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Data Hiding in Image and Video:
Part II—Designs and Applications

Min Wu, Member, IEEEHeather Yy Associate Member, IEEEBNnd Bede LivuFellow, IEEE

Abstract—This paper applies the solutions to the fundamental trol, robust annotation, and content-based authentication.
issues addressed in Part | to specific design problems of embed-Comprehensive protection from malicious attacks that make
ding data in image and video. We apply multilevel embedding to \~termarks undetectable would require both technical and
allow the amount of embedded information that can be reliably ) . .
extracted to be adaptive with respect to the actual noise condi- Pusiness approaches, such as a well-determined business and
tions. When extending the multilevel embedding to video, we pro- pricing model. Our design objective here focuses on surviving
pose strategies for handling uneven embedding capacity from re- common processing in transcoding and scalable/progressive

gion to region within a frame as well as from frame to frame. We 5 homission, such as compression with different ratio and
also embed control information to facilitate the accurate extraction ’

of the user data payload and to combat such distortions as frame frame rate conversion for video.
jitter. The proposed algorithm can be used for a variety of applica-

tions such as copy control, access control, robust annotation, and II. MULTILEVEL DATA HIDING IN GRAYSCALE |IMAGE
content-based authentication.

- - : , In this section, we present a two-level data hiding using the

Index Terms—DBata hiding, digital watermarking, multilevel em- . . . .
bedding, video data hiding. two types of embedding mechanisms discussed in Part-l. The
basis of this section is Fig. 5 of Part I, which demonstrates
that by combining several embedding levels, the number of bits
that can be reliably extracted will decay gracefully as the actual

N Part | [1], we have addressed a few fundamental issuesnsfise gets stronger.

data hiding in image and video. We have proposed generaMe focus here on how to convey several sets of data with
solutions, including how to embed multiple bits, how to handleifferent robustness, and depending on the applications, the data
uneven embedding capacity, and how to allow the number iofeach set could be either identical or be different [2], [3]. We
reliably extractable bits to be adaptable to the actual noise caonsider that the amount of data in each set is nontrivial. The
dition. Here in Part-1l, we apply the solutions to specific desigcase of using one embedding level to convey a small amount of
problems and present details of embedding data in image ade information to facilitate the extraction of the main payload
video. will be discussed in Section IlI-C.

In Section Il, we embed data in images at two levels, eachFor simplicity, we study the problem of multilevel data hiding
of which is designed for different robustness. This approach @ grayscale images. Extension to color images is straightfor-
lows for graceful decaying of extractable information as noiseard. The embedding domain we have chosen is th@®lock
gets stronger. In Section lll, we extend the multilevel embe®CT coefficients. This domain is compatible with commonly
ding to video, for which difficulty arises because the embeddinged image and video compression standards, making it easier
capacity varies from region to region within a frame as well & perform compressed domain embedding and to apply known
from frame to frame. We embed control information to faciliresults such as human visual models for JPEG compression [4],
tate the extraction of the user data payload and to combat sgsh It also allows for fine tuning of the watermark strength for
distortions as frame jitter. each local region to achieve good tradeoff between impercepti-

The designs presented in this paper can be used as buildlly and robustness.
blocks for such applications as copy control, access con-\\e use nonoverlapped spectrum segments for multiple-level

embedding to avoid interference among different levels, al-
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A. Spectrum Partition 1) Verification Through ExperimentsThe above analysis
Using Type-I embedding to hide one-bit information in th& Verified experimentally using 114 photographic images
host signal under additive noise can be formulated as a hypoffid the block-DCT spread spectrum algorithm proposed by
esis testing problem Podilchuk-Zeng [11]. For detection, thgestatistic proposed

by Zeng-Liu [12] is used. We denote lgy andq the detection

Hy:yi=-s;+d;i(1=1,...,n), ifb=-1 (1) statistic with and without the weighting based on an estimation

