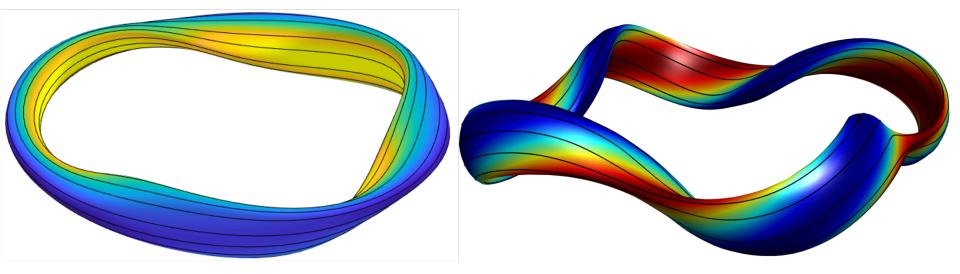
Confining charged particle orbits using hidden symmetry



Matt Landreman, UMD IREAP

<u>Outline</u>

- Magnetic confinement, & pros/cons of axisymmetry
- Integrability of non-axisymmetric **B** fields
- Quasi-symmetry
- Finding quasi-symmetric fields

Charged particles can be confined by magnetic fields in many contexts.

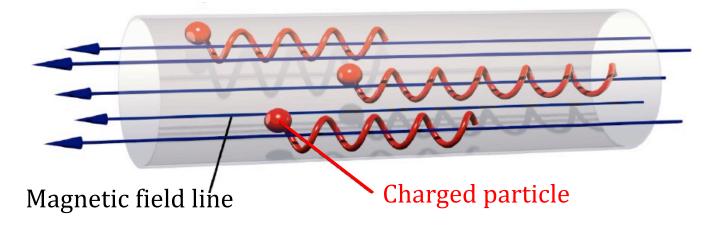
Planetary dipole fields

Particle traps for basic physics:

Hot laboratory plasmas, fusion

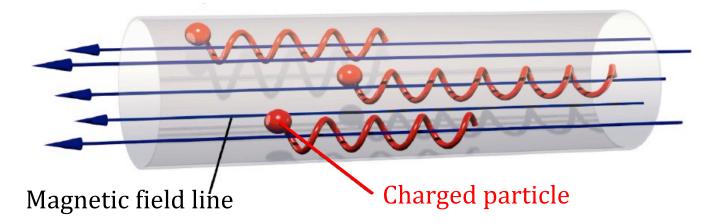
Confining charged particles with a magnetic field is tricky.

Uniform straight **B**: confinement \perp to **B**, but end losses.



Confining charged particles with a magnetic field is tricky.

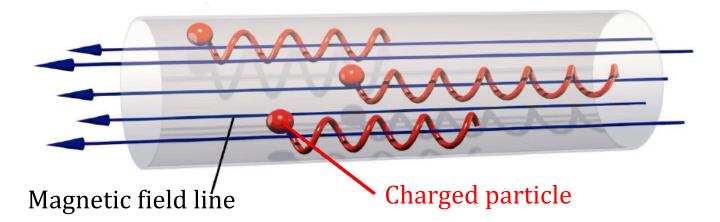
Uniform straight **B**: confinement \perp to **B**, but end losses.



But if field lines are bent, particles drift off them.

Confining charged particles with a magnetic field is tricky.

Uniform straight **B**: confinement \perp to **B**, but end losses.



But if field lines are bent, particles drift off them.

 $(\text{Drift velocity}) \sim (\text{Particle speed}) \frac{(\text{Larmor radius})}{(\text{Scale length of } \mathbf{B})} \ll 1$

To confine particles, we can constrain their position with a conservation law.

Noether's theorem:

For each **continuous symmetry** of a system*, there is a corresponding **conserved quantity**.

* For this talk: Lagrangian is independent of a coordinate.

Axisymmetry + Noether's Theorem is one way to achieve magnetic confinement.

Continuous rotational symmetry \Rightarrow Canonical angular momentum is conserved.

$$L_{\phi} = mv_{\phi}R + qA_{\phi}R = \text{constant}$$

$$\bigvee \text{vector potential: } \mathbf{B} = \nabla \times \mathbf{A}$$

Axisymmetry + Noether's Theorem is one way to achieve magnetic confinement.

Continuous rotational symmetry \Rightarrow Canonical angular momentum is conserved.

$$L_{\phi} = mv_{\phi}R + qA_{\phi}R = \text{constant}$$

$$\bigvee \text{vector potential: } \mathbf{B} = \nabla \times \mathbf{A}$$

Strong **B** limit $\Rightarrow |mv_{\phi}| \ll |qA_{\phi}| \Rightarrow$ Particles stuck to constant- $A_{\phi}R$ surfaces.

Axisymmetry + Noether's Theorem is one way to achieve magnetic confinement.

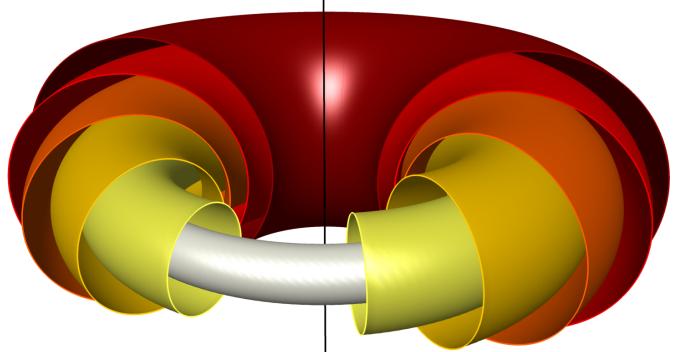
Continuous rotational symmetry \Rightarrow Canonical angular momentum is conserved.

