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Data Hiding in Image and Video:
Part II—Designs and Applications

Min Wu, Member, IEEE, Heather Yu, Associate Member, IEEE, and Bede Liu, Fellow, IEEE

Abstract—This paper applies the solutions to the fundamental
issues addressed in Part I to specific design problems of embed-
ding data in image and video. We apply multilevel embedding to
allow the amount of embedded information that can be reliably
extracted to be adaptive with respect to the actual noise condi-
tions. When extending the multilevel embedding to video, we pro-
pose strategies for handling uneven embedding capacity from re-
gion to region within a frame as well as from frame to frame. We
also embed control information to facilitate the accurate extraction
of the user data payload and to combat such distortions as frame
jitter. The proposed algorithm can be used for a variety of applica-
tions such as copy control, access control, robust annotation, and
content-based authentication.

Index Terms—Data hiding, digital watermarking, multilevel em-
bedding, video data hiding.

I. INTRODUCTION

I N Part I [1], we have addressed a few fundamental issues of
data hiding in image and video. We have proposed general

solutions, including how to embed multiple bits, how to handle
uneven embedding capacity, and how to allow the number of
reliably extractable bits to be adaptable to the actual noise con-
dition. Here in Part-II, we apply the solutions to specific design
problems and present details of embedding data in image and
video.

In Section II, we embed data in images at two levels, each
of which is designed for different robustness. This approach al-
lows for graceful decaying of extractable information as noise
gets stronger. In Section III, we extend the multilevel embed-
ding to video, for which difficulty arises because the embedding
capacity varies from region to region within a frame as well as
from frame to frame. We embed control information to facili-
tate the extraction of the user data payload and to combat such
distortions as frame jitter.

The designs presented in this paper can be used as building
blocks for such applications as copy control, access con-

Manuscript received February 4, 2002; revised November 22, 2002. This
work was supported in part by Panasonic Information and Networking Labo-
ratory, by a R&D Excellence Grant from the State of New Jersey, and by the
National Science Foundation CAREER Award CCR-0133704. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Bruno Carpentieri.

M. Wu is with the Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD 20742 USA (e-mail: minwu@eng.
umd.edu).

H. Yu is with Panasonic Information and Networking Laboratories (PINTL),
Princeton, NJ 08540 USA (e-mail: heathery@research.panasonic.edu).

B. Liu is with Department of Electrical Engineering, Princeton University,
Princeton, NJ 08544 USA (e-mail: liu@ee.princeton.edu).

Digital Object Identifier 10.1109/TIP.2003.810589

trol, robust annotation, and content-based authentication.
Comprehensive protection from malicious attacks that make
watermarks undetectable would require both technical and
business approaches, such as a well-determined business and
pricing model. Our design objective here focuses on surviving
common processing in transcoding and scalable/progressive
transmission, such as compression with different ratio and
frame rate conversion for video.

II. M ULTILEVEL DATA HIDING IN GRAYSCALE IMAGE

In this section, we present a two-level data hiding using the
two types of embedding mechanisms discussed in Part-I. The
basis of this section is Fig. 5 of Part I, which demonstrates
that by combining several embedding levels, the number of bits
that can be reliably extracted will decay gracefully as the actual
noise gets stronger.

We focus here on how to convey several sets of data with
different robustness, and depending on the applications, the data
in each set could be either identical or be different [2], [3]. We
consider that the amount of data in each set is nontrivial. The
case of using one embedding level to convey a small amount of
side information to facilitate the extraction of the main payload
will be discussed in Section III-C.

For simplicity, we study the problem of multilevel data hiding
in grayscale images. Extension to color images is straightfor-
ward. The embedding domain we have chosen is the 88 block
DCT coefficients. This domain is compatible with commonly
used image and video compression standards, making it easier
to perform compressed domain embedding and to apply known
results such as human visual models for JPEG compression [4],
[5]. It also allows for fine tuning of the watermark strength for
each local region to achieve good tradeoff between impercepti-
bility and robustness.

