

 ENME 489Y Assignment #4

Mitchell, Spring 2018

Page 1 of 8

ENME 489Y – Remote Sensing: Spring 2018
Department of Mechanical Engineering

Due Date Thursday, March 15th, 2018

Submission
Information

 Submit .pdf response to Question #2 via Gradescope by 9:30 am

Introduction to the triangulation lidar range measurement

Question #1 (nothing to submit)

The transmitter of the RPi lidar sensor consists of a
LED laser, while the RPi camera is the primary
component of the receiver. The data acquisition
system utilizes computer vision techniques to detect
the location of the laser beam as it scatters off the
target. For each image (or frame, in the case of
video), the DAQ creates and applies a color mask. For
a single point laser (this assignment), the DAQ then
computes the minimum enclosing circle and centroid.
For a line laser (future assignments), the DAQ then
identifies the pixels of the image corresponding to the
line. In both instances, the (x,y) coordinates of the
pixels are used to compute a range measurement
based on the sensor geometry.

Head over to GitHub and download the Python script colorpicker.py.

https://github.com/oneshell/enme489y

This script has been developed to (1) input a RGB image file specified by the user (consider using your
test_image.py script from Homework #3 to create the image file), and (2) create an HSV color mask of
the image dynamically using a trackbar interface.

The following RPi screenshot illustrates the colorpicker.py script, in which the lower and upper
boundaries of the color green in HSV color space permit detection of the green ball. The original RGB
image (“Original”) is shown below the HSV color mask (“Thresh”), with the Trackbars at left.

 ENME 489Y Assignment #4

Mitchell, Spring 2018

Page 2 of 8

Referring back to the stoplighttracking.py script from Homework #3, note that the HSV mask used to
track the green stoplight (and tennis ball) incorporated these lower and upper HSV value boundaries:

Ensure you are able to run and utilize the colorpicker.py script, using any target (and colors!) of your
choosing. The command line calls are provided below as well as comments in the code:

 source ~/.profile
workon cv

 python colorpicker.py -f HSV -i name_of_image_file.jpg

For fun, consider downloading an image of a stop sign from Google and determine the correct HSV color
mask to enable ADAS detection of stop signs while driving.

 ENME 489Y Assignment #4

Mitchell, Spring 2018

Page 3 of 8

Question #2 (40 points)

Here we develop the governing theory behind the triangulation lidar range measurement, using the RPi
lidar and OpenCV to track the location of the scattered laser beam (single laser beam in this assignment,
line laser in future assignments). The triangulation technique is widely used in lidar and robotic vision
applications. A particularly concise description of the technique has been provided by Todd Danko:

https://sites.google.com/site/todddanko/home/webcam_laser_ranger

Head over to GitHub and download the Python script test_image_laser.py. This script outputs a single
.jpg file at (x,y) dimensions of 1280 x 720 pixels, respectively, where the pixel coordinates begin at the
top left corner of the image.

Step 1: Run the MATLAB and/or Python code provided in the Appendix of this assignment. The code
plots the range between the lidar sensor and target based on the camera pixel corresponding to the
center of the imaged laser spot, for a separation distance H of 12 inches. Physically speaking, H defines
the distance between the axis of the laser and the axis of the camera, and can be adjusted as required.
For this assignment, we use H = 12 inches.

 ENME 489Y Assignment #4

Mitchell, Spring 2018

Page 4 of 8

Step 2: By any preferred means, setup your laser and RPi camera such that the axis of each is
approximately 12 inches apart and parallel, as illustrated in the figure below.

Note: ultimately, any color laser pointer will suffice for this exercise. Simply adjust the HSV mask using
colorpicker.py as required. Dr. Mitchell has green lasers available for loan.

Head over to GitHub and download the Python script lasertracker.py. This script has been developed to
(1) process video from the RPi camera, (2) utilize the object tracking code from Homework #3 to
automatically identify and locate the center of the scattered laser spot, (3) plot the (x,y) coordinates of
the center of the laser spot to the screen, and (4) log the date, time, and (x,y) coordinates in the text file
laserlog.txt.

Note: the log picks up where it left off each time the script is executed, so your previous data should be
safe each time you execute the script.

An illustration of the lasertracker.py script is provided below, for two target ranges, using the RPi VNC
connection. The screenshot demonstrates the Python camera interface and the data logged during
execution of the script. Notice that as the target moves further away from the lidar, the imaged laser
spot moves closer to the center of the image.