$$L_{\phi} = mv_{\phi}R + qA_{\phi}R = \text{constant}$$

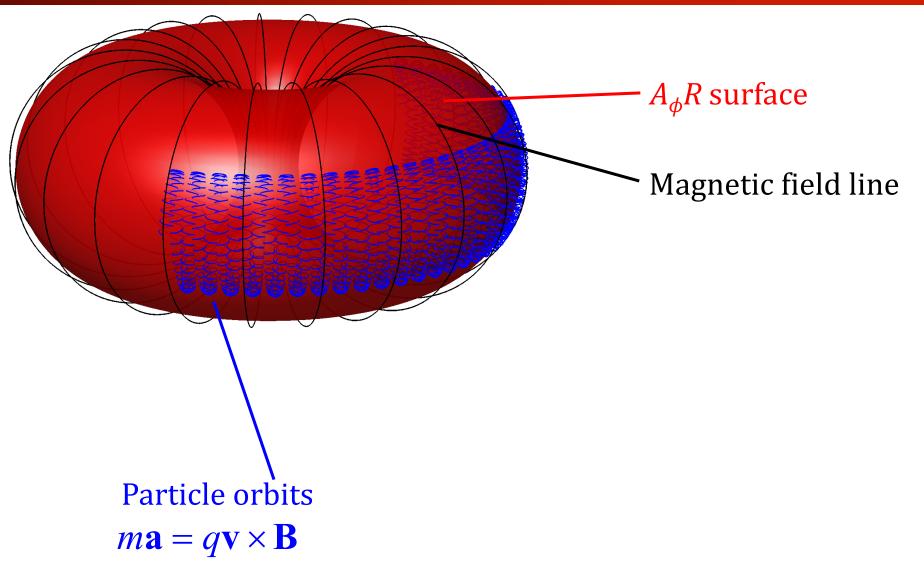
$$\bigvee \text{vector potential: } \mathbf{B} = \nabla \times \mathbf{A}$$

Strong **B** limit $\Rightarrow |mv_{\phi}| \ll |qA_{\phi}| \Rightarrow$ Particles stuck to constant- $A_{\phi}R$ surfaces.

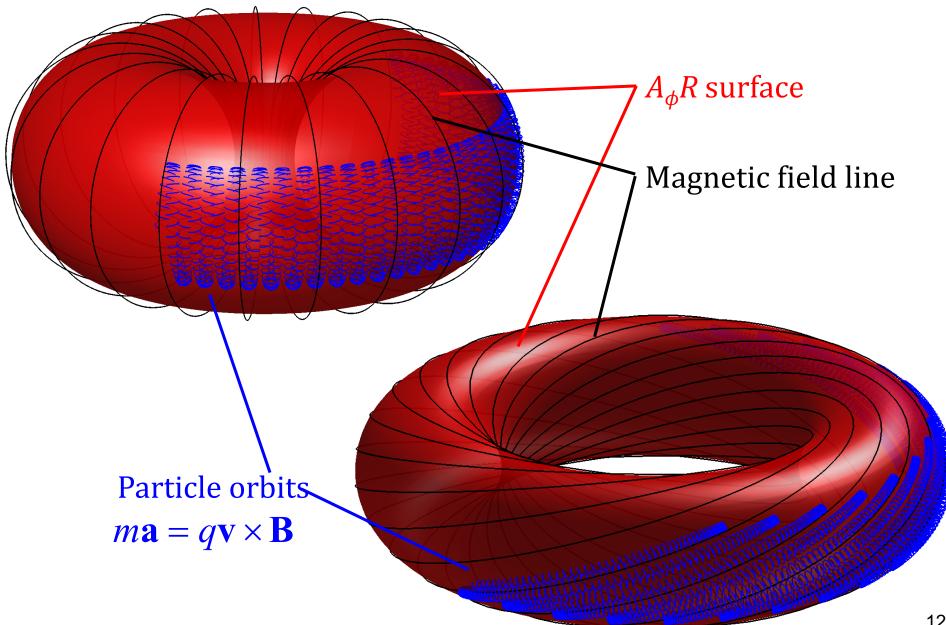
If $A_{\phi}R$ surfaces are bounded like this, then particles will be confined:



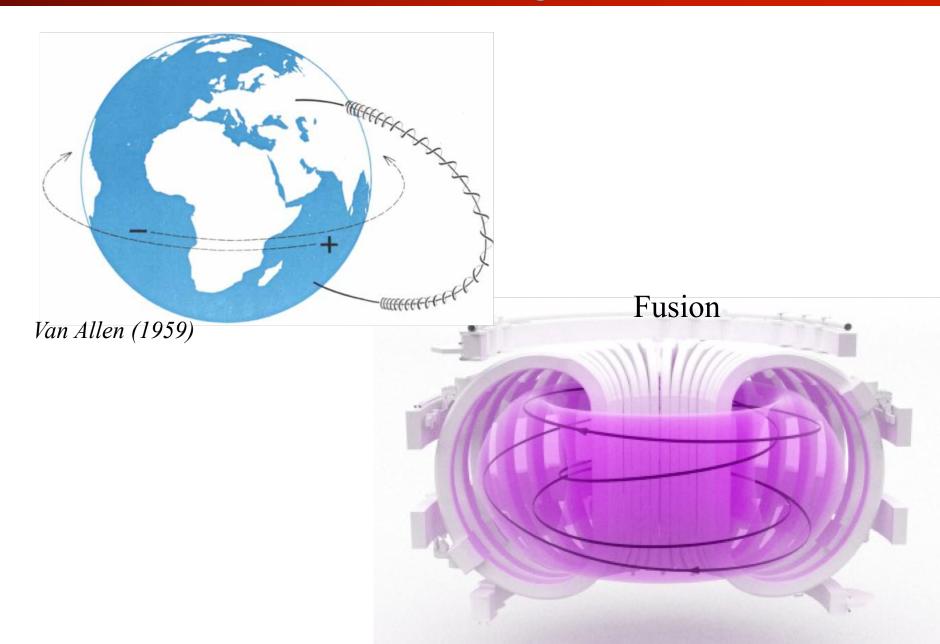
In axisymmetry, particles are confined (close) to $A_{\phi}R$ surfaces, despite complicated orbits.



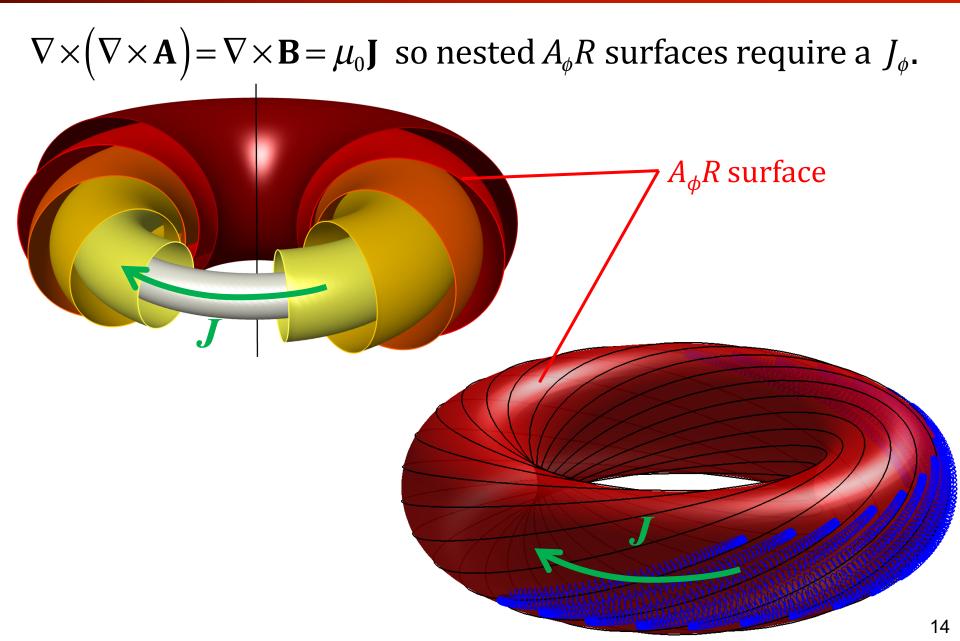
In axisymmetry, particles are confined (close) to $A_{\phi}R$ surfaces, despite complicated orbits.



