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Motivation: We’d like to quickly evaluate & optimize I x B forces, 
internal field, and stored energy
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• Forces ∝ B2. High B limited by support structure.
• Superconductor quench limits depend on local B.
• Need to be able to dissipate stored energy W = ½LI2. 
• Tricky part is the self-field: singularity in Biot-Savart Law

Circular coil
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Methodology for finding an accurate reduced model
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• Introduce intermediate scale d, with a ∼ b ≪ d ≪ R (scale of curve center-line rc.)

• Split Biot-Savart integrals into “near part” ( 𝒓 − )𝒓 < 𝑑, Taylor-expand)                           
+ “far part” ( 𝒓 − )𝒓 > 𝑑, neglect finite thickness)

• Identify a 1D integral that has the same near part and far part as the above “high 
fidelity” calculation for a / R ≪ 1.



New 1D integral accurately approximates high-fidelity calculations for 
the self-force in stellarator coils
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HSX 
coil 1

~ 18,000x 
speed-up for 
given precision

Model also reproduces high-fidelity calculations for self-inductance & stored energy.

complicated for rectangular x-section.



Similar 1D integral for B agrees with the high-fidelity 3D integral 
for B in stellarator coils
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HSX coil 1

The individual B components also agree:

Estimate critical current by iterating with
Gömöry and Klinčok (2006)

?
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In a reactor, must fit ~ 1.5m “blanket” between plasma and coils to absorb neutrons

Coils offset a uniform distance from W7-X plasma:

So we must scale everything up:

$$$

But at fixed plasma shape & size, coils shapes become impractical if they are too far away: 

25cm separation 50cm separation 65cm separation

$$$ Najmabadi et al (2008),
Lion et al (2021)



In a reactor, must fit ~ 1.5m “blanket” between plasma and coils to absorb neutrons
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25cm separation 50cm separation 65cm separation
Coils offset a uniform distance from W7-X plasma:

But at fixed plasma shape & size, coils shapes become impractical if they are too far away: 

Hypothesis:

The coil-to-plasma distance scale for which coils are feasible is ~ the 𝛁B scale length 



At any point, a magnetic field has multiple gradient length scales

∇𝐵,      ∇||𝐵,      ∇&𝐵,      𝒃 ; ∇𝒃,      ∇𝑩 = ∇𝑩: ∇𝑩,      eigenvalues of ∇𝑩,      ∇∇𝑩 …
(𝐵 = 𝑩 ,    𝒃 = 𝑩/𝐵) Frobenius norm

∇𝑩 smoothly captures largest gradient ⟹ shortest length scale

I

B

𝐿∇( = 𝑅

𝐿∇𝑩 =
2𝐵
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Normalize so scale length gives the 
distance to an infinite straight wire:



To test hypothesis that 𝛁B is related to coil-plasma distance, scale length will 
be compared to “real” coil designs for a diverse set of 45 configurations
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• All scaled to same minor radius (1.7 m) and ⟨B⟩ = 5.9 T of ARIES-CS.

• Coils computed with REGCOIL for a uniform-offset winding surface.

• Coil-to-plasma distance & regularization computed so that Bnormal error and 
“coil complexity” (sheet current density) are same for all configuration.

W7-X, LHD, HSX, CFQS, CTH, CNT, NCSX, TJ-II, QPS, ATF, Precise QA/QH, CIEMAT-QI, ITER, … 



Main result: 𝛁B length is well correlated with real coil designs 
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𝐿∇𝑩 = min
2𝐵
∇𝑩

[meters]

Coil-to-plasma distance from REGCOIL [meters]

nfp (number of 
field periods)

Stellarators do exist with 
sufficient space for a blanket,
particularly if nfp = 1 or 2.

All configs scaled to 
aminor = 1.7 m



Coil-to-plasma distance from REGCOIL [meters]

Main result: 𝛁B length is well correlated with real coil designs 
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ROSE 
nfp5 
QH

Jorge nfp1 QI

HSX with 
ripple

HSX without 
ripple

ITER

W7-X

Ku 
QH

Precise 
QAs

NCSX

Goodman 
nfp1 QI

CTH

W7-X with 
ripple

Wistell-B

Stellarators do exist with 
sufficient space for a blanket,
particularly if nfp = 1 or 2.

All configs scaled to 
aminor = 1.7 m
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[meters]



The location of limiting 𝛁B length and coil complexity are also correlated spatially
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Current density K [MA/m]𝐿∇𝑩 =
78
∇𝑩

[m]
Limiting coil-to-coil 
distance occurs 
where scale length 
is smallest

Plasma surface

Coil winding surface



Conclusions & future work
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• Internal B field, self-force, & stored energy of a 
coil can be computed using rapid 1D/2D integral if 
formulated carefully.

