator

frequencies in the original Kuramoto model (where the oscillators

have different natural frequencies) synchronize exponentially. In this

paper we extend our preliminary results in [2] to solve the expo-

nential synchronization problem by studying the nonlinear Kuramoto

model (1).

In this paper, we study the case of a finite number N of Kuramoto

oscillators with all-to-all connectivity. We assume that the natural

frequencies ωi of the oscillators are arbitrarily chosen from the set

of reals. Our contribution in this paper can be summarized as follows:

• In Section II we derive a lower bound on the coupling gain K



that is necessary for the existence of the phase-locked state in the

Kuramoto model. This bound improves the result of Jadbabaie

et al. [8].

• In Section III we derive sufficient conditions for exponential

synchronization of the oscillator frequencies to the mean natural

frequency of the group, and then in Section IV a lower bound

on the coupling gain is developed to achieve the sufficient

conditions. We believe this is the first result that demonstrates al-

most global exponential synchronization in the Kuramoto model

for distinct natural frequencies of the individual oscillators.

Furthermore, we characterize the coupling gain that guarantees

convergence of the oscillator phase differences to any desired

set in (−π, π), provided certain conditions on the initial phase

differences are satisfied.

II. NECESSARY CONDITION FOR SYNCHRONIZATION

As we are interested in the evolution of the phase differences, we

write the phase difference dynamics using (1) as

θ̇i − θ̇j = ωi − ωj +
K

N

{− 2 sin(θi − θj) +

N∑

k=1
k 6=i,j

(
sin(θk − θi)

+ sin(θj − θk)
)}

(2)

If the oscillators are to synchronize, i.e. θ̇i(t)− θ̇j(t) → 0 as t →∞,

the right hand side of (2) must go to zero. Our first result calculates

a lower bound on the coupling gain K necessary for the right-hand

side of equation (2) to equal zero. In other words, we calculate a

necessary condition for the onset of synchronization in (1).

Theorem 2.1: Consider the system of oscillators described by (1).

There exists a coupling gain K = Kc > 0 below which the

oscillators cannot synchronize.

Proof: The oscillators can only synchronize if the expression

in the right hand side of equation (2) has at least one fixed point

∀i, j = 1, . . . , N i 6= j. The fixed point equation can be written as

ωj − ωi =
K

N

{
2 sin(θj − θi) +

N∑

k=1
k 6=i,j

(
sin(θk − θi)

+ sin(θj − θk)
)}

(3)

Assuming without loss of generality that ωj > ωi, to calculate a

lower bound on the coupling gain K satisfying (3), we need to

maximize the expression

Eij = 2 sin(θj − θi) +

N∑

k=1
k 6=i,j

(
sin(θk − θi) + sin(θj − θk)

)
(4)

The first order necessary conditions for maximizing Eij are given by

∂Eij

∂θi
= −2 cos(θj − θi)−

N∑

k=1
k 6=i,j

cos(θk − θi) = 0 (5)

∂Eij

∂θj
= 2 cos(θj − θi) +

N∑

k=1
k 6=i,j

cos(θj − θk) = 0 (6)

∂Eij

∂θk
= cos(θk − θi)− cos(θj − θk) = 0 (7)

where k = 1, . . . , N, k 6= i, j. Equation (7) implies that either

θj = θi + 2pπ or θk = pπ +
θi+θj

2
, p = 0, 1, 2, 3, . . . . The first

solution implies that Eij = 0. As we are looking for a maximum,

we investigate the other solution. Replacing θk by the even solution

(p = 0, 2, . . .) in (5) yields

2 cos(θj − θi) +

N∑

k=1
k 6=i,j

cos
(θj − θi

2

)
= 0

⇒ 2 cos(θj − θi) + (N − 2) cos
(θj − θi

2

)
= 0

⇒ 4 cos2
(θj − θi

2

)
− 2 + (N − 2) cos

(θj − θi

2

)
= 0

Solving the above quadratic equation we get

cos
(θj − θi

2

)
=
−(N − 2)±

√
(N − 2)2 + 32

8

As cos(x) ≤ 1 ∀x ∈ R, a well defined solution for all N is given

by

(θj − θi)opt1 = 2 cos−1
(−(N − 2) +

√
(N − 2)2 + 32

8

)
(8)

Similarly, it can be verified that the odd solutions (p = 1, 3, . . .) lead

to the solution

(θj − θi)opt2 = 2 cos−1
( (N − 2)−

√
(N − 2)2 + 32

8

)