Hy:yi=+4s;+d; (i =1,...,n), ifb=+41 of the total noise in each band, respectively. That is
where the watermarks{, ..., s,} is an n-sample known se- My 5
quence) is a bit to be embedded and is equally likely to be 7= v, ®)
“+1” or “—1", and d; represents the total noise and interfer- n
ence. Under the assumption thétis i.i.d. Gaussian with den- J = Mz ©)
sity A(0, 02), the optimal detection statistic is a correlator vV,

y's
T= = (2) where
2 2
o3 - sl
Zi=yi-si, Z'i=vyi- —
which is Gaussian distributed with unit variance and mean Vi
1< 1 &
Mz =— Ziyy Mg == Z';
77 2_; ' 7 n Z;
3) n 2 T 2
Z(Zi—MZ) Z(Z’,L-—MZ,)

Setting the threshold to zero gives minimum probability of Vz :HT:VZ’ = HT
error Q(E(T)), whereQ(x) is the probabilityP(X > z) of a
Gaussian random variablé ~ N(0,1). The weight §y;} reflects the impact of the noise variance term

Under noncoherent detectiof, consists of the interferencein (4). Theq statistic of (5) is a correlation with variance nor-
from host media and the noise due to processing and attack. hiraized to 1 without explicitly estimating the variance of noise
high power of host media contributes to a larggvalue, in- and interference?.
creasing the probability of detection error. A popular approach The noise variance is not easy to estimate accurately because
to reduce the error probability is to only watermark mid-banthe precise power of the host signal is unknown in noncoherent
coefficients [9] and to leave the low band and high band udetection, and the variance of processing noise is highly depen-
changed. It is based on the observation that the low band cagdnt on the distortion or attack applied to the signal. To over-
ficients generally have much higher power than those in mideme these difficulties, an estimate of host signal power can be
band, and that the high band coefficients are vulnerable to prade using the current testimage. A set of known signal can be
cessing and attacks. Also, modification of low band coefficientglded to predetermined locations of the host signal, serving as
may have a higher impact on watermark perceptibility. a set of training data to facilitate the noise estimation [13]. The

It is possible, however, to embed in the low band, providgdy;} in our experiment is based on the variance of host signal
perceptual model is used and the effect of large values’on and potential processing noise of the frequency bangl. dhey
is taken into account. The test statisficof (2) is optimal if are empirically determined using a collection of natural images.
the noise {/;} is i.i.d. Gaussian, which often does not hold in Usingq andq’ as detection statistics, each of the above-men-
practice. A better yet simple assumption is thdf}{is inde- tioned 114 natural images is tested using three different spread
pendent Gaussian, but with different variance for different frepectrum watermarks. For each watermark and each image,
guency bands. The optimal detector is then a correlator precettesl block DCT coefficients are ordered in the familiar zig-zag
by normalizing the observations with their corresponding stamanner (Fig. 2). We then vary the frequency beyond which a
dard deviations, , which gives more weight to less noisy comwatermark is inserted. Theandq’ values are computed under

ponents. The test statistic then becomes several distortion conditions including no distortion, JPEG
n oy, with different quality factors, and low pass filtering. For each
, 2ic a2 image, we also normaliz¢ andq’ with respect to the number
= ﬁ (4)  of embeddableoefficients that can be watermarked without in-
2i=1 "i troducing perceptual distortion. The average normalizadd

7

q' are shown in Fig. 1, where the horizontal axis is the zig-zag
Thus, it is possible to embed data in all bands, although carrdered frequency band beyond which data is embedded. It
tributions from those noisy bands are limited. One can also usan be seen thatis maximum when the band from which the
a more general Gaussian noise model in which the componesrisbedding starts is around 6 to 11, and it falls off when either
of the host media and/or the noise may be dependent. In thisre or less number of frequency bands are involved. It is also
case, both whitening and normalization are performed befa@een thay’ is larger thany, hence;’ gives a smaller probability
applying the minimum Euclidean distance detector or maximuai error. In additiong’ is monotonically decreasing when fewer
correlation detector [10]. bands are used in embedding, but the decrease is insignificant
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Fig.1. Average detection statistics: (a) detection statistics of nonweighted cortgleitaies) and of weighted correlatgf (crosses) with no additional distortion
and (b) detection statistics of weighted correlatounder four different distortions. The-axis in both plots indicates the frequency band in a zigzag order from
which watermark starts to be put in.