Particles are actually confined this way in nature and in the laboratory.

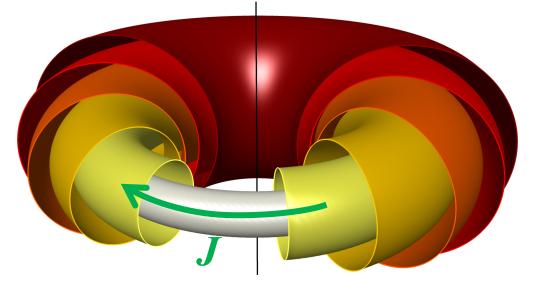


But, axisymmetric confinement has a big problem: requires an internal current.



But, axisymmetric confinement has a big problem: requires an internal current.

 $\nabla \times (\nabla \times \mathbf{A}) = \nabla \times \mathbf{B} = \mu_0 \mathbf{J}$ so nested $A_{\phi}R$ surfaces require a J_{ϕ} .



- Sustaining this current in steady-state is hard.
- This current drives instabilities.
- Not possible for low plasma density.

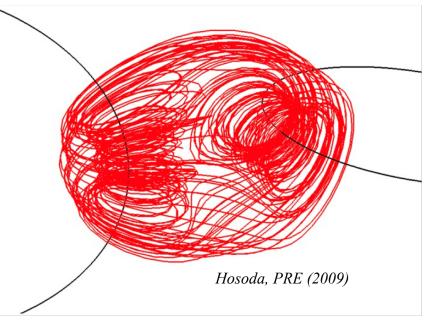
Can we achieve similar confinement without axisymmetry to avoid these problems?

<u>Outline</u>

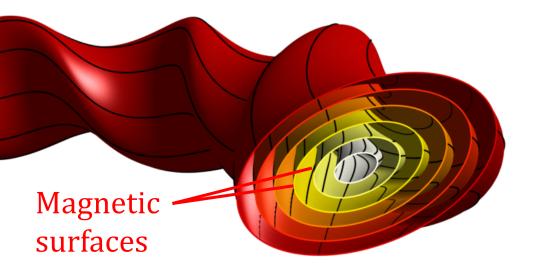
- Magnetic confinement, & pros/cons of axisymmetry
- Integrability of non-axisymmetric **B** fields
- Quasi-symmetry
- Finding quasi-symmetric fields

When axisymmetry is broken, we want field lines to still lie on surfaces.

BAD: Particle motion along B allows inside & outside to mix even without cross-**B** drift.



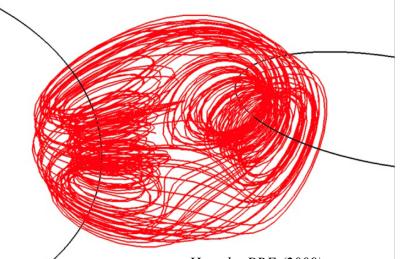
GOOD: B is "integrable"



When axisymmetry is broken, we want field lines to still lie on surfaces.

BAD: Particle motion along **B** allows inside & outside to mix even without cross-**B** drift.

GOOD: B is "integrable"



Hosoda, PRE (2009)

Example: W7-X Stellarator

Pedersen, Nature Comm (2016)

Magnetic surfaces

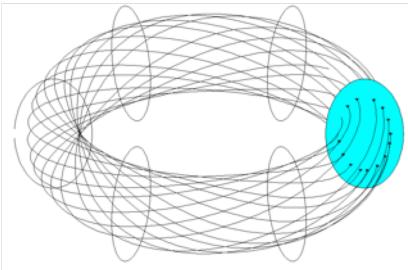
A magnetic confinement device with a non-axisymmetric but integrable magnetic field is a "stellarator"

E.g. Wendelstein 7-X (Germany):

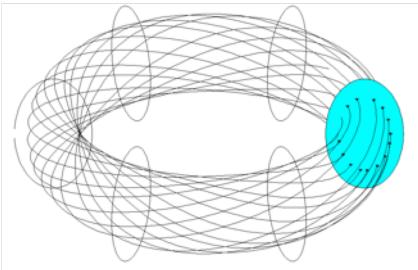
Electromagnetic coils Magnetic field lines

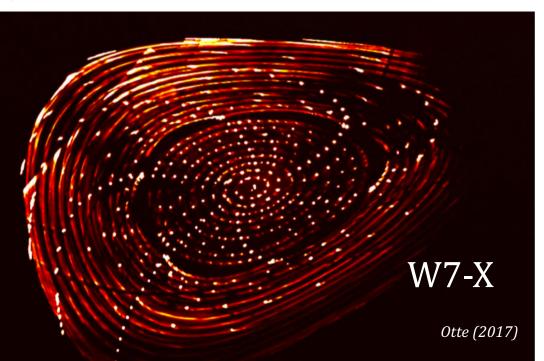
Magnetic surfaces, plasma

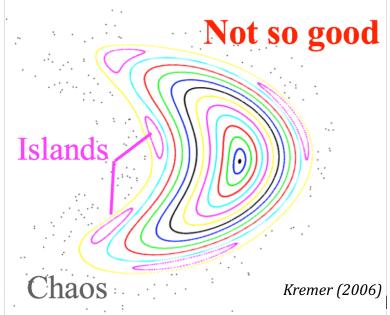
Integrability of magnetic fields can be viewed using Poincare plots



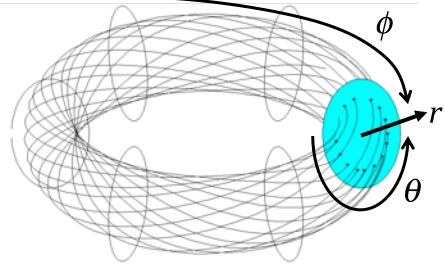
Integrability of magnetic fields can be viewed using Poincare plots