The solutions (θj − θi)opt1, (θj − θi)opt2 satisfy π
2

≤
(θj − θi)opt1 ≤ π and π ≤ (θj − θi)opt2 ≤ 3π

2

respectively. Therefore, using (4) we have Eij [(θj − θi)opt1] >

Eij [(θj − θi)opt2], and hence the candidate optimal value of θj − θi

is (θj − θi)opt = (θj − θi)opt1. To verify the second order necessary

condition, note that the off-diagonal terms of the Hessian of Eij

consists of sin(·) terms and the diagonal terms are simply the negative

sum of the off-diagonal terms. As π
2
≤ (θj − θi)opt1 < π, it follows

from the even solution that all phase differences ((θj − θi)opt,

(θk − θi)opt, (θj − θk)opt) modulo 2π belong to the interval [π
4
, π].

Thus, sin(θj − θi)opt, sin(θk − θi)opt, sin(θj − θk)opt ≥ 0. Using

Gershgorin’s Theorem [6], the Hessian for the function Eij is

negative semidefinite and hence Eij is a concave function over the

domain [π
4
, π]. Thus, the necessary conditions for maximization are

2



sufficient as well and the optimal value of Eij is given as

Emax = 2 sin(θj − θi)opt + 2(N − 2) sin
( (θj − θi)opt

2

)

≤ 2(N − 1)

Consequently, using (3) the critical coupling gain required for the

onset of synchronization in (2) is given by Kc =
(ωj−ωi)N

Emax
,∀i, j

If the natural frequencies belong to a compact set, then the critical

coupling gain required for onset of synchronization in (1) is given as

Kc =
(ωmax − ωmin)N

Emax
(9)

where ωmax, ωmin are the maximum and minimum frequencies in

the set of natural frequencies.

The phrase critical coupling gain required for onset of synchroniza-

tion does not imply that at Kc the oscillators synchronize. The critical

gain Kc is the gain below which the oscillators cannot synchronize.

It is interesting to compare condition (9) with that for the critical gain

obtained in [8]. The value for the critical coupling in [8] is given as

KL =
(ωmax − ωmin)N

2(N − 1)
(10)

As Emax ≤ 2(N−1), it follows that synchronization is not possible

for all coupling gains K satisfying KL ≤ K < Kc.

The critical gain condition (9) can be written as

Kc =
(ωmax − ωmin)N

2 sin(θj − θi)opt + 2(N − 2) sin
(

(θj−θi)opt

2

) (11)

For the case N = 2, from (8) we have (θj − θi)opt =

2 cos−1
(√

32
8

)
= π

2
Therefore, using (11), the critical coupling is

given as Kc = ωmax − ωmin. Substituting N = 2 in (10) we get

that KL = ωmax − ωmin. Consequently, KL = Kc when there are

only two oscillators in the system.

When N →∞, the equation (8) yields the solution (θj−θi)opt =

π. Substituting the optimal solution in (11) and taking limit

lim
N→∞

Kc = lim
N→∞

(ωmax − ωmin)

2
sin(θj−θi)opt

N
+ 2(1− 2

N
) sin

(
(θj−θi)opt

2

)

=
(ωmax − ωmin)

2

Comparing the above estimate to the critical gain condition proposed

by [8],

lim
N→∞

KL = lim
N→∞

(ωmax − ωmin)

2(1− 1
N

)
=

(ωmax − ωmin)

2

= lim
N→∞

Kc

Thus, the critical gain condition proposed in this paper is equivalent to

the one proposed in [8] for the infinite oscillator case. The comparison

between the two critical gains can be summmarized as

Kc = KL N = 2, N →∞

Kc > KL for all other N

It is interesting to note that for the two oscillator system, KL =

Kc = ωmax − ωmin is also sufficient for oscillator synchronization.

We refer the reader to [8] for further details.

III. SUFFICIENT CONDITIONS FOR SYNCHRONIZATION

In this section we develop sufficient conditions for synchronization

of Kuramoto oscillators and characterize the rate of convergence.

Theorem 3.1: Consider the system of oscillators described by (1).

If there exists T ≥ 0 such that ∀t ≥ T, |θi − θj | < π
2
− ε ∀i, j,

where 0 < ε < π
2

, then the oscillator frequencies θ̇i synchronize

exponentially to the mean frequency Ω = 1
N

∑N
i=1 ωi and satisfy

|θ̇i − Ω| ≤ σT e−K sin(ε)(t−T ), σT > 0 ∀i = 1, . . . , N .