6 is determined by

ISR
B[ 6] 5[ D] 2\ b=
1712513014143 l: 0, |f HlOd (round I:&:| ,2) = b“
: 24131140| 44|53 ’\:\ sgn(g_ — round [(”2—“]) otherwise
Payioad, | ] 10[19[23[32]39]45]52]x |:\\\____ @)
Moderate  ; ¢
E) 1200223338 46] 51|58 60|1 Levekz: . )
; Robustness {1 7 2 | 1 whereb; € {0,1} is the bit to be embedded, angn() €
\ 21| 34137 47| 30, M6l ! Moderats ! {—1, 41} is the signum function. We use the quantization step
33|36 | 4844957 58| 62| 63|, Pavlead | gjzesthat are equivalent to the standard JPEG quantization table

of quality factor 50% [14]. If the changes fromto v’; is larger
Fig. 2. Spectrum partition of two-level data hiding in block-DCT domain. than the just-noticeable-difference (JND), that coefficient is re-
garded as unembeddable, and no changes are made to it. The
when leaving out the first five lowest bands from embeddin§uman visual model used here is refined from the frequency-
These observations are consistent with our analysis. masking model by Podilchuk-Zeng [11] to reduce ringing arti-
The above study suggests that for a two-level embeddiﬁ’gfts [15]. Local image statistics are used to distinguish texture
system, one should apply the Type-I spread spectrum emb@&d €dge blocks and to attenuate the JND of edge blocks.
ding to mid-band coefficients for high robustness at a cost of 1N second set of data is embedded in mid-band using Type-|
total payload, and apply Type-Il enforcement embedding aeiditive spre_ad spectrum t_echmque. Antipodal mo_dulatlon is
low-band for high payload with moderate robustness. Subfied Py adding or subtracting a spread spectrum signg}, {
a multilevel embedding approach would allow the hiding df represent one bit
many bits and decode them successfully when image experi-
ences little or moderate distortion. When an image is distorted
significantly, this approach can still reliably extract those bitwhere {v;} are the original coefficients,«{;} are the marked co-

vi=vi+b-ai-wi, i=1,...,n ©)

that have been embedded robustly. efficients, and’ € {—1, +1} is the antipodal mapping fror
the bit to be embedded. The watermark strength}{is ad-
B. System Design justed by JND.

Shown in Fig. 3 are block diagrams of two-level data hiding 1PM-typé multiplexing/modulation (Part 1, Sec. 1V) is used
in image. The first level uses odd-even embedding in the Ig#y POth levels. The bits are embedded in nonoverlapped regions.
band, which are the first two diagonal lines of AC coefficient§©" Level-1, the low band coefficients of all blocks are divided
(Fig. 2). The embedding is done with quantization step sizlfyo several distinct sets, and in each set a bit is embedded using

{Q;} to enhance robustness. That is, a watermarked coefficidifid-even enforcement on all coefficients. The detector deter-
o', is obtained from the original coefficient of the host signal mines a bit by majority voting over the extracted values from
using those coefficients. For each bit embedded in Level-2 (high ro-

bustness), we partition a spreading sequence into nonoverlapped
;o gl 5 ‘ 7 segments and assign one segment to that bit. To overcome un-
vi=(roundig | to)- Qi () even embedding capacity of TDM, coefficients for each of the
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original v image with
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Level-1:
data (part-1) —— ™ Enc [ Shuff > odd-even embedding
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Level-1 extraction »1 Shuff Dec (part-1)
(b)
Notation

T: transform T™':  inverse transform

Enc: error correction encoding Dec:  error correction decoding

Mod:  modulation Demod: demodulation

Shuff:  shuffling Shuff ™": inverse shuffling

Fig. 3. Block diagram of two-level data hiding for images: (a) embedding process and (b) extraction process.