• New method agrees with high-fidelity finite-cross-
section calculations & analytic results.

• Coil-to-plasma distance can be understood from 
𝐿∇𝑩 scale length.

• Configurations do exist with space for a blanket.

Next steps:

• Apply in stellarator optimization

• Test model against high-fidelity HTS calculations.

• Would welcome collaboration with this!
arXiv:2310.09313, arXiv:2310.12087, arXiv:2309.11342



Extra slides



Main result: 𝛁B length is well correlated with real coil designs 
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Coil-to-plasma distance from REGCOIL [m]

Stellarators do exist with sufficient space for a blanket,
Particularly if nfp = 1 or 2.



min
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∇𝑩

= 𝐿∇𝑩 [m]

Coil-to-plasma distance from REGCOIL [m]

Main result: 𝛁B length is well correlated with real coil designs 
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Stellarators do exist with sufficient space for a blanket,
Particularly if nfp = 1 or 2.



Tokamak & stellarator design requires calculations for the 
I x B force, internal field, and stored energy
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Field and force on coil 2 due to current in coil 1 can be 
computed quickly: 1D filament models are ok.

Tricky part is the self-field: singularity in Biot-Savart Law 𝐁 𝐫 =
𝜇!𝐼
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• Forces ∝ B2. High B limited by support structure.
• Superconductor quench limits depend on local B.
• Need to be able to dissipate stored energy W = ½LI2. 
• Coil shapes can probably be optimized for these quantities.



Simply skipping the singular point in a 1D filament calculation 
gives a non-converging result with significant error
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Maximum |B| in the conductor [Tesla]

Circular coil
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The small coil-to-plasma separation in stellarators is a headache for engineering
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“Lesson 1: A lack of generous margins, clearances and reasonable tolerance levels implies an 
unnecessary increase of the complexity and leads to late design changes. This has a strong impact on 
schedule, budget, man-power and potentially sours the relationship to funding bodies.”

Klinger et al, Fusion Engineering & Design (2013)

W7-X



To test hypothesis that 𝛁B is related to coil-plasma distance, scale length will 
be compared to “real” coil designs for a diverse set of ~45 configurations

21All scaled to same minor radius (1.7 m) and ⟨B⟩ = 5.9 T.

NCSX (li383 & c09r00)
ARIES-CS
HSX
W7-X (std, high-mirror, …)
LHD, R=3.5, 3.6, 3.75
CFQS
ML+Paul QA, QH
ML, Buller, Drevlak QA, QH
Near-axis QH
Jorge et al QI
Goodman et al QIs
ESTELL
ITER
CNT

CTH
TJ-II
QPS
ATF
CIEMAT-QI
Garabedian QA
Henneberg et al QA
Wistell-A, B
Wechsung et al QA
Giuliani et al QA
Ku & Boozer nfp=4 QH
Nuhrenberg & Zille QH
Drevlak QH
…



Accurate calculation of the internal field and self-force 
appear to require high-dimensional integrals
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Can we simplify/approximate these integrals for fast evaluation inside an optimization loop?

Force per unit length: 5D integral

Field: 3D integral

Self-inductance & stored energy: 6D integral



Analytic formulas for a circular coil show that the 
finite cross-section cannot be ignored
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Could a modified 1D filament model work if we supplement it with a value for a?

𝑅

2𝑎



Simply skipping the singular point in a 1D filament calculation 
gives a non-converging result with significant error
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Maximum |B| in the conductor [Tesla] Force per unit length [N / m]

Circular coil



Assumption: current density J is uniform
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𝑱 =
𝐼
𝐴 𝒕

• Ok if multiple turns in both dimensions 
of the x-section.

• Not necessarily accurate for 
superconductors, particularly HTS tapes.

• Good enough for optimization?

Rostila et al, (2007)

J in YBCO𝐼 = current
𝐴 = x-sectional area
𝒕 = unit tangent along conductor



We can do the calculations for cross-sections that are either 
circular or rectangular
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Methodology for finding an accurate reduced model
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• Parameterize the coil volume:

• Expansion parameter: a / R ≪ 1, where R ∼ scales of curve centerline, and b ∼ a.

• Introduce intermediate scale d, with a ≪ d ≪ R.

• Split integrals into “near part” + “far part”.

• Far part defined by 𝒓 − )𝒓 > 𝑑. Finite cross-section can be neglected.

• Near part defined by 𝒓 − )𝒓 < 𝑑. Coil centerline can be Taylor-expanded, so integrals 
can be done explicitly.