Proof: Differentiating the Kuramoto model (1) we have

θ̈i =
K

N

N∑
j=1

cos(θj − θi)(θ̇j − θ̇i), i = 1, . . . , N (12)

Consider the positive function, S = 1
2
θ̇T θ̇ where θ̇ = [θ̇1 . . . θ̇N ]

T
.

Differentiating S along trajectories of (1) and rearranging terms we

have that,

Ṡ = −K

N

N∑
j=1

N∑
i=1

cos(θi − θj)(θ̇i − θ̇j)
2 = −K

N
θ̇T Lθ̇ (13)

where, Lii =
∑N

k=1k 6=i
cos(θk − θi), Lij = − cos(θi− θj) ∀i, j =

1, . . . , N i 6= j. If all the phase differences are contained in the

set |θi − θj | < π
2

, Lii > 0, i = 1, . . . , N . Using Gershgorin’s

Theorem [6], all eigenvalues of the matrix L are located in the union

of the N discs

∪N
i=1{z ∈ C : |z −

N∑

k=1
k 6=i

cos(θk − θi)| ≤
N∑

k=1
k 6=i

cos(θk − θi)}

Thus all eigenvalues are located in the right half plane, and hence

the matrix L is positive semidefinite. The row sums of the matrix

L are zero, which implies that the matrix L has a zero eigenvalue

with 1N as the corresponding N dimensional eigenvector of ones.

The matrix L is also popularly known as the weighted Laplacian [4]

in the graph theory literature.

It is to be noted that (see [5], [14])
∑N

i=1 θ̇i =
∑N

i=1 ωi. Therefore,

define Ω = 1
N

∑N
i=1 θ̇i = 1

N

∑N
i=1 ωi which implies that Ω is an

invariant quantity. Following [13], the vector θ̇ can be written as

θ̇ = Ω1N + δ (14)

3



where 1N is the N dimensional vector of ones associated with

the zero eigenvalue of the matrix L, δ satisfies
∑N

i=1 δi = 0 (as
∑N

i=1 θ̇i = NΩ). The vector δ is orthogonal to 1N and was referred

to as the group disagreement vector in [13]. Substituting (14) in (13)

yields

1

2

d

dt
(Ω1N + δ)T (Ω1N + δ) = −K

N
(Ω1N + δ)T L(Ω1N + δ)

⇒ 1

2

d

dt
(Ω1T

NΩ1N + δT Ω1N + Ω1T
Nδ + δT δ) = −K

N
(Ω1T

NLΩ1N

+δT LΩ1N + Ω1T
NLδ + δT Lδ)

Using invariance of Ω ( d
dt

Ω1T
NΩ1N = 0), orthogonality of the dis-

agreement vector δ (δT 1N =0), and the fact that 1N is an eigenvector

associated with the zero eigenvalue of L (1T
NL = 0) we have

d(δT δ)

dt
= −2K

N
δT Lδ (15)

In order to get a bound on the convergence rate of δ, it is easy to

verify that the smallest non-zero eigenvalue of the matrix L (using

the fact that the smallest nonzero eigenvalue of the N×N Laplacian

of a complete graph is N, and min{cos(θi−θj) : |θi−θj | ≤ π
2
−ε} =

cos(π
2
− ε) = sin(ε)), is lower bounded by N sin(ε). Using this fact

in (15) yields

d(δT δ)

dt
≤ −2

K

N
λmin(L)δT δ ≤ −2K sin(ε)δT δ

⇒ ||δ|| ≤ σT e−K sin(ε)(t−T )

⇒ |θ̇i − Ω| = |δi| ≤ σT e−K sin(ε)(t−T ) ∀i = 1, . . . , N (16)

where the notation || · || denotes the Euclidean norm of δ. Thus the

exponential convergence rate for synchronization is no worse that

K sin(ε).

It also follows from the above result that the order parameter [17]

exponentially converges to a constant. The underlying assumption in

the previous result is that ∃ T ≥ 0 s.t. |θi − θj | < π
2
− ε ∀i, j ∀t ≥

T . In the next section we use the coupling gain K to steer the phase

differences to this desired set in finite time.

IV. CONTROLLING THE PHASE DIFFERENCES

In this section, a lower bound on the coupling gain K is developed

which is sufficient to trap the oscillator phase differences within

any desired arbitrary compact subset of (−π
2
, π

2
), and hence by

Theorem 3.1 guarantee oscillator synchronization. We consider two

possible cases

1) The initial phase of all oscillators lies within the set described

by D = {θi, θj | |θi − θj | ≤ π
2
− ε}; ∀i, j where ε < π

2
is

an arbitrary positive number.