two embedding levels are shuffled and the embedding is p@INTL-Matsusita pattern in the Baboon image, as shown in
formed in shuffled domain (Part I, Sec. V). An inverse shufflingrig. 5. Using our refined human visual model, the marked
and an inverse DCT transform are then applied to obtain waténage has no visible artifacts and has a PSNR of 33.6dB with
marked image. The data embedded in each of the two levels caspect to the original image. The lower PSNR of the Baboon
be further encoded using error correction codes. image than that of the Lenna image is a result of the Baboon
This design of a two-level data hiding system serves asimage having more textured regions.
proof-of-concept of our proposed multilevel embedding (Part I,
Sec. lll). Other embedding schemes with different payload-ro-

bustness settings can also be incorporated to meet the needs of | . . ) .
different applications. In this section, we extend multilevel embedding from image

to video, guided by the general results from Part-1. The issues
involved in data hiding in video, besides the large data volume

We apply the proposed two-level data hiding scheme to tﬁ‘Qd high compgtation co_mplexity, are the_selection of an appro-
512x 512 Lenna image shown in Fig. 4(a). The Watermarkﬁf'ate emb_eddlng domain and the handling of uneven embed-
image, Fig. 4(b), has a PSNR of 42.5dB with respect to t &g capacity.
original unmarked image. Incorporating BCH error correction
coding and shuffling, we embed a 3232 binary pattern of A
PINTL-Matsusita logo in low band, which can be extracted Consecutive frames in a video look similar except those at
accurately when the image experiences JPEG compressiosa#ne changes or with fast motion. Because of this, it is pos-
quality factor 45% or higher. We also use spread spectrsible to add or drop some frames, or switch the order of adja-
technique to embed the ASCII code of a character strimgnt frames, without causing much noticeable artifacts. In addi-
“PINTL” in mid-band, which can be extracted without errottion, new frames may be generated from a few similar frames
when the image is blurred or JPEG compressed with qualdéyd inserted to the sequence or replace some original frames.
factor as low as 20%. The embedding rate can be higher fodifferent data are embedded in each frame of the original
images that contain larger textured region. For example, we cddeo and several watermarked frames are used to generate a
embed a longer string of “Panasonic Tech.” and thex® new frame, the embedded data may not be easily detectable from

I1l. M ULTILEVEL DATA HIDING IN VIDEO

C. Experimental Results

. Embedding Domain
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a|b
c | d

Fig. 4. Multilevel data hiding for Lenna image (5%2512). (a) original image; (b) watermarked image; (c) amplified differencB)(between (b) and (a) with
black denoting zero difference; and (d) extractedx322 PINTL-Matsusita logo from the low band.

(2) (b) (c)

Fig. 5. Multilevel data hiding for Baboon image (5%2512). (a) original image; (b) watermarked image; (c) amplified differemcB)(between (b) and (a) with
black denoting zero difference.

these new frames. This is known as collusion attack [16]. Since ~ ¢mbed b;& (imod K) embed b, & (i+1 mod K)
such manipulations can arise from common processing involved
in format conversion and transcoding [17] or from malicious at-
tacks, these possibilities must be considered in the design of ro-
bust data hiding for video. Adding redundancy and searching for seg. i
frame-jitter invariant domain are common ways to handle these
attacks. We focused on the redundancy approach because of its
effectiveness and computational simplicity.