 ENME 489Y Assignment #4

Mitchell, Spring 2018

Page 5 of 8

 ENME 489Y Assignment #4

Mitchell, Spring 2018

Page 6 of 8

Step 3: Run the lasertracker.py script and log data while ranging to the target of your choosing, for
known distances from 0 to 10 feet, in increments of 6 inches. Plot the range data on top of the
theoretical output (using the MATLAB and/or Python code provided in the Appendix), adjusting the
values of ro and rpc as desired. Paste your combined plot into a .doc file, generate 1-2 paragraphs
describing how well your data aligns with the theoretical values, and upload a .pdf of the file to
Gradescope.

Congratulations! You’ve now built your own lidar sensor!

Note 1: you’ll likely need to run the colorpicker.py script to identify the upper and lower HSV bounds of
the laser color, accounting for lighting conditions.

Note 2: consider recording a video clip(s) of yourself ranging to the target, showing how the imaged
laser spot translates across the camera screen w.r.t. target range, to use in your semester project video.

Note 3: to assist the computer vision software, consider mechanically blocking the left half of the
camera frame with a piece of cloth, a block, etc. This will limit the camera’s field of view and should
improve the performance of the computer vision algorithm.

Thinking ahead: this technique works well to measure range, but provides only one range measurement
per image. How could we increase the data rate? More on this in the next assignment…

 ENME 489Y Assignment #4

Mitchell, Spring 2018

Page 7 of 8

Appendix: MATLAB Code

% ENME 489Y: Remote Sensing
% Spring 2018
% Triangulation lidar code

clear all; close all; clc; format compact

% Refer to Todd Danko's site for details, including physical layout
% https://sites.google.com/site/todddanko/home/webcam_laser_ranger

% Define ro and rpc, which can be tweaked down the road
% Radian offset, which compensates for alignment errors
ro = -0.01
% Radians per pixel pitch, or Gain [rad/pixel]
rpc = 0.001

% Define the full span of pixels from center
% Since our Python code sets the camera frame (x,y) coordinates
% as (1280, 640), the imaged laser spot is free to translate through
% (1280/2) = 640 pixels from the center of the image
pfc = flip([0:2:640]);

% Separation distance between axes of laser pointer and webcam [cm]
% 12 inches = 0.3048 meters
H = 0.3048;

% Determine the distance to the target, given calibrated system parameters
% and pfc array evaluated from data
D = [];
for i = 1:length(pfc)
 D(i) = H/(tan(pfc(i)*rpc + ro));
end

figure(1); hold on
% Plot distance to target as function of pfc value
% First convert H into inches and D into feet for analysis
H = 39.37*H; D = 3.28*D;
plot(pfc,D,'LineWidth',3)
xlabel('Pixels from Center [pfc]')
ylabel('Distance to target [ft]')
title('Range to Target for Separation Distance H = 12 inches')
grid
axis([0 650 0 10])

 ENME 489Y Assignment #4

Mitchell, Spring 2018

Page 8 of 8

Appendix: Python Code

ENME 489Y: Remote Sensing
Triangulation lidar code

import numpy as np
import matplotlib
import matplotlib.pyplot as plt

Refer to Todd Danko's site for details, including physical layout
https://sites.google.com/site/todddanko/home/webcam_laser_ranger

Define ro and rpc, which can be tweaked down the road
Radian offset, which compensates for alignment errors
ro = -0.01

Radians per pixel pitch, or Gain [rad / pixel]
rpc = 0.001

Define the full span of pixels from center
Since our Python code sets the camera frame (x,y) coordinates
as (1280, 640), the imaged laser spot is free to translate through
(1280/2) = 640 pixels from the center of the image
pfc = np.arange(0,640,2)
pfc = np.flip(pfc,0)

Separation distance between axes of laser pointer and webcam [cm]
12 inches = 0.3048 meters
H = 0.3048

Determine the distance to the target, given calibrated system parameters
and pfc array evaluated from data
D = np.empty((0))
for i in range(pfc.shape[0]):
 D = np.append(D, H/(np.tan(pfc[i]*rpc + ro)))

Convert H into inches and D into feet for analysis
H = 39.37*H
D = 3.28*D

Plot distance to target as function of pfc value
plt.figure(1)
plt.plot(pfc, D, 'b-', linewidth=3)
plt.title('Range to Target for Separation Distance H = 12 inches')
plt.xlabel('Pixels from Center [pfc]')
plt.ylabel('Distance to target [ft]')
plt.axis([0, 650, 0, 10])
plt.grid()
plt.show()

