

Matt Landreman¹, Alan Kaptanoglu², John Kappel¹, Gabriel Langlois², Dhairya Malhotra³ 1. University of Maryland 2. NYU Courant 3. Flatiron Institute

We want a certain magnetic field **B** in a region Ω .

Find an arrangement of electric currents outside Ω that produce **B**.

I.e., invert the Biot-Savart Law
$$B(r) = \frac{\mu_0}{4\pi} \int d^3r' \frac{J(r') \times (r-r')}{|r-r'|^3}$$

We want a certain magnetic field **B** in a region Ω .

Find an arrangement of electric currents outside Ω that produce **B**.

Example: Particle accelerators

We want a certain magnetic field **B** in a region Ω .

(m) z

Find an arrangement of electric currents outside Ω that produce **B**.

Example: Magnetic resonance imaging

We want a certain magnetic field **B** in a region Ω .

Find an arrangement of electric currents outside Ω that produce **B**.

5

Outline

- Background & previous approaches
- Current voxels: topology optimization for electromagnets

A A Kaptanoglu, G P Langlois, & ML, Comp Meth Appl Mech Engr (2023)

• Bounding the distance to the coils

J Kappel, ML, & D Malhotra, arXiv:2309.11342 (2023)

Outline

- Background & previous approaches
- Current voxels: topology optimization for electromagnets

A A Kaptanoglu, G P Langlois, & ML, Comp Meth Appl Mech Engr (2023)

• Bounding the distance to the coils

J Kappel, ML, & D Malhotra, arXiv:2309.11342 (2023)

Most transport-optimized stellarators have used 2 sequential optimization stages

- Parameters = shape of boundary toroidal surface. Objective = physics (confinement, stability, etc.)
- Parameters = coil shapes.
 Objective = error in **B** on boundary shape from stage 1.

Consider a low-pressure plasma so $0 \approx \mathbf{J} = \nabla \times \mathbf{B} \implies \mathbf{B} = \nabla \Phi$.

$$\nabla \cdot \mathbf{B} = 0 \quad \Rightarrow \quad \nabla^2 \Phi = 0.$$

- $\mathbf{B} \cdot \mathbf{n} = 0 \text{ on boundary } \Rightarrow \mathbf{n} \cdot \nabla \Phi = 0.$
- \Rightarrow Laplace's eq with Neuman condition.
 - \Rightarrow Unique solution up to scale factor + constant.

Most transport-optimized stellarators have used 2 sequential optimization stages

- Parameters = shape of boundary toroidal surface. Objective = physics (confinement, stability, etc.)
- Parameters = coil shapes.
 Objective = error in **B** on boundary shape from stage 1.

W7-X (Germany)

Calculating the currents that produce a given B is an ill-posed inverse problem: solution is not unique.

Current potential methods: REGCOIL

Pros:

- Linear least-squares: no local optima besides the global one.
- Only 2 parameters to vary: coil-to-plasma distance and λ .

Cons:

- Neglects ripple from discrete coils.
- Limited flexibility in 3rd dimension.

In stage-2 coil optimization, there is a trade-off between field accuracy and coil simplicity

High regularization λ: Simpler coils but large field error

Low regularization λ: Complicated coils but small field error

12

Filament coil optimization

Zhu, Hudson, et al, Nuclear Fusion (2018).

Coils represented as space curves. Design variables: Fourier modes of Cartesian components.

$$x(t) = x_{c,0} + \sum_{n=1}^{N_{\rm F}} \left[x_{c,n} \cos(nt) + x_{s,n} \sin(nt) \right]$$

Objective:

$$f = \int_{plasma} \left[\left(\mathbf{B} - \mathbf{B}_{target} \right) \cdot \mathbf{n} \right]^2 + \lambda (length - target)^2 + \dots$$
Match target B
Regularization

- Does account for *B* ripple from discreteness of coils.
- Non-convex, so there are multiple local minima. May need good initial guess.

Outline

- Background & previous approaches
- Current voxels: topology optimization for electromagnets

A A Kaptanoglu, G P Langlois, & ML, Comp Meth Appl Mech Engr (2023)

• Bounding the distance to the coils

J Kappel, ML, & D Malhotra, arXiv:2309.11342 (2023)

Current voxels: topology optimization for inverse magnetostatics

Kaptanoglu, Langlois, & ML, arXiv:2306.12555 (2023)

- Coil topology is an output rather than input.
- Generalize REGCOIL to lift restriction that currents lie on specified surface.
- Preserve REGCOIL advantages of linearity/convexity as far as possible.

New topology optimization method for electromagnetic coils

Pre-define grid of voxels where current might flow.