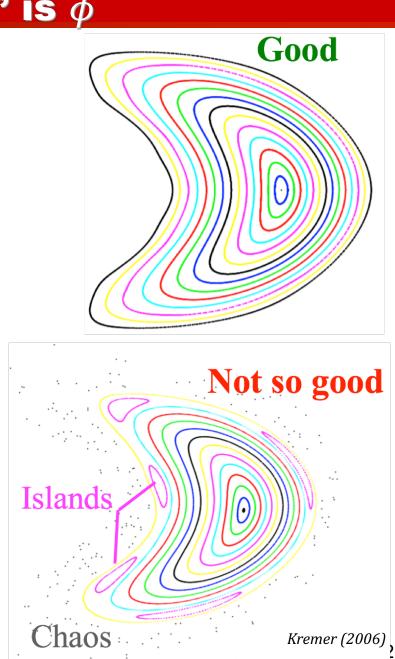


Magnetic field lines can be described by a Hamiltonian, where "time" is ϕ



$$\frac{d\theta}{d\phi} = \frac{\partial H}{\partial r}, \quad \frac{dr}{d\phi} = -\frac{\partial H}{\partial \theta}$$

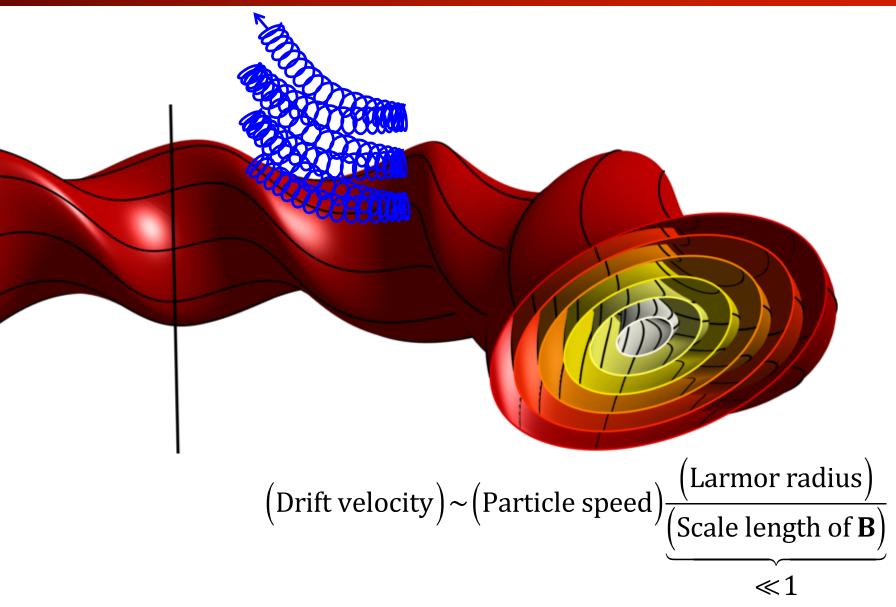
So tools from Hamiltonian systems like KAM apply.



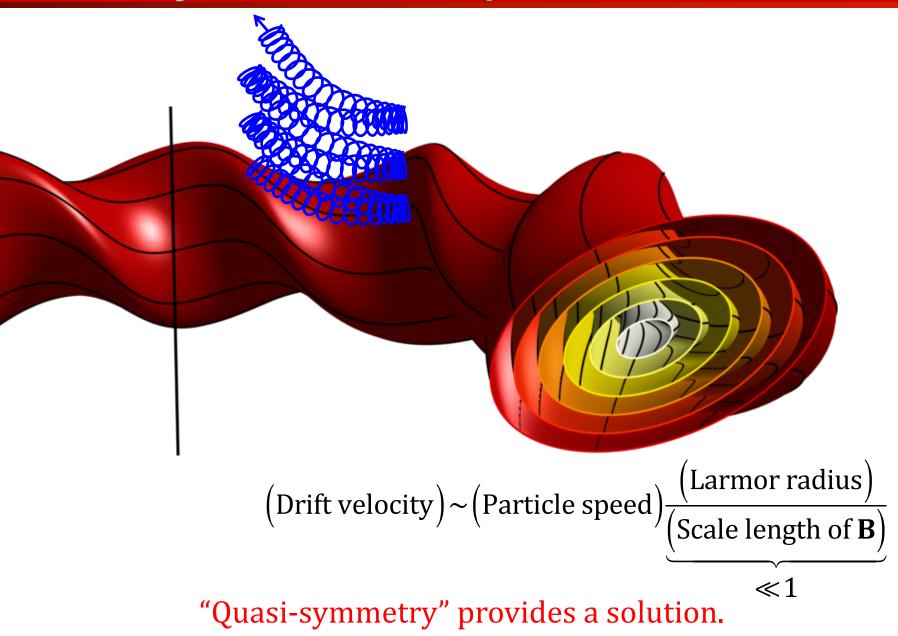
<u>Outline</u>

- Magnetic confinement, & pros/cons of axisymmetry
- Integrability of non-axisymmetric **B** fields
- Quasi-symmetry
- Finding quasi-symmetric fields

Even with magnetic surfaces, confinement in non-axisymmetric fields is poor due to cross-B drift.



Even with magnetic surfaces, confinement in non-axisymmetric fields is poor due to cross-B drift.



Quasi-symmetry is a continuous symmetry in |B| (not vector B) that implies confinement.

 When the Lagrangian is (1) expanded for large B=|B| and (2) written in a special coordinate system ("Boozer angles"), it depends on position only through the surface and B.

Quasi-symmetry is a continuous symmetry in |B| (not vector B) that implies confinement.

- When the Lagrangian is (1) expanded for large B=|B| and (2) written in a special coordinate system ("Boozer angles"), it depends on position only through the surface and B.
- Therefore a symmetry in *B* implies a conserved quantity, even if **B** has no obvious symmetry.

Quasi-symmetry is a continuous symmetry in |B| (not vector B) that implies confinement.

- When the Lagrangian is (1) expanded for large B=|B| and (2) written in a special coordinate system ("Boozer angles"), it depends on position only through the surface and B.
- Therefore a symmetry in *B* implies a conserved quantity, even if **B** has no obvious symmetry.
- This conserved quantity resembles canonical angular momentum, so it implies confinement just as in axisymmetry.