We handle frame jitter by first partitioning the video into temWe embed the same data in every frame of a segment, as illus-
poral segments, and each consists of similar consecutive frantested in Fig. 6. The temporal partition should be content based,

Fig. 6. lllustration of methods for handling frame jittering.
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TABLE |
ADAPTIVE EMBEDDING RATE FOR A VIDEO FRAME

Estimated Achievable Payload C H Embedding Rate for User Data Corresponding Control Data
A Zero Rate -
¢sn no user bits are embedded add +c,
A Low Rate - hide a small,
n<C<mn predefined number of bits add +¢,
> Higher Rate - the # of bits A add —c;, and use a few spread spectrum
- embedded is determined by C sequences to convey the # of bits embedded

since frames before and after a scene change or a big changeadestly, the number of bits embedded in each frame, is different
to motion can have significantly different embedding capabilitfrom frame to frame and depends on an estimated achievable
Thus the lengths of segments may not be always uniform, ghyload discussed below. The overhead is thus relatively small
though between scene changes we can simply partition the videonpared to the total number of bits that can be embedded in
into segments of equal length. Repetition alone is neither ableost frames.
handle segments of unequal length, nor is it effective to combatThe number of bits that can be embedded in each frame may
frame reordering, frame insertion, and frame dropping of largeary from very few bits for smooth frames to dozens or even
units. Our approach is to embed the same user data as well &siadreds bits for frames containing large regions of details and
shortened version of segment index in each frame. fraime textures. Variable length codes can be used to represent this side
syncindex can assist in detecting and locating frame jitteringaformation, with shorter codes assigned to those frames that
and is part of theontrol bitsthat will be addressed in detail in can have only a small number of bits embedded. For each video
Section I1I-C. This approach is effective against frame droppirgegment, we estimate the achievable embedding paylqzet
that involves a small number of isolated frames. When this afpame based on the energy of DCT coefficients, the number of
proach is used in conjunction with other redundancy approactessbeddable DCT coefficients, and the detection statistic of an
such as repeatedly embedding the same data in separate pasiifedding trial that hides only a single spread spectrum water-
along video, the robustness against frame jittering can be furtimeark in a video frame. We also set two threshotdsaand 7.
enhanced. Embedding the same data in a segment of frames HI€0 < 71, we embed no user data.#f < C < T9, @ prede-
provides redundancy to combat the noise from additional priined number of user bits are embedded’1t> 7, we embed
cessing or attacks. Extraction can be done via weighted majotityer data at a higher rate determine(fbyTabIe | summarizes
voting with larger weights assigned to the frames experiencitige adaptive determination of embedding rate. We use spread
less distortion. spectrum sequences:,, +c;, and—c, to signal the aforemen-

It should be noted that repeatedly embedding the same didmed three cases, respectively. In the cas€'ob 7, we
in several consecutive frames is not equivalent to embeddialgo use orthogonal modulation via several other spread spec-
data in the corresponding averaged frame. This is becausettiien sequences to convey the number of embedded bits. To re-
embedding operation is nonlinear in general. For Type-1l educe the overhead for conveying this side information, we limit
forcement embedding, the relations such as the odd-even pattity number of embedded bits to one of a pre-determined finite
enforced on an averaged frame often does not hold in eachset (e.g., {6, 32,48, 64, .. .}), which can be determined empir-
dividual frame or the average of a subset of these frames, heiwaly using training video clips. All these are part of the control
does not survive frame jitter well. And for Type-1 additive emédata that need to be conveyed to facilitate the extraction of user
bedding, the same JND model gives significantly different resydalyload data. We will discuss more about embedding control
in determining what DCT coefficients are embeddable. Sinciata in the next subsection.
averaging several consecutive frames is equivalent to temporalhe estimated achievable payloatlis determined as the
low pass filtering, less DCT coefficients in the middle band dbllows. For Type-l additive spread spectrum embedding, the
an averaged frame will be deemed embeddable than those ofrtiesn detection statisti€ (7)) is given by (3) and follows a

original frames. unit-variance Gaussian distribution. The bit error probability is

. . Q(E(T)). Given the maximum bit error probabilif§™** that
B. Vana_ble Embedding Rate (VER) Versus Constant can be tolerated by the application, a lower bound of mean de-
Embedding Rate (CER) tection statistic required for each bit 7§, = Q—l(PéfmaX)).