2) Let θp = [θ1 − θ2 . . . θ1 − θN . . . θN−1 − θN ]T , be the
N(N−1)

2
× 1 vector of phase differences. The initial phase

differences satisfy the condition ||θp|| ≤ π − γ where γ is

an arbitrary small strictly positive number.

The first assumption allows for the case when all the initial phase

differences lie within a compact set in (−π
2
, π

2
). The second condition

relaxes this constraint but imposes a norm constraint on the phase

differences. However, it is evident the above cases do not span

(−π, π) and we will address this in our future work. For both of

the above scenarios, we show that there exists a large enough gain

to trap the phase differences within any desired arbitrary compact

subset of (−π
2
, π

2
).

Starting with the first case, we develop a lower bound on the

coupling gain K, denoted by Kinv , that makes the set D positively

invariant for all oscillators, i.e. θi(0)−θj(0) ∈ D ⇒ θi(t)−θj(t) ∈
D ∀ t > 0. The phase difference dynamics, as described by (2), can

be rewritten as

θ̇i − θ̇j = K
{ωi − ωj

K
− sin(θi − θj) +

1

N

N∑

k=1
k 6=i

(
sin(θi − θj)

+ sin(θk − θi) + sin(θj − θk)
)}

(17)

Consider the term under the summation in (17). This can be rewritten

using standard trigonometric manipulations as 1
N

sin(θi − θj)Ck

where Ck =
(
1− cos(θk−

(θi+θj)
2 )

cos(
(θi−θj)

2 )

)
. It is easy to see that ∀(θi−θj) ∈

D, |Ck| < 1. Using the transformed summation, (17) can be rewritten

as

θ̇i − θ̇j = K
{ωi − ωj

K
− sin(θi − θj) +

1

N

N∑

k=1
k 6=i

Ck sin(θi − θj)
}

= K
{ωi − ωj

K
− sin(θi − θj)

(
1− 1

N

N∑

k=1
k 6=i

Ck

)}
(18)

We are now in a position to state the first result of this section.

Theorem 4.1: Consider the system dynamics as described by (18).

Let all initial phase differences at t=0 be contained in the compact

set D = {θi, θj | |θi − θj | ≤ π
2
− ε ∀i, j = 1, . . . , N} where

0 < ε < π
2

. Then there exists a coupling gain Kinv > 0 such that

(θi(t)− θj(t)) ∈ D ∀t > 0.

Proof: Let a positive definite Lyapunov function for the dynamic

system governed by (18) be given as V = 1
2K

(
θi − θj

)2

. The

4



derivative of V along trajectories of the system (18) is given as

V̇ =
1

K
(θi − θj)

(
θ̇i − θ̇j

)

= (θi − θj)
(ωi − ωj

K
− sin(θi − θj)

(
1− 1

N

N∑

k=1
k 6=i

Ck

))

≤ |θi − θj ||ωi − ωj

K
| − (θi − θj) sin(θi − θj)

(
1−

N∑

k=1
k 6=i

Ck

N

)

≤ |θi − θj ||ωi − ωj

K
| − (θi − θj) sin(θi − θj)

(
1− N − 2

N

)

where we have used the fact that |Ck| < 1. Thus the derivative can

be written as

V̇ ≤ |θi − θj ||ωi − ωj

K
| − (θi − θj) sin(θi − θj)

2

N

It is to be noted that the function sin(θi − θj)(θi − θj) is always

nonnegative in the considered domain. Therefore, if K >
N|ωi−ωj |
2 cos(ε)

,

the derivative of the Lyapunov function is negative at |θi − θj | =

π
2
− ε, and thus the phase difference θi − θj cannot leave the set

D. Finally, if K = Kinv > N|ωmax−ωmin|
2 cos(ε)

, all phase differences

θi − θj ∀i = 1, . . . , N are positively invariant with respect to the

compact set D.

As the phase differences are trapped within the set D by appropriately

choosing the coupling gain, using Theorem 3.1 the oscillators are

guaranteed to synchronize.

Consider the second case when the initial phase differences satisfy

the condition ||θp(0)|| ≤ π − γ. Our next result shows that for a

large enough coupling gain K, the vector θp is ultimately bounded.

Theorem 4.2: Consider the system dynamics as described by (17).