Lagrangian for particle in magnetic field:

$$\mathcal{L} = q\mathbf{A} \cdot \dot{\mathbf{x}} + \frac{m}{2} |\dot{\mathbf{x}}|^2 \quad \text{(Neglect E)}$$

Lagrangian for particle in magnetic field:
$$\mathcal{L} = q\mathbf{A} \cdot \dot{\mathbf{x}} + \frac{m}{2} |\dot{\mathbf{x}}|^2$$
 (Neglect E)
Introduce cylindrical velocity coordinates: $v_{\parallel} = \frac{\mathbf{v} \cdot \mathbf{B}}{B}$, $\mu = \frac{mv_{\perp}^2}{2B}$, gyroangle α .

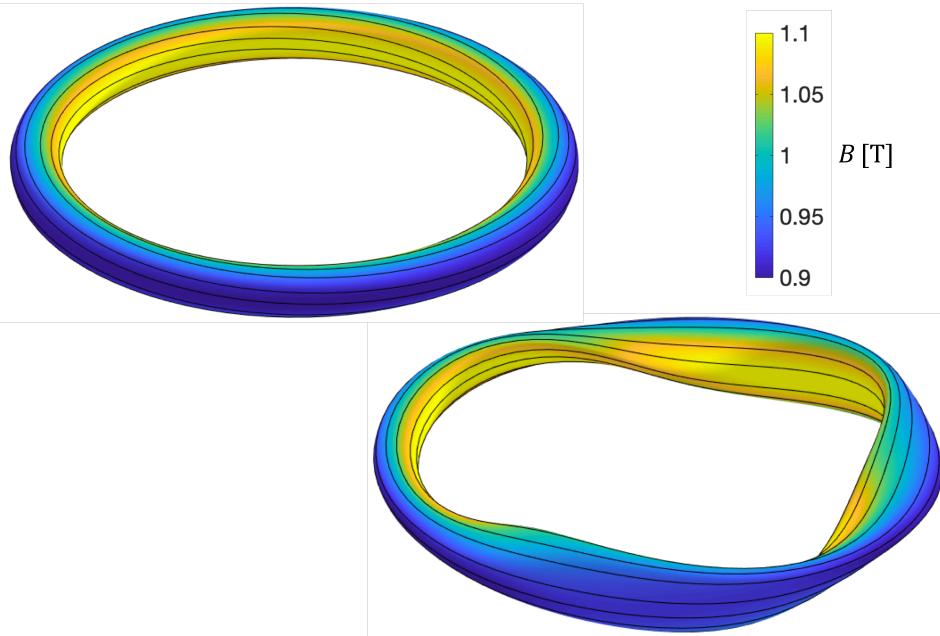
Lagrangian for particle in magnetic field: $\mathcal{L} = q\mathbf{A}\cdot\dot{\mathbf{x}} + \frac{m}{2}|\dot{\mathbf{x}}|^2$ (Neglect E) Introduce cylindrical velocity coordinates: $v_{||} = \frac{\mathbf{v}\cdot\mathbf{B}}{B}$, $\mu = \frac{mv_{\perp}^2}{2B}$, gyroangle α . Expand in (Larmor radius)/(Scale length of \mathbf{B}) $\ll 1$, i.e. $|\mathbf{B}| \rightarrow \infty$. $\mathcal{L}(\mathbf{x}, v_{||}, \mu, \varphi, \dot{\mathbf{x}}, \dot{v}_{||}, \dot{\mu}, \varphi) = q\mathbf{A}\cdot\dot{\mathbf{x}} + \frac{mv_{||}}{B}\mathbf{B}\cdot\dot{\mathbf{x}} + \frac{m}{q}\mu\dot{\alpha} - \frac{mv_{||}^2}{2} - \mu B$

Lagrangian for particle in magnetic field: $\mathcal{L} = q\mathbf{A} \cdot \dot{\mathbf{x}} + \frac{m}{2} |\dot{\mathbf{x}}|^2$ (Neglect E) Introduce cylindrical velocity coordinates: $v_{\parallel} = \frac{\mathbf{v} \cdot \mathbf{B}}{R}$, $\mu = \frac{m v_{\perp}^2}{2R}$, gyroangle α . Expand in (Larmor radius)/(Scale length of **B**) \ll 1, i.e. $|\mathbf{B}| \rightarrow \infty$. $\mathcal{L}(\mathbf{x}, v_{||}, \mu, \varphi, \dot{\mathbf{x}}, \dot{v}_{||}, \dot{\mu}, \varphi) = q\mathbf{A} \cdot \dot{\mathbf{x}} + \frac{mv_{||}}{B} \mathbf{B} \cdot \dot{\mathbf{x}} + \frac{m}{a} \mu \dot{\alpha} - \frac{mv_{||}^2}{2} - \mu B$ Spatial coordinates: surface label *r* & 'Boozer angles' (θ , ϕ): 32

Lagrangian for particle in magnetic field:
$$\mathcal{L} = q\mathbf{A}\cdot\dot{\mathbf{x}} + \frac{m}{2}|\dot{\mathbf{x}}|^2$$
 (Neglect E)
Introduce cylindrical velocity coordinates: $v_{||} = \frac{\mathbf{v}\cdot\mathbf{B}}{B}$, $\mu = \frac{mv_{\perp}^2}{2B}$, gyroangle α .
Expand in (Larmor radius)/(Scale length of \mathbf{B}) $\ll 1$, i.e. $|\mathbf{B}| \rightarrow \infty$.
 $\mathcal{L}(\mathbf{x}, v_{||}, \mu, \phi, \dot{\mathbf{x}}, \dot{v}_{||}, \dot{\mu}, \phi) = q\mathbf{A}\cdot\dot{\mathbf{x}} + \frac{mv_{||}}{B}\mathbf{B}\cdot\dot{\mathbf{x}} + \frac{m}{q}\mu\dot{\alpha} - \frac{mv_{||}^2}{2} - \mu B$
Spatial coordinates: surface label r & 'Boozer angles' (θ, ϕ):
 $\mathcal{L} = q\psi_t\dot{\theta} - q\psi_p\dot{\phi} + \frac{mv_{||}}{B}[\dot{r}B_\psi(r, B) + \dot{\theta}B_\theta + \dot{\phi}B_\phi] + \frac{m}{q}\mu\dot{\alpha} - \frac{mv_{||}^2}{2} - \mu B$
Depends only on r