For video, the uneven embedding capacity arises both froie denote the detection statistic when all embeddable coeffi-
region to region within a frame and from frame to frame. Asients are used to carry one information biffgsThe estimated
discussed in Part-1, VER requires a nontrivial amount of side inumber of bits that can be embedded is thus upper bounded by
formation but could provide higher overall embedding payload,

. . . . 2
and CER requires only a small amount of one-time side informa- o ( Ty )

tion but may be wasteful in total embedding capacity. Here we - Tin (10)

shall combine VER and CER as the follows. The intra-frame un-

evenness is handled using CER and shuffling, and VER is udadour experiments, we séf;;, to be around 5. Similarlyé

for inter-frame unevenness with the help of additional side ifier Type-Il enforcement embedding is estimated based on the
formation. An equal number of bits are embedded in each gronpmber of embeddable coefficients to whom the relations can
of shuffled coefficients within a frame. The group size, or equilse enforced.
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user data
o ,——> ﬂ marked video
orig. video
shot / scene estimate generate ~ transf. domain
@ |:,> segmentation [—>| achievable payload [~ control data embedding —
(a) !

?

test video l
extract control data extract user data _,| weighted majority extracted
:D| from one frame from one frame voting within segment :> user data
(b)

Fig. 7. Block diagram of the proposed video data hiding system: (a) embedding process and (b) detection process.

@ e (f)

Fig. 8. Multilevel data hiding for the flower garden video sequence: (a) the original 1st frame, (b) the watermarked 1st frame, (c) the ampisfiex: diffea)
and (b); (d) the original 30th frame, (e) the watermarked 30th frame, and (f) the amplified difference of (d) and (e). The video is compressed watlatMPEG-
4.5Mbps, and the differences are amplified by a factor of 5 with gray denoting zero difference and black/white denoting large difference.

C. Control Data Versus User Data User data is embedded in each video frame using the multi-

Additional information, known agontrol data is often level approach discussed in Section Il. TDM with shuffling is
needed to facilitate extraction afser dataor user payload @Pplied when hiding multiple bits at the high payload level via
In our design, the control data include the frame sync inde%id-even enforcement. For the high-robustness embedding via

the number of bits embedded in each frame, and a constiRféad spectrum technique, we combine TDM and orthogonal
watermark for image registration when the video is subject fgodulation (Part-I Sec.V) to double the number of embedded

geometric distortion [18], [19]. bits frorr_1 using TDM alone. As such, a watermark conveying
The amount of control data is relatively small when compared’® Pits is formed by

to that of user data, but is critical and should be extracted accu- B

rately. Thus we use the robust spread spectrum embedding and = Z by, - [I(b3+k =1) -g;” +Z(bpyr #1) -yf)}

the energy-efficient orthogonal modulation to embed control in- k=1

formation, where the spreading sequence for hiding each con- i o , (11)

trol bit is orthogonal with one another and is also orthogonal {§neréb: € {+1,—1}, andZ(-) is an indicator function. We

those used for user data. flrszg)generate two orthogonal spreading sequene# ) and
Here we use frame sync as an example to demonstrate the &fn- 1+ @nd break each sequence inib nonoverlapped seg-

bedding of control data. As introduced in Section IlI-A, fram&ents (2TDM) to form the orthogonal spreading vectau§'{}

sync is a short version of video segment index. Its range is fré#id {ui”}, respectively.

0to K — 1, i.e., theith segment is labeled with an index of )

mod(i, K). A larger K takes more bits, but gives better tol-D- Experimental Results

erance to frame jitter. Experiments have shown thiat= 8 A block diagram of the proposed video data hiding system is

is a good choice. The video segments are then indexed isheown in Fig. 7. The details of the modules that perform data

round-robin fashion from 0 to 7 and each index is embeddethbedding and extraction within each frame are similar to the

using the orthogonal modulation discussed in Part-1. So for thaultilevel image data hiding in Section II.