• Identify a 1D integral that has the same near part and far part as the above “high 
fidelity” calculation for a / R ≪ 1.

centerline
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Methodology for finding an accurate reduced model
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• Parameterize the coil volume:

• Expansion parameter: a / R ≪ 1, where R ∼ scales of curve centerline rc, and b ∼ a.

• Introduce intermediate scale d, with a ≪ d ≪ R.

• Split integrals into “near part” ( 𝒓 − )𝒓 < 𝑑, Taylor-expand) + “far part” ( 𝒓 − )𝒓 > 𝑑, 
neglect finite thickness)

• Identify a 1D integral that has the same near part and far part as the above “high 
fidelity” calculation for a / R ≪ 1.



Methodology for finding an accurate reduced model
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High fidelity 3D model

New 1D filament model

a / R≪ 1

Far contribution:
𝒓 − )𝒓 > 𝑑

Near contribution:
𝒓 − )𝒓 < 𝑑



Limit of the 3D integral for the internal field for a / R≪ 1
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Intuition: 
• Leading order near-field is same as a straight wire. But corrections contribute to the force.



Our new 1D filament model reproduces the same limit as the original 3D integral
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Intuition: 
• Regularization added to Biot-Savart. Makes a difference when source and evaluation 

points are as close as the coil radius.



If curve centerline is a circle, the new filament model 
matches analytic formula for B
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Integrating the J x B force over the conductor cross-section, our 
method reduces the 5D integral for the self-force to a 1D integral

33

If rc is a circle
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A possible reduced model for the critical current?
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Given a model for how the local critical current density 
depends on B, e.g.

Gömöry and Klinčok (2006)

estimate the global critical current as

𝐼& = min
'

L
()*+&,-./

𝑑$𝑎 𝑗& 𝑩 𝑢, 𝑣, 𝜙

Not self-consistent, but is it good enough to be useful?

azom.com



Similarly, the inductance & stored energy can be computed accurately 
with only a 2D integral
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6D:

2D:

for circular x-section,

for rectangular x-section.

For circular centerline, matches analytic result by
Weinstein, Annalen der Physik (1884)



Calculations of internal field and self-force are also of interest for 
many other subjects, e.g. solar flares
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NASA/SDO/Goddard



Some related work
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• Garren & Chen, Phys. Plasmas (1994). Looked at force but not internal field. Solution is to do a 
1D integral over an incomplete loop, with a specific segment removed.

• Dengler, Advanced Electromagnetics (2016). Computed self-inductance using 2D integral.

• Lion, Warmer, et al Nuclear Fusion (2021). Computed B in conductor by summing analytical 
result for rectangular prism of J.

• Robin & Volpe, Nuclear Fusion (2022). Computed force for sheet current on a winding surface.

Our contribution:

• Compute self-force, stored energy / inductance, and spatially-resolved internal field using only 
1D/2D integrals.

• Integration is over a periodic domain, so quadrature can be spectrally accurate, & can re-use 
points/data from other coil optimization objectives. 



Remaining 1D integral is still tricky since integrand has fine structure
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A solution: subtract and add a function to 
the integrand with the same near-singular 
behavior that can be integrated 
analytically.

With singularity subtraction

Original



To make integrand smooth, we subtract and add a function with the 
same singular behavior that can be integrated analytically.
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Compute Q by Taylor expansion of integrand about R𝜙 = 𝜙.

Result:



The singularity-subtraction method allows B and the force to be 
evaluated with very few quadrature points.
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HSX coil 1



The new filament model agrees with the high-fidelity 3D integral 
for B in stellarator coils
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HSX coil 1 |B| [T], High fidelity |B| [T], Filament

Bz [T], High fidelity Bz [T], FilamentThe individual 
B components 
also agree:



The 1D integral accurately approximates high-fidelity calculations for 
the self-force in stellarator coils
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𝑑𝐹(/𝑑ℓ [kN / m] for HSX coil 1, @ 150 kA

High fidelity 
(5D integral)

1D integral

High fidelity 
(5D integral) 1D integral

Parameter along curve (𝜙) Parameter along curve (𝜙)



Summary of main results
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Internal field:

Self-force:



Methodology: Apply REGCOIL, adjust regularization λ and coil-to-plasma separation 
to match B error and coil current density between configurations
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At fixed coil-to-plasma separation, 𝜆 trades off 
between B field error and coil complexity.

𝜆 → ∞

𝜆 → 0

(Coil complexity)

target

At the target B field error, coil complexity 
increases with coil-to-plasma separation 

target

Max K 
[A/m]
(Coil 
complexity)

Coil-to-plasma distance [m]



The different B scale lengths are not identical, but have similarities,
e.g. all are small on the inside of concave regions
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Other scale lengths can be reasonably well correlated as well
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Field line radius of curvature Largest eigenvalueGradient of scalar B