We use nonoverlapped spectrum segments for multiple-level
embedding to avoid interference among different levels, al-
though overlapped embedding can also be used1 . A key issue
in nonoverlapped embedding is to determine what part of the
host signal to be used for each embedding level. The following
analysis on the performance of noncoherent detection of
Type-I spread spectrum embedding provides a guideline to the
partitioning of host signal spectrum for two-level data hiding.

1Overlapped embedding is similar to the embedding of two or more water-
marks successively into a host signal to simultaneously achieve multiple goals
[6]–[8]. For example, a robust watermark and a fragile watermark can be added
to an image for ownership protection and tampering detection, respectively.
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A. Spectrum Partition

Using Type-I embedding to hide one-bit information in the
host signal under additive noise can be formulated as a hypoth-
esis testing problem

if
if

(1)

where the watermark { } is an -sample known se-
quence, is a bit to be embedded and is equally likely to be
“ 1” or “ 1”, and represents the total noise and interfer-
ence. Under the assumption thatis i.i.d. Gaussian with den-
sity , the optimal detection statistic is a correlator

(2)

which is Gaussian distributed with unit variance and mean

(3)

Setting the threshold to zero gives minimum probability of
error , where is the probability of a
Gaussian random variable .

Under noncoherent detection, consists of the interference
from host media and the noise due to processing and attack. The
high power of host media contributes to a largevalue, in-
creasing the probability of detection error. A popular approach
to reduce the error probability is to only watermark mid-band
coefficients [9] and to leave the low band and high band un-
changed. It is based on the observation that the low band coef-
ficients generally have much higher power than those in mid-
band, and that the high band coefficients are vulnerable to pro-
cessing and attacks. Also, modification of low band coefficients
may have a higher impact on watermark perceptibility.

It is possible, however, to embed in the low band, provided
perceptual model is used and the effect of large values on
is taken into account. The test statisticof (2) is optimal if
the noise { } is i.i.d. Gaussian, which often does not hold in
practice. A better yet simple assumption is that {} is inde-
pendent Gaussian, but with different variance for different fre-
quency bands. The optimal detector is then a correlator preceded
by normalizing the observations with their corresponding stan-
dard deviations , which gives more weight to less noisy com-
ponents. The test statistic then becomes

(4)

Thus, it is possible to embed data in all bands, although con-
tributions from those noisy bands are limited. One can also use
a more general Gaussian noise model in which the components
of the host media and/or the noise may be dependent. In this
case, both whitening and normalization are performed before
applying the minimum Euclidean distance detector or maximum
correlation detector [10].

1) Verification Through Experiments:The above analysis
is verified experimentally using 114 photographic images
and the block-DCT spread spectrum algorithm proposed by
Podilchuk-Zeng [11]. For detection, the-statistic proposed
by Zeng-Liu [12] is used. We denote byand the detection
statistic with and without the weighting based on an estimation
of the total noise in each band, respectively. That is

(5)

(6)

where

The weight { } reflects the impact of the noise variance term
in (4). The statistic of (5) is a correlation with variance nor-
malized to 1 without explicitly estimating the variance of noise
and interference .

The noise variance is not easy to estimate accurately because
the precise power of the host signal is unknown in noncoherent
detection, and the variance of processing noise is highly depen-
dent on the distortion or attack applied to the signal. To over-
come these difficulties, an estimate of host signal power can be
made using the current test image. A set of known signal can be
added to predetermined locations of the host signal, serving as
a set of training data to facilitate the noise estimation [13]. The
{ } in our experiment is based on the variance of host signal
and potential processing noise of the frequency band of. They
are empirically determined using a collection of natural images.

Using and as detection statistics, each of the above-men-
tioned 114 natural images is tested using three different spread
spectrum watermarks. For each watermark and each image,
the block DCT coefficients are ordered in the familiar zig-zag
manner (Fig. 2). We then vary the frequency beyond which a
watermark is inserted. Theand values are computed under
several distortion conditions including no distortion, JPEG
with different quality factors, and low pass filtering. For each
image, we also normalizeand with respect to the number
of embeddablecoefficients that can be watermarked without in-
troducing perceptual distortion. The average normalizedand

are shown in Fig. 1, where the horizontal axis is the zig-zag
ordered frequency band beyond which data is embedded. It
can be seen that is maximum when the band from which the
embedding starts is around 6 to 11, and it falls off when either
more or less number of frequency bands are involved. It is also
seen that is larger than , hence gives a smaller probability
of error. In addition, is monotonically decreasing when fewer
bands are used in embedding, but the decrease is insignificant
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Fig. 1. Average detection statistics: (a) detection statistics of nonweighted correlatorq (circles) and of weighted correlatorq (crosses) with no additional distortion
and (b) detection statistics of weighted correlatorq under four different distortions. Thex-axis in both plots indicates the frequency band in a zigzag order from
which watermark starts to be put in.