sync indexj, we embed thg-th sequence ok pre-selected or- We test our approach on the luminance components of

thogonal random sequences. several video sequences. The same character string containing
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TABLE 1
ANNOTATED EXCERPT OFCONTROL INFORMATION EXTRACTED FROM 660-FRAME WATERMARKED VIDEO SEQUENCE COMPRESSED AT4.5 MBPS
] Extracted Control Information
Fra;me CVIdteOt Rate Type for | Frame # of bits # of bits ]e“;::(fg:ﬁ(::acf W;lie,?fo
omen User Datg Synch @ high @ high from thisgB-frarzlc) due t(;
Zero/Low/High | Index | robustness payload / compression.
0 Flower f0 High 0 24 64
; g gigﬁ g ;Z gz // Update synch index & em.bcd
g new sets of user data in this
3 3 High 0 24 64/ € bit25-48
new segmen @
4 4 undecided 0 n/a nad /| high robustness, and bit65-
5 f5 High 0 24 64/ | 128 @ high payload level.
6 f6 High 1 24 64 &
7 7 High l 24 64
Synch index updated from 7
142 42 High 7 50 o / Lf(;s(})] il(r)lnan 8-stage round robin
143 f143 High 7 50 64 / i
144 144 High 0 40 64%
145 f145 High 0 40 64 Repeatedly embcd the same
146 146 High 0 20 64 user payload in each frame of
147 f147 High 0 40 64 @ segment (same synch).
148 f148 High 0 40 64
149 f149 High 0 40 64 No user data are embedded
150 | Football {0 Zero -1 0 0 & | forarather smooth segment.
151 f1 Zero -1 0 0 Nor is frame synch index
152 V) Zero -1 0 0 embedded (as denoted by —1).
153 3 Zero -1 0 0
154 4 Zero -1 0 0
155 £5 Zero 1 0 0 A small, predetermined
156 m Low 1 4 . amount of user data are '
157 o Low 1 y) 3 embedded in segments with
moderate achievable payload
to reduce overhead.
364 | T.Tennis f4 High 1 18 32~
365 s High 1 18 32
366 f6 High 2 12 32
367 7 High 2 12 32 Different segments of the
> same video sequence have
448 33 Zero R 0 0 dlfferc.:r}t_embcddm g
449 89 Zero | 0 0 Capbilities
450 90 Low 7 4 8
451 91 Low 7 4 8 —
TOTAL
660 frames, 110 . .
3 concatenated seq. segments 1266 bits 3032 bits

access control information without error correction coding isigh payload level and 1266 bits at high robustness level. All
hidden in two embedding levels. Between scene changes, 4298 bits can be extracted accurately after 4.5 Mbps MPEG-2
use equal-length segments, each containing six consecutieenpression or higher. When the video is compressed at
frames. One test video is the first 60 frames of the “flowet.5 Mbps, the 1266 bits at high robustness level can still be
garden” sequence, which has a frame size of 3220 and correctly extracted, though the detector shows low detection
a frame rate of 30 frames per second. The average PSNRcohfidence on 3 bits (0.2%). Error correction coding can be
the watermarked video with respect to the original host signakorporated to correct a small percentage of errors. In Table II,
is 32.5 dB. After data hiding, the video is encoded usingn annotated excerpt of detection log shows the extracted
MPEG-2, with a GOP structure t8BPBBL 18 characters (132 control information and demonstrates the role of these control
bits) can be extracted accurately when the video is compressth for data embedding in diverse video sequences. We see that
to 1.5Mbps or higher bit rate. An additional, longer string of) repeatedly embedding the same payload in a few consecutive
91 characters (640 bits) can be successfully extracted wHeames, together with frame sync index, help to combat occa-
compressed to 4.5Mbps or higher. Fig. 8 shows the 1st and 38ibnal detection errors in severely distorted frames and 2) the
frames of the original and watermarked frames as well as thabtaptive embedding rate and the associated variable-length-en-
difference amplified by a factor of 5. coded control information are effective in handling the uneven
We also tested a longer and more diverse sequence of @&fbedding capabilities across video segments. In addition to
frames by concatenating the “flower garden,” “football,” anthe user data payload and the associated control data, a constant
“table tennis” sequences. A total of 3032 bits are embeddedsatead-spectrum watermark signal sharing approximately 1/4
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TABLE Il
SUMMARY OF EXPERIMENTAL RESULTS FOR THEPROPOSEDMULTI-LEVEL IMAGE AND VIDEO DATA HIDING SYSTEMS