Current density *J* in each voxel represented by basis of 5 divergence-free functions. Amplitudes are the design variables.

$$\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} x\\-y\\0 \end{pmatrix}, \begin{pmatrix} x\\0\\-z \end{pmatrix}$$

Charge conservation at each cell face gives linear equality constraints.

Alternative:

Design variables are the fluxes through faces. Linear constraints enforce 0 net flux in each volume.

New topology optimization method for electromagnetic coils

Given basis functions, **B** can be computed by Biot-Savart Law:

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int d^3 r' \frac{\boldsymbol{J}(\boldsymbol{r}') \times (\boldsymbol{r} - \boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

Minimize objective:

$$f = \int_{\substack{plasma \\ surf}} (\boldsymbol{B} \cdot \boldsymbol{n})^2 + \int_{voxels} \lambda \|\boldsymbol{J}\|_2^2 + v \|\boldsymbol{J}\|_1 + \eta \|\boldsymbol{J}\|_0$$

Match target B Regularization

- Without sparsity-promoting terms, problem is linear.
- With ℓ_1 sparsity, problem remains convex.
- With ℓ_0 sparsity, good algorithms exist.

The ℓ_0 -regularized problem is solved using the "relax & split" method

Original problem:
$$\min_{\alpha} \left[\frac{1}{2} \|A\alpha - b\|_2^2 + \lambda \|\alpha\|_0^G \right] \text{ s.t. } C\alpha = 0.$$

Relaxed problem:
$$\min_{\beta} \left\{ \min_{\alpha} \left[\frac{1}{2} \|A\alpha - b\|_2^2 + \frac{1}{2\nu} \|\alpha - \beta\|_2^2 \right] + \lambda \|\beta\|_0^G \right\} \text{ s.t. } C\alpha = 0.$$

Iterate:

$$\alpha^{(k)} = \underset{\alpha}{\operatorname{argmin}} \left[\frac{1}{2} \|A\alpha - b\|_{2}^{2} + \frac{1}{2\nu} \|\alpha - \beta^{(k-1)}\|_{2}^{2} \right] \text{ s.t. } C\alpha = 0.$$

Linear least-squares with linear constraints. Solved with MINRES + approximate Schur complement preconditioner.

$$\beta^{(k)} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{2\nu} \left\| \alpha^{(k)} - \beta \right\|_{2}^{2} + \lambda \|\beta\|_{0}^{G} \right\}$$

Equivalent to a proximal operator. Solved exactly by $\beta^{(k)} = \alpha^{(k)}$ but with small entries set to 0.

Zheng, Askham, Brunton, Kutz, Aravkin, IEEE Access (2019), Champion, Zheng, Aravkin, Brunton, Kutz, IEEE Access (2020) 18

In axisymmetry, without sparsity terms, expected currents are recovered

With sparsity objective included, currents coalesce into discrete coils

Magnitude of J

10 - + 0.3

1.0e+5 1.0e+6 7.5e+06

-9.4e-02 -4.0e-2 0.0 4.0e-2 9.4e-02

Larger IO coefficient

3.8e-02

Magnitude of J

1.0e+0.3

1.0e+5 1.0e+6 7.5e+06

Bn

00

00.01

-1 9e-02

Outline

- Background & previous approaches
- Current voxels: topology optimization for electromagnets

A A Kaptanoglu, G P Langlois, & ML, Comp Meth Appl Mech Engr (2023)

• Bounding the distance to the coils

J Kappel, ML, & D Malhotra, arXiv:2309.11342 (2023)

How far away can the magnets be?

The small coil-to-plasma separation in stellarators is a headache for engineering

W7-X

"Lesson 1: A lack of generous margins, clearances and reasonable tolerance levels implies an unnecessary increase of the complexity and leads to late design changes. This has a strong impact on schedule, budget, man-power and potentially sours the relationship to funding bodies." *Klinger et al, Fusion Engineering & Design (2013)*

In a reactor, must fit ~ 1.5m "blanket" between plasma and coils to absorb neutrons

But at fixed plasma shape & size, coils shapes become impractical if they are too far away:

In a reactor, must fit ~ 1.5m "blanket" between plasma and coils to absorb neutrons

But at fixed plasma shape & size, coils shapes become impractical if they are too far away:

Hypothesis:

The coil-to-plasma distance scale for which coils are feasible is \sim the ∇B scale length

At any point, a magnetic field has multiple gradient length scales

$$\nabla B, \quad \nabla_{||}B, \quad \nabla_{\perp}B, \quad \boldsymbol{b} \cdot \nabla \boldsymbol{b},$$
$$(B = |\boldsymbol{B}|, \quad \boldsymbol{b} = \boldsymbol{B}/B)$$

 $\|\nabla B\| = \sqrt{\nabla B \colon \nabla B},$ Frobenius norm

eigenvalues of ∇B , $\|\nabla \nabla B\|$...