Fig. 2. Spectrum partition of two-level data hiding in block-DCT domain.

when leaving out the first five lowest bands from embedding.
These observations are consistent with our analysis.

The above study suggests that for a two-level embedding
system, one should apply the Type-I spread spectrum embed-
ding to mid-band coefficients for high robustness at a cost of
total payload, and apply Type-II enforcement embedding to
low-band for high payload with moderate robustness. Such
a multilevel embedding approach would allow the hiding of
many bits and decode them successfully when image experi-
ences little or moderate distortion. When an image is distorted
significantly, this approach can still reliably extract those bits
that have been embedded robustly.

B. System Design

Shown in Fig. 3 are block diagrams of two-level data hiding
in image. The first level uses odd-even embedding in the low
band, which are the first two diagonal lines of AC coefficients
(Fig. 2). The embedding is done with quantization step sizes
{ } to enhance robustness. That is, a watermarked coefficient

is obtained from the original coefficient of the host signal
using

(7)

is determined by

if ;

otherwise

(8)

where is the bit to be embedded, and
is the signum function. We use the quantization step

sizes that are equivalent to the standard JPEG quantization table
of quality factor 50% [14]. If the changes fromto is larger
than the just-noticeable-difference (JND), that coefficient is re-
garded as unembeddable, and no changes are made to it. The
human visual model used here is refined from the frequency-
masking model by Podilchuk-Zeng [11] to reduce ringing arti-
facts [15]. Local image statistics are used to distinguish texture
and edge blocks and to attenuate the JND of edge blocks.

The second set of data is embedded in mid-band using Type-I
additive spread spectrum technique. Antipodal modulation is
used by adding or subtracting a spread spectrum signal, {},
to represent one bit

(9)

where { } are the original coefficients, { } are the marked co-
efficients, and is the antipodal mapping from,
the bit to be embedded. The watermark strength, {}, is ad-
justed by JND.

TDM-type multiplexing/modulation (Part I, Sec. IV) is used
at both levels. The bits are embedded in nonoverlapped regions.
For Level-1, the low band coefficients of all blocks are divided
into several distinct sets, and in each set a bit is embedded using
odd-even enforcement on all coefficients. The detector deter-
mines a bit by majority voting over the extracted values from
those coefficients. For each bit embedded in Level-2 (high ro-
bustness), we partition a spreading sequence into nonoverlapped
segments and assign one segment to that bit. To overcome un-
even embedding capacity of TDM, coefficients for each of the
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Fig. 3. Block diagram of two-level data hiding for images: (a) embedding process and (b) extraction process.

two embedding levels are shuffled and the embedding is per-
formed in shuffled domain (Part I, Sec. V). An inverse shuffling
and an inverse DCT transform are then applied to obtain water-
marked image. The data embedded in each of the two levels can
be further encoded using error correction codes.

This design of a two-level data hiding system serves as a
proof-of-concept of our proposed multilevel embedding (Part I,
Sec. III). Other embedding schemes with different payload-ro-
bustness settings can also be incorporated to meet the needs of
different applications.

C. Experimental Results

We apply the proposed two-level data hiding scheme to the
512 512 Lenna image shown in Fig. 4(a). The watermarked
image, Fig. 4(b), has a PSNR of 42.5dB with respect to the
original unmarked image. Incorporating BCH error correction
coding and shuffling, we embed a 3232 binary pattern of
PINTL-Matsusita logo in low band, which can be extracted
accurately when the image experiences JPEG compression of
quality factor 45% or higher. We also use spread spectrum
technique to embed the ASCII code of a character string
“PINTL” in mid-band, which can be extracted without error
when the image is blurred or JPEG compressed with quality
factor as low as 20%. The embedding rate can be higher for
images that contain larger textured region. For example, we can
embed a longer string of “Panasonic Tech.” and the 3232

PINTL-Matsusita pattern in the Baboon image, as shown in
Fig. 5. Using our refined human visual model, the marked
image has no visible artifacts and has a PSNR of 33.6dB with
respect to the original image. The lower PSNR of the Baboon
image than that of the Lenna image is a result of the Baboon
image having more textured regions.