Let the initial vector of phase differences be contained in the set

||θp|| ≤ π − γ. Then there exists a coupling gain K(s) > 0, for

some s > 0 such that the phase differences enters the set described

by ||θp|| ≤ s in finite time.

Proof: A positive definite function of the phase differences is

given as Vp = 1
2
||θp||2. Differentiating Vp along solutions of (17)

yields

V̇p =
∑
i<j

(θ̇i − θ̇j)(θi − θj)

=
∑
i<j

(
(ωi − ωj)(θi − θj)−K sin(θi − θj)(θi − θj)

+
K

N

N∑

k=1
k 6=i,j

(
sin(θi − θj) + sin(θk − θi) + sin(θj − θk)

)
(θi − θj)

)

The term under the double summation can be simplified as

(N − 2)
∑
i<j

sin(θi − θj)(θi − θj) +
∑
i<j

N∑

k=1
k 6=i,j

(
sin(θk − θi)

+ sin(θj − θk)
)
(θi − θj) (19)

Consider any two oscillators u, v, with v < u, among the N

oscillators. Corresponding to these two oscillators, the first term

in the above equation contains the expression (N − 2) sin(θv −
θu)(θv − θu). Now consider the second term in (19). As both the

oscillators are interconnected to N − 2 other oscillators, the second

term contains the two sums
∑

r=1,r 6=u,v sin(θu − θv)(θv − θr) and
∑

r=1,r 6=u,v sin(θv − θu)(θu − θr). Adding the two sums results

in the expression (N − 2) sin(θu − θv)(θv − θu). From the above

discussion it follows that
∑
i<j

N∑

k=1
k 6=i,j

(
sin(θi − θj) + sin(θk − θi)+sin(θj − θk)

)
(θi − θj) = 0

The derivative of Vp is then given as

V̇p =
∑
i<j

(
(ωi − ωj)(θi − θj)−K sin(θi − θj)(θi − θj)

)

Using the fact that at time t=0, sinc(θi−θj) =
sin(θi−θj)

θi−θj
≤ α ∀i, j

where 0 < α ≤ 1 (as ||θp|| ≤ π − γ and sinc is a decreasing even

function in (0, π)), the derivative reduces to

V̇p ≤
∑
i<j

(
(ωi − ωj)(θi − θj)−Kα(θi − θj)

2
)

Let ωd = [ω1−ω2 . . . ω1−ωN . . . ωN−1−ωN ]T denote the vector of

the difference of natural frequencies. Then using the Cauchy-Schwarz

inequality,

V̇p ≤ ||ωd||||θp|| −Kα||θp||2 ≤ ||θp||(||ωd|| −Kα||θp||)

Choose K(s) = ||ωd||
αs

+2m, m > 0. The derivative of the Lyapunov

function reduces to

V̇p ≤ ||θp||(||ωd|| − (
||ωd||
αs

+ 2m)α||θp||)

≤ −2mα||θp||2 if ||θp|| ≥ s

⇒ V̇p ≤ −4mαVp

From the above inequality it is evident that Vp, and hence θp, decays

at an exponential rate. Therefore, the phase differences enter the set

||θp|| ≤ s in finite time.

It is to be noted that the vector θp is always decreasing until it enters

the desired set. To ensure synchronization, choose s < π
2

and the

coupling gain K(s) appropriately, then ∃ T ≥ 0 s.t. |θi − θj | <

π
2
∀i, j ∀t ≥ T . Consequently, oscillator synchronization follows

from Theorem 3.1.
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V. CONCLUSIONS

In this paper we studied the phenomenon of synchronization in

the traditional Kuramoto model with an arbitrary but finite number

of oscillators. A necessary condition in the form of a lower bound

on the coupling gain K = Kc was established for the existence of

a phase-locked state in the Kuramoto model. This bound is tighter

than the result provided by Jadbabaie et al. [8]. Sufficient condi-

tions for exponential synchronization of the oscillator frequencies

to the mean natural frequency of the group were also developed.

To the best of the authors’ knowledge this is the first result that

demonstrates almost global exponential synchronization in the finite

oscillator Kuramoto model with different natural frequencies, thereby

complementing the recent local stability results in [12]. A lower

bound on the coupling gain was also developed to guarantee oscillator

synchronization. Furthermore, the coupling gain was characterized so

as to trap the oscillator phase differences within any desired compact

set in (−π, π), provided the initial oscillator phase differences satisfy

certain conditions. Future work involves studying synchronization for

probabilistic distribution of the natural frequencies and incorporating

time delays in communication.
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