Lagrangian for particle in magnetic field:
$$\mathcal{L} = q\mathbf{A} \cdot \dot{\mathbf{x}} + \frac{m}{2} |\dot{\mathbf{x}}|^2$$
 (Neglect E)
Introduce cylindrical velocity coordinates: $v_{||} = \frac{\mathbf{v} \cdot \mathbf{B}}{B}$, $\mu = \frac{mv_{\perp}^2}{2B}$, gyroangle α .
Expand in (Larmor radius)/(Scale length of \mathbf{B}) $\ll 1$, i.e. $|\mathbf{B}| \to \infty$.
 $\mathcal{L}(\mathbf{x}, v_{||}, \mu, \phi, \dot{\mathbf{x}}, \dot{v}_{||}, \dot{\mu}, \phi) = q\mathbf{A} \cdot \dot{\mathbf{x}} + \frac{mv_{||}}{B} \mathbf{B} \cdot \dot{\mathbf{x}} + \frac{m}{q} \mu \dot{\alpha} - \frac{mv_{||}^2}{2} - \mu B$
Spatial coordinates: surface label r & 'Boozer angles' (θ, ϕ):
 $\mathcal{L} = q\psi_t \dot{\theta} - q\psi_p \dot{\phi} + \frac{mv_{||}}{B} [\dot{r}B_\psi(r, B) + \dot{\theta}B_\theta + \dot{\phi}B_\phi] + \frac{m}{q} \mu \dot{\alpha} - \frac{mv_{||}^2}{2} - \mu B$
Depends only on r
 $\frac{\partial B}{\partial \phi} = 0 \Rightarrow$ Conservation of $\frac{\partial \mathcal{L}}{\partial \dot{\phi}} = -q\psi_p + \frac{mv_{||}B_\phi}{B} \approx -q\psi_p \Rightarrow$ Confinement!

Due to quasisymmetry, different B fields can have isomorphic particle orbits.

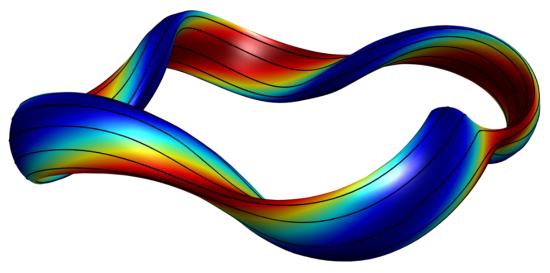


<u>Outline</u>

- Magnetic confinement, & pros/cons of axisymmetry
- Integrability of non-axisymmetric **B** fields
- Quasi-symmetry
- Finding quasi-symmetric fields

Several quasi-symmetric confinement experiments have been designed using optimization.

Boundary shape varied to minimize symmetry-breaking in |B|.



Several quasi-symmetric confinement experiments have been designed using optimization.

Boundary shape varied to minimize symmetry-breaking in |B|.

1.1

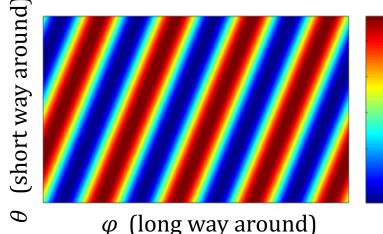
1.05

0.95

0.9

HSX: Helically Symmetric eXperiment (Univ. Wisconsin)

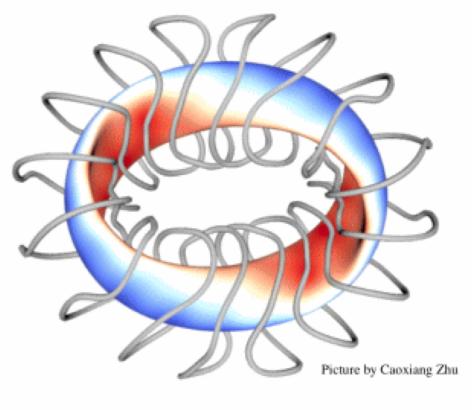
Magnetic field magnitude |B| in Tesla

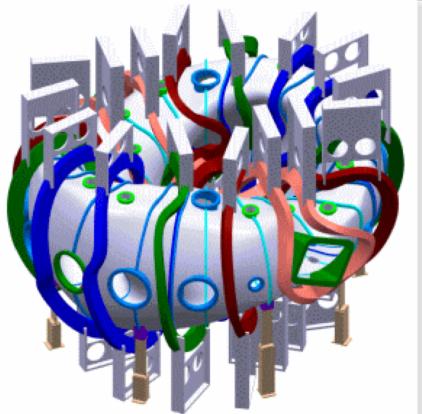


Several quasi-symmetric confinement experiments have been designed using optimization.

Boundary shape varied to minimize symmetry-breaking in |B|.

CFQS (Chinese First Quasi-symmetric Stellarator), Under construction





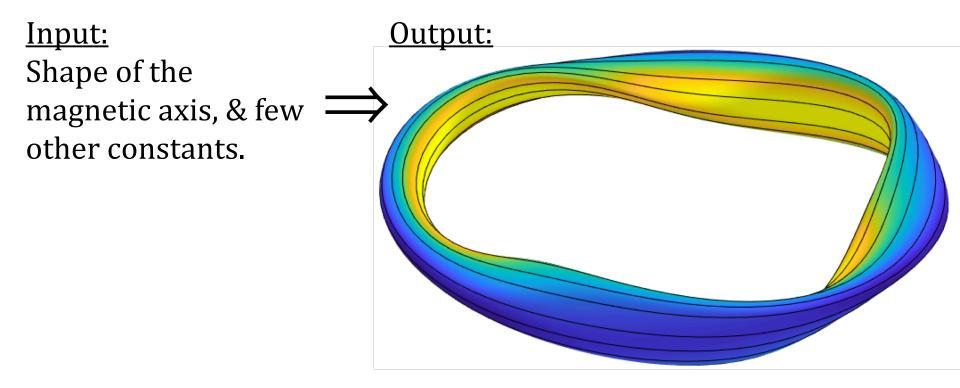
CFQS modular coil shape and plasma

CFQS, coils and vacuum chamber

We have developed a new procedure to construct quasi-symmetric configurations.

Landreman, Sengupta, & Plunk, J. Plasma Physics (2018)

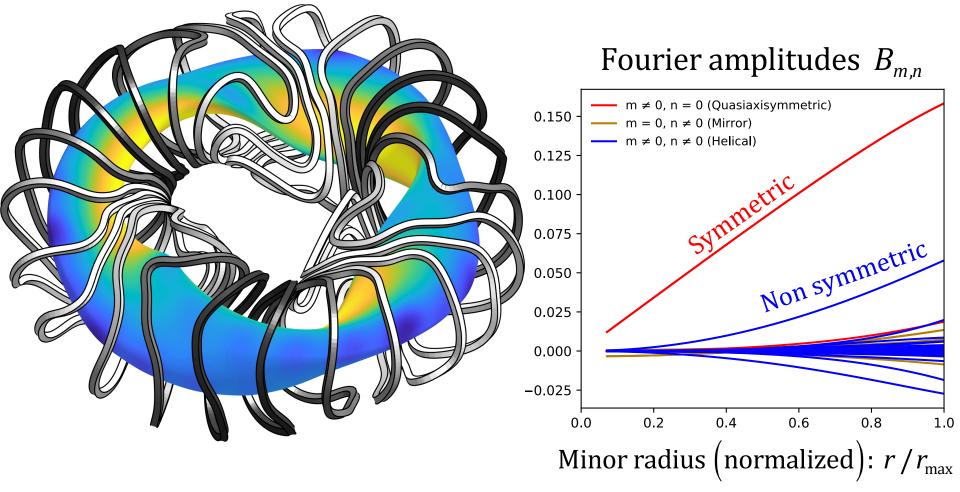
Directly solve equations for magnetohydrodynamic equilibrium & $\partial B / \partial \phi = 0$, expanding in aspect ratio. >10⁶ × faster!