III. M ULTILEVEL DATA HIDING IN VIDEO

In this section, we extend multilevel embedding from image
to video, guided by the general results from Part-I. The issues
involved in data hiding in video, besides the large data volume
and high computation complexity, are the selection of an appro-
priate embedding domain and the handling of uneven embed-
ding capacity.

A. Embedding Domain

Consecutive frames in a video look similar except those at
scene changes or with fast motion. Because of this, it is pos-
sible to add or drop some frames, or switch the order of adja-
cent frames, without causing much noticeable artifacts. In addi-
tion, new frames may be generated from a few similar frames
and inserted to the sequence or replace some original frames.
If different data are embedded in each frame of the original
video and several watermarked frames are used to generate a
new frame, the embedded data may not be easily detectable from
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Fig. 4. Multilevel data hiding for Lenna image (512� 512). (a) original image; (b) watermarked image; (c) amplified difference (� 5) between (b) and (a) with
black denoting zero difference; and (d) extracted 32� 32 PINTL-Matsusita logo from the low band.

Fig. 5. Multilevel data hiding for Baboon image (512� 512). (a) original image; (b) watermarked image; (c) amplified difference (� 5) between (b) and (a) with
black denoting zero difference.

these new frames. This is known as collusion attack [16]. Since
such manipulations can arise from common processing involved
in format conversion and transcoding [17] or from malicious at-
tacks, these possibilities must be considered in the design of ro-
bust data hiding for video. Adding redundancy and searching for
frame-jitter invariant domain are common ways to handle these
attacks. We focused on the redundancy approach because of its
effectiveness and computational simplicity.

We handle frame jitter by first partitioning the video into tem-
poral segments, and each consists of similar consecutive frames.

Fig. 6. Illustration of methods for handling frame jittering.

We embed the same data in every frame of a segment, as illus-
trated in Fig. 6. The temporal partition should be content based,
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TABLE I
ADAPTIVE EMBEDDING RATE FOR A VIDEO FRAME

since frames before and after a scene change or a big change due
to motion can have significantly different embedding capability.
Thus the lengths of segments may not be always uniform, al-
though between scene changes we can simply partition the video
into segments of equal length. Repetition alone is neither able to
handle segments of unequal length, nor is it effective to combat
frame reordering, frame insertion, and frame dropping of larger
units. Our approach is to embed the same user data as well as a
shortened version of segment index in each frame. Thisframe
syncindex can assist in detecting and locating frame jittering,
and is part of thecontrol bitsthat will be addressed in detail in
Section III-C. This approach is effective against frame dropping
that involves a small number of isolated frames. When this ap-
proach is used in conjunction with other redundancy approaches
such as repeatedly embedding the same data in separate parts of
a long video, the robustness against frame jittering can be further
enhanced. Embedding the same data in a segment of frames also
provides redundancy to combat the noise from additional pro-
cessing or attacks. Extraction can be done via weighted majority
voting with larger weights assigned to the frames experiencing
less distortion.

It should be noted that repeatedly embedding the same data
in several consecutive frames is not equivalent to embedding
data in the corresponding averaged frame. This is because the
embedding operation is nonlinear in general. For Type-II en-
forcement embedding, the relations such as the odd-even parity
enforced on an averaged frame often does not hold in each in-
dividual frame or the average of a subset of these frames, hence
does not survive frame jitter well. And for Type-I additive em-
bedding, the same JND model gives significantly different result
in determining what DCT coefficients are embeddable. Since
averaging several consecutive frames is equivalent to temporal
low pass filtering, less DCT coefficients in the middle band of
an averaged frame will be deemed embeddable than those of the
original frames.