Level-1:  high payload Level-2:  high robustness
embedding embedding Notes
rate robustness rate robustness
512x512 lenna (35 bis) PSNR = 42.5 dB
32x32 JPEG Q 2 45%, JPEG Q 2 20%;
pattern moderate additive b low pass filtering;
1024 bits i “Panasonic G :
512x512 baboon | (1024Dits) | noise. Tedt additive noise. PSNR =33.6 dB
(105 bits)
60-frame 352x240 A ) Also hide control
flower garden 640 bits 132 bits bits to facilitate
sequence (91 char.) Mpeg-2 4.5Mbps; (18 char.) Mpeg-2 1.5Mbps; extracting user
660-frame 3522240 frame dropping frame dropping data. Average
concatenated video | 3032 bits 1266 bits PSNR is 32.5dB
sequence for flower garden.

of IND’s energy is embedded in every frame, which can be usedo] H. V. Poor, Introduction to Detection and Estimatipnd ed. New

to indicate ownership information and/or served as reference _ York: Springer-Verlag, 1994. . o

for i istrati h th id t tri 11] C. Podilchuk and W. Zeng, “Image adaptive watermarking using visual
or image registration when the video encounters geometri models,"IEEE J. Select. Areas Commun. (JSA@). 16, May 1998.

distortion. The experimental results of both image and vide@12] w. Zeng and B. Liu, “A statistical watermark detection technique

data hiding are summarized in Table II1. without using original images for resolving rightful ownerships of
digital images,"IEEE Trans. Image Processingol. 8, pp. 1534-1548,
Nov. 1999.
IV. CONCLUSIONS [13] D. Kundur, “Multiresolution digital watermarking: Algorithms and

implications for multimedia signals,” Ph.D dissertation, Univ. Toronto,
In this Part Il, we demonstrate how the general solutions to, _ Toronto, ON, Canada, 1999.

. . . 14] G. K. Wallace, “The JPEG still picture compression standaliEE
the fundamental issues of data hiding presented in Part | can ™ tyans Consumer Electranvol. 38, no. 1, pp. 18-34, 1992.

be used for specific design problems and applications. We haves] M. Wu, “Multimedia data hiding,” Ph.D. dissertation, Princeton Univ.,
made extensive use of the two major types of embedding, the  Princeton, NJ, 2001.

dulati d ltiplexi hni f beddi | [16] H. Stone, “Analysis of attacks on image watermarks with randomized
modulation and multiplexing techniques for embedding mul- coefficients,” NEC Research Institute, Tech. Rep., 96—-045, 1996.

tiple bits, as well as shuffling for handling uneven embedding17] Y. Wang, J. Ostermann, and Y.-Q. Zhafjjgital Video Processing and

capacity. Using multilevel data hiding in image and video, we__ Communications Englewood Cliffs, NJ: Prentice-Hall, 2001.
S. Pereira and T. Pun, “Fast robust template matching for affine resistant

. ) 18]
have shown that the am(?unt of e_XFraCtable |.nf0r_mat|0n (_:an bL:' image watermarks,” ifProc. 3rd Information Hiding Workshop (IHW)
adapted to the actual noise conditions, making it attractive for  Lecture Notes in Computer Science, 1999, pp. 207-218.
unequal error protection on the embedded data and for progreld®] G. Csurka, F. Deguillaume, J. J. K. ORuanaidh, and T. Pun, *A
. . Bayesian approach to affine transformation resistant image and video
sive and scalable embeddlng. watermarking,” inProc. 3rd Information Hiding Workshop (IHW)
Lecture Notes in Computer Science, 1999, pp. 315-330.
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