 $\|\nabla B\|$ smoothly captures largest gradient \Rightarrow shortest length scale

Normalize so scale length gives the distance to an infinite straight wire:

$$L_{\nabla \boldsymbol{B}} = \frac{\sqrt{2}B}{\|\nabla \boldsymbol{B}\|}$$

The different **B** scale lengths are not identical, but have similarities, e.g. all are small on the inside of concave regions

 $\lambda_j =$ eigenvalues of ∇B

To test hypothesis that **∇B** is related to coil-plasma distance, scale length will be compared to "real" coil designs for a diverse set of ~45 configurations

NCSX (li383 & c09r00) **ARIES-CS** HSX W7-X (std, high-mirror, ...) LHD, R=3.5, 3.6, 3.75 **CFQS** ML+Paul QA, QH ML, Buller, Drevlak QA, QH Near-axis QH Jorge et al QI Goodman et al QIs **ESTELL** ITER CNT

CTH TJ-II QPS ATF CIEMAT-QI Garabedian QA Henneberg et al QA Wistell-A, B Wechsung et al QA Giuliani et al QA Ku & Boozer nfp=4 QH Nuhrenberg & Zille QH Drevlak QH

All scaled to same minor radius (1.7 m) and $\langle B \rangle$ = 5.9 T.

Methodology: Apply REGCOIL, adjust regularization λ and coil-to-plasma separation to match **B** error and coil current density between configurations

At fixed coil-to-plasma separation, λ trades off between **B** field error and coil complexity.

 10^{0} RMS *B*ⁿ [T] 10⁻? target 10⁻³ $\lambda \rightarrow 0$ 10^{-4} 10 20 30 0 max current density K [MA/m] (Coil complexity)

At the target **B** field error, coil complexity increases with coil-to-plasma separation

Main result: **VB** length is well correlated with real coil designs

Main result: **VB** length is well correlated with real coil designs

Other scale lengths can be reasonably well correlated as well

The location of limiting **V**B length and coil complexity are also correlated *spatially*

35

Conclusions:

- The new current voxel for inverse magnetostatics enables topologically unconstrained 3D solutions with quadratic, convex, or structured objectives.
- The maximum coil separation can be understood from the scale length $L_{\nabla B}$.

Questions:

- Is there a more efficient solver for the current voxel system?
- Can the current voxel method be generalized for more flexible geometry (tetrahedra?)
- Is L_{∇B} a useful objective function to enable larger coil separation?
- Besides L_{VB}, are there other metrics to predict coil separation? Improvements in algorithms for inverse magnetostatics can translate to significant benefits for fusion, accelerators, MRI, etc.

Extra slides

2D example

3 basis functions per cell, 12 degrees of freedom, 11 unique constraints

At any point, a magnetic field has multiple gradient length scales

$$abla_{\perp}B, \quad \boldsymbol{b} \cdot \nabla \boldsymbol{b}, \quad \|\nabla \boldsymbol{B}\| = \sqrt{\nabla \boldsymbol{B}: \nabla \boldsymbol{B}}, \quad Frobenius norm$$

eigenvalues of
$$\nabla B$$
, $\|\nabla \nabla B\|$...
 $(B = |B|, b = B/B)$

 $\|\nabla B\|$ captures largest gradient \Rightarrow shortest length scale

We can get some insights by considering vacuum fields:

 $B = \nabla \Phi$ so $\nabla B = \nabla \nabla \Phi$ is a symmetric 3×3 matrix \implies 6 degrees of freedom.

$$7B = \begin{pmatrix} \partial_{xx}\Phi & \partial_{xy}\Phi & \partial_{xz}\Phi \\ \partial_{yx}\Phi & \partial_{yy}\Phi & \partial_{yz}\Phi \\ \partial_{zx}\Phi & \partial_{zy}\Phi & \partial_{zz}\Phi \end{pmatrix}$$

-1 degree of freedom since $\nabla \cdot \boldsymbol{B} = 0$.

 ∇B , $\nabla_{||}B$,

Some entries can be made to vanish by rotating the coordinate system.

The ∇B scale lengths can be normalized so that in the case of an infinite straight wire, they give the distance to the wire

The different **B** scale lengths are not identical, but have similarities, e.g. all are small on the inside of concave regions

Main result: **VB** length is well correlated with real coil designs

Main result: **VB** length is well correlated with real coil designs

Regcoil coil-to-plasma distance is actually well correlated with other definitions of B length scale too

Regcoil coil-to-plasma distance is actually well correlated with other definitions of B length scale too