B. Variable Embedding Rate (VER) Versus Constant
Embedding Rate (CER)

For video, the uneven embedding capacity arises both from
region to region within a frame and from frame to frame. As
discussed in Part-I, VER requires a nontrivial amount of side in-
formation but could provide higher overall embedding payload,
and CER requires only a small amount of one-time side informa-
tion but may be wasteful in total embedding capacity. Here we
shall combine VER and CER as the follows. The intra-frame un-
evenness is handled using CER and shuffling, and VER is used
for inter-frame unevenness with the help of additional side in-
formation. An equal number of bits are embedded in each group
of shuffled coefficients within a frame. The group size, or equiv-

alently, the number of bits embedded in each frame, is different
from frame to frame and depends on an estimated achievable
payload discussed below. The overhead is thus relatively small
compared to the total number of bits that can be embedded in
most frames.

The number of bits that can be embedded in each frame may
vary from very few bits for smooth frames to dozens or even
hundreds bits for frames containing large regions of details and
textures. Variable length codes can be used to represent this side
information, with shorter codes assigned to those frames that
can have only a small number of bits embedded. For each video
segment, we estimate the achievable embedding payloadper
frame based on the energy of DCT coefficients, the number of
embeddable DCT coefficients, and the detection statistic of an
embedding trial that hides only a single spread spectrum water-
mark in a video frame. We also set two thresholdsand .
If , we embed no user data. If , a prede-
fined number of user bits are embedded. If , we embed
user data at a higher rate determined by. Table I summarizes
the adaptive determination of embedding rate. We use spread
spectrum sequences , , and to signal the aforemen-
tioned three cases, respectively. In the case of , we
also use orthogonal modulation via several other spread spec-
trum sequences to convey the number of embedded bits. To re-
duce the overhead for conveying this side information, we limit
the number of embedded bits to one of a pre-determined finite
set (e.g., { }), which can be determined empir-
ically using training video clips. All these are part of the control
data that need to be conveyed to facilitate the extraction of user
payload data. We will discuss more about embedding control
data in the next subsection.

The estimated achievable payload is determined as the
follows. For Type-I additive spread spectrum embedding, the
mean detection statistic is given by (3) and follows a
unit-variance Gaussian distribution. The bit error probability is

. Given the maximum bit error probability that
can be tolerated by the application, a lower bound of mean de-
tection statistic required for each bit is .
We denote the detection statistic when all embeddable coeffi-
cients are used to carry one information bit as. The estimated
number of bits that can be embedded is thus upper bounded by

(10)

In our experiments, we set to be around 5. Similarly,
for Type-II enforcement embedding is estimated based on the
number of embeddable coefficients to whom the relations can
be enforced.
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Fig. 7. Block diagram of the proposed video data hiding system: (a) embedding process and (b) detection process.

Fig. 8. Multilevel data hiding for the flower garden video sequence: (a) the original 1st frame, (b) the watermarked 1st frame, (c) the amplified difference of (a)
and (b); (d) the original 30th frame, (e) the watermarked 30th frame, and (f) the amplified difference of (d) and (e). The video is compressed with MPEG-2 at
4.5Mbps, and the differences are amplified by a factor of 5 with gray denoting zero difference and black/white denoting large difference.

C. Control Data Versus User Data

Additional information, known ascontrol data, is often
needed to facilitate extraction ofuser dataor user payload.
In our design, the control data include the frame sync index,
the number of bits embedded in each frame, and a constant
watermark for image registration when the video is subject to
geometric distortion [18], [19].

The amount of control data is relatively small when compared
to that of user data, but is critical and should be extracted accu-
rately. Thus we use the robust spread spectrum embedding and
the energy-efficient orthogonal modulation to embed control in-
formation, where the spreading sequence for hiding each con-
trol bit is orthogonal with one another and is also orthogonal to
those used for user data.

Here we use frame sync as an example to demonstrate the em-
bedding of control data. As introduced in Section III-A, frame
sync is a short version of video segment index. Its range is from
0 to , i.e., the th segment is labeled with an index of

. A larger takes more bits, but gives better tol-
erance to frame jitter. Experiments have shown that
is a good choice. The video segments are then indexed in a
round-robin fashion from 0 to 7 and each index is embedded
using the orthogonal modulation discussed in Part-I. So for the
sync index , we embed the-th sequence of pre-selected or-
thogonal random sequences.