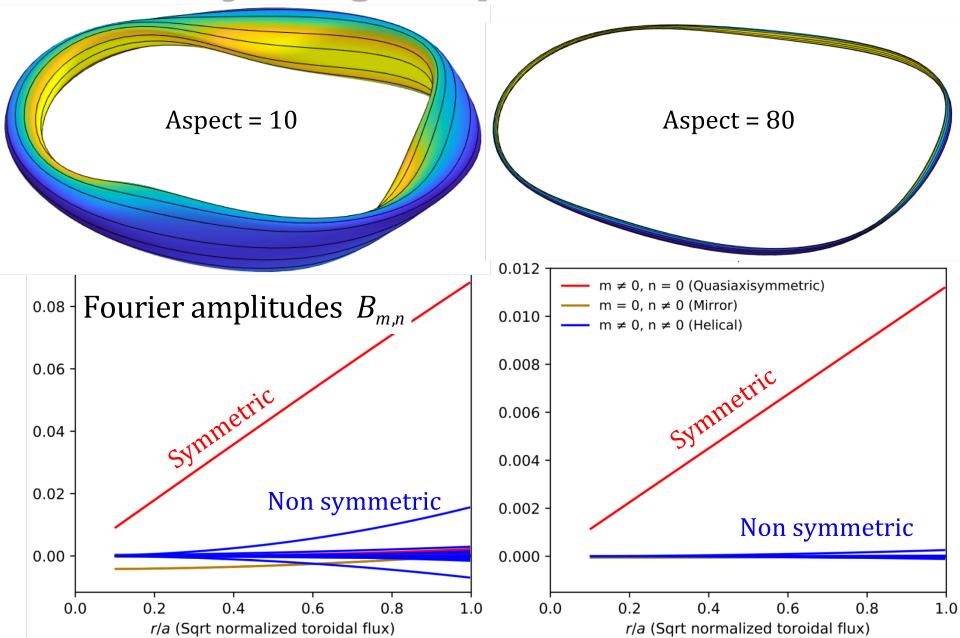
We have developed a new procedure to construct quasi-symmetric configurations.

Landreman, Sengupta, & Plunk, J. Plasma Physics (2018)

Realization with coils:



Quasisymmetry can be achieved more accurately at high "aspect ratio"

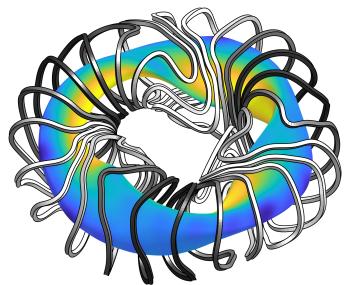


Conclusions: Symmetry is important in magnetic confinement

- Magnetic confinement and symmetry are connected via canonical momentum conservation.
- Axisymmetry can yield robust confinement but requires an internal current J. With nonaxisymmetric shaping you don't need J but confinement is not automatic.
- Without axisymmetry, integrability of **B** is not automatic.
- For large |B|, a "hidden" symmetry can yield an approximate conserved quantity that implies particle confinement.

There are important outstanding questions about quasi-symmetry.

- Is there a coordinate-free way to see quasisymmetry in the Lagrangian?
- Are there phenomena like quasi-symmetry in other physical systems?
- Can quasi-symmetric fields be produced with simply shaped coils far from the plasma?

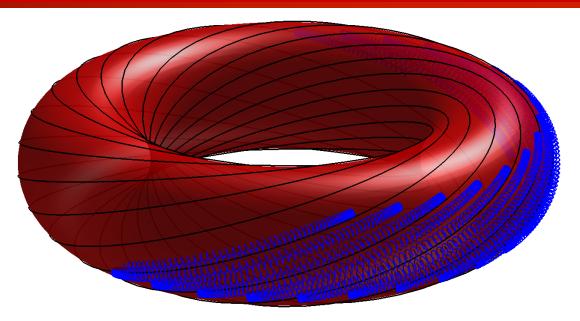


Extra slides

Tokamak vs stellarator

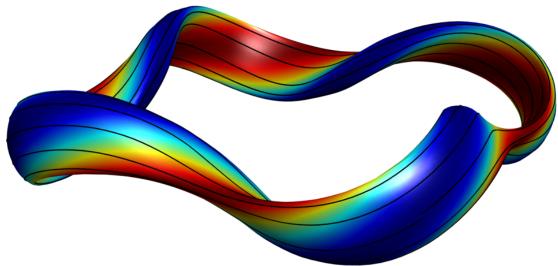
Tokamak:

- Axisymmetric
- Robust confinement
- Requires J_{ϕ} in plasma: HUGE problem!



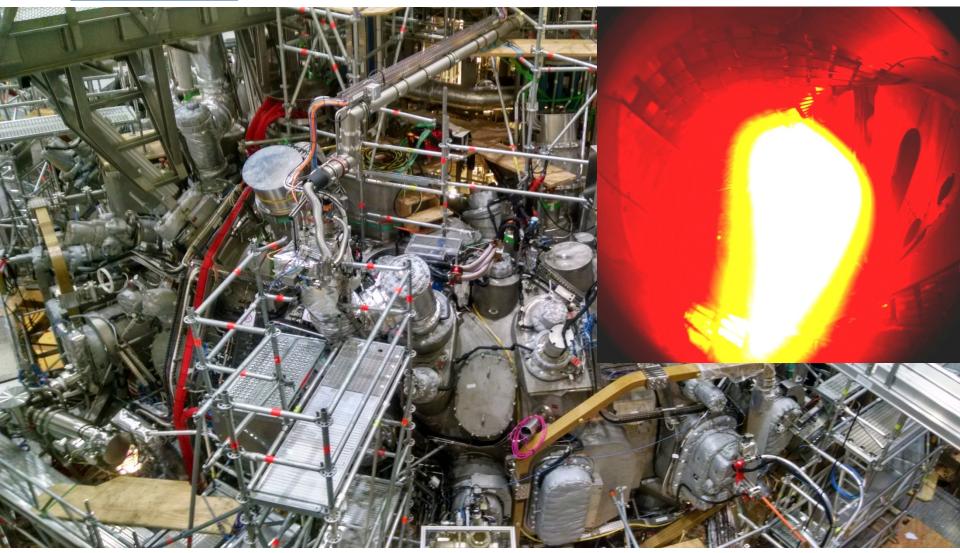
Stellarator:

- Nonaxisymmetric
- Requires careful shaping to get confinement
- No J required in plasma

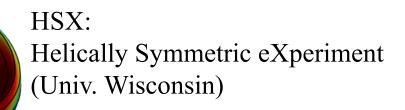


Example of very nonaxisymmetric magnetic confinement: W7-X (Germany)

ScienceOct 21, 2015Good-enough particle confinement, but not perfect -
Not quasisymmetric.

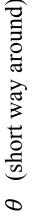


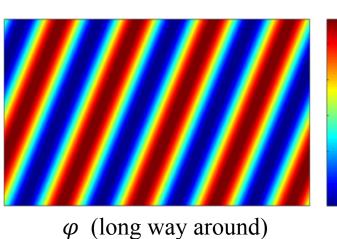
Quasi-symmetry can also be helical.



No **J** required in plasma \Rightarrow Very stable.

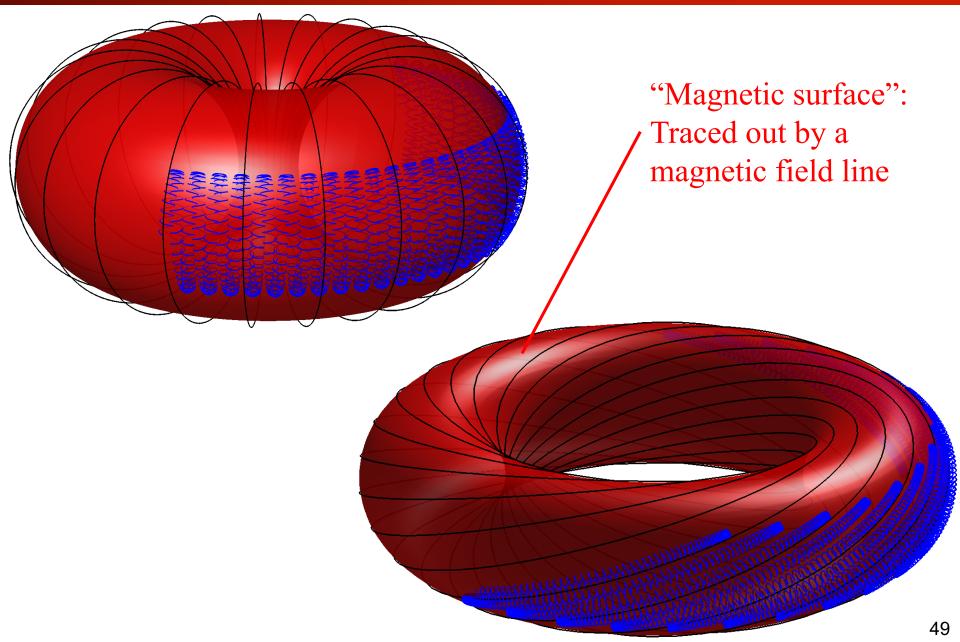
Magnetic field magnitude |B| in Tesla



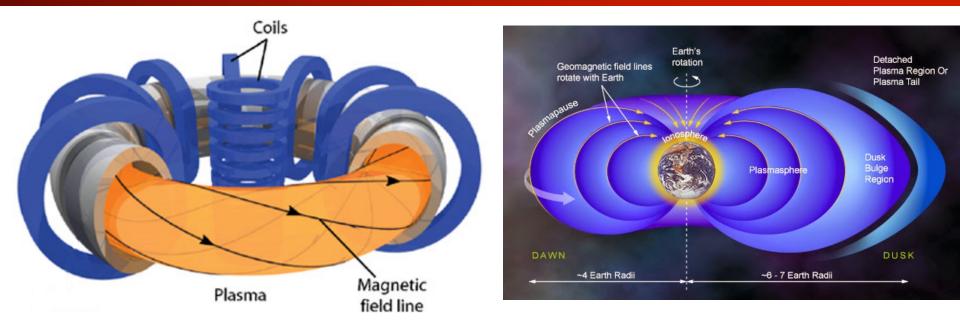




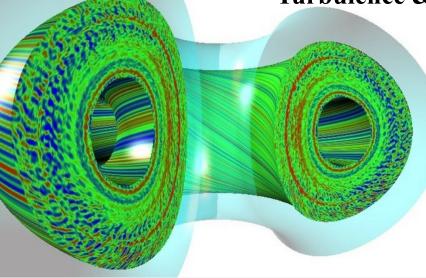
In axisymmetry, particles are confined (close) to $A_{\varphi}R$ surfaces, despite complicated orbits.

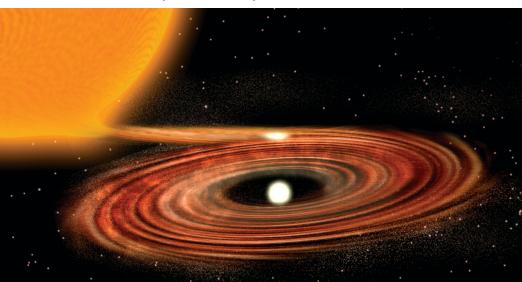


No plasma is perfectly axisymmetric.



Turbulence & waves break symmetry:





Why not make the nested $A_{\varphi}R$ surfaces spherical instead of toroidal?

 $A_{\phi}R$ would need to depend on Z along the symmetry axis.

$$B_{R} = -\frac{\partial A_{\phi}}{\partial Z} = -\frac{1}{R} \frac{\partial (A_{\phi}R)}{\partial Z}$$

So B_R would diverge $(\propto 1/R)$ along the symmetry axis.

Curl in cylindrical coordinates, assuming axisymmetry

$$B_{R} = -\frac{\partial A_{\phi}}{\partial Z} = -\frac{1}{R} \frac{\partial (A_{\phi}R)}{\partial Z}$$

$$B_{\phi} = \frac{\partial A_{R}}{\partial Z} - \frac{\partial A_{Z}}{\partial R}$$

$$B_{Z} = \frac{1}{R} \frac{\partial \left(A_{\phi}R\right)}{\partial R}$$