User data is embedded in each video frame using the multi-
level approach discussed in Section II. TDM with shuffling is
applied when hiding multiple bits at the high payload level via
odd-even enforcement. For the high-robustness embedding via
spread spectrum technique, we combine TDM and orthogonal
modulation (Part-I Sec.V) to double the number of embedded
bits from using TDM alone. As such, a watermark conveying
2 bits is formed by

(11)
where , and is an indicator function. We
first generate two orthogonal spreading sequences {} and
{ }, and break each sequence into nonoverlapped seg-
ments (TDM) to form the orthogonal spreading vectors {}
and { }, respectively.

D. Experimental Results

A block diagram of the proposed video data hiding system is
shown in Fig. 7. The details of the modules that perform data
embedding and extraction within each frame are similar to the
multilevel image data hiding in Section II.

We test our approach on the luminance components of
several video sequences. The same character string containing



WU et al.: DATA HIDING IN IMAGE AND VIDEO: PART II—DESIGNS AND APPLICATIONS 703

TABLE II
ANNOTATED EXCERPT OFCONTROL INFORMATION EXTRACTED FROM 660-FRAME WATERMARKED VIDEO SEQUENCECOMPRESSED AT4.5 MBPS

access control information without error correction coding is
hidden in two embedding levels. Between scene changes, we
use equal-length segments, each containing six consecutive
frames. One test video is the first 60 frames of the “flower
garden” sequence, which has a frame size of 352240 and
a frame rate of 30 frames per second. The average PSNR of
the watermarked video with respect to the original host signal
is 32.5 dB. After data hiding, the video is encoded using
MPEG-2, with a GOP structure ofIBBPBBI. 18 characters (132
bits) can be extracted accurately when the video is compressed
to 1.5Mbps or higher bit rate. An additional, longer string of
91 characters (640 bits) can be successfully extracted when
compressed to 4.5Mbps or higher. Fig. 8 shows the 1st and 30th
frames of the original and watermarked frames as well as their
difference amplified by a factor of 5.

We also tested a longer and more diverse sequence of 660
frames by concatenating the “flower garden,” “football,” and
“table tennis” sequences. A total of 3032 bits are embedded at

high payload level and 1266 bits at high robustness level. All
4298 bits can be extracted accurately after 4.5 Mbps MPEG-2
compression or higher. When the video is compressed at
1.5 Mbps, the 1266 bits at high robustness level can still be
correctly extracted, though the detector shows low detection
confidence on 3 bits (0.2%). Error correction coding can be
incorporated to correct a small percentage of errors. In Table II,
an annotated excerpt of detection log shows the extracted
control information and demonstrates the role of these control
data for data embedding in diverse video sequences. We see that
1) repeatedly embedding the same payload in a few consecutive
frames, together with frame sync index, help to combat occa-
sional detection errors in severely distorted frames and 2) the
adaptive embedding rate and the associated variable-length-en-
coded control information are effective in handling the uneven
embedding capabilities across video segments. In addition to
the user data payload and the associated control data, a constant
spread-spectrum watermark signal sharing approximately 1/4
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TABLE III
SUMMARY OF EXPERIMENTAL RESULTS FOR THEPROPOSEDMULTI-LEVEL IMAGE AND VIDEO DATA HIDING SYSTEMS

of JND’s energy is embedded in every frame, which can be used
to indicate ownership information and/or served as reference
for image registration when the video encounters geometric
distortion. The experimental results of both image and video
data hiding are summarized in Table III.

IV. CONCLUSIONS

In this Part II, we demonstrate how the general solutions to
the fundamental issues of data hiding presented in Part I can
be used for specific design problems and applications. We have
made extensive use of the two major types of embedding, the
modulation and multiplexing techniques for embedding mul-
tiple bits, as well as shuffling for handling uneven embedding
capacity. Using multilevel data hiding in image and video, we
have shown that the amount of extractable information can be
adapted to the actual noise conditions, making it attractive for
unequal error protection on the embedded data and for progres-
sive and scalable embedding.
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