Introduction to stellarator optimization

"In the history of controlled thermonuclear fusion, there have been no ideas comparable in beauty and conceptual significance with that of the stellarator." (V.D. Shafranov)

Matt Landreman University of Maryland

Other resources

Review papers:

- *"An introduction to Stellarators"*, Lise-Marie Imbert-Gerard, Elizabeth Paul, Adelle Wright, <u>arXiv:1908.05360</u>
- *"Theory of plasma confinement in non-axisymmetric magnetic fields"*, Per Helander, <u>Rep. Prog. Phys. 77 (2014).</u>

2019 & 2020 Simons Foundation/PPPL Summer Schools: lecture notes & videos https://hiddensymmetries.princeton.edu/summer-school/summer-school-2020/lecture-notes

PPPL SULI summer course: <u>https://suli.pppl.gov/2021/course/</u> (or replace 2021 with previous years). Lecture notes & videos on fusion energy, particle motion, stellarators, etc.

A stellarator is a configuration of magnets for confining plasma without continuous rotation symmetry

Where did these wiggly shapes come from? Optimization!

Outline

- Rotational transform & flux surfaces
- Transport & quasisymmetry
- Optimization approaches
- Recent advances in *α*-particle confinement

Outline

- Rotational transform & flux surfaces
- Transport & quasisymmetry
- Optimization approaches
- Recent advances in *α*-particle confinement

A purely toroidal field does not confine particles.

A purely toroidal field does not confine particles.

Ions drift down: they are not confined!

Particles drift in the $q\mathbf{B} \times \nabla B$ direction

How can we resolve the problem of the cross-field drifts?

Picture from G Hammett

How can we resolve the problem of the cross-field drifts?

By making the field lines helical rather than toroidal.

$$a = \lim \frac{\Delta \theta}{\Delta \varphi}$$

"Rotational transform" *ι*: If you follow a magnetic field line around the torus once toroidally (i.e. the long way around), you come back to a different place the short way around.

Field lines must be helical: "rotational transform" ι

The upward cross-field drift is inward half the time and outward half the time, averaging to 0. Now particles are confined!

To avoid needing a large current in the confinement region, break continuous rotation symmetry.

 $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$ + axisymmetry \Rightarrow a large current **J** is required *inside* the plasma.

We can still get rotational transform without **J** by breaking axisymmetry:

One goal of stellarator optimization is having field lines lie on surfaces.

Chaotic (volume-filling) **B** field lines would allow inside & outside to mix even without cross-**B** drift.

BAD

Magnetic field lines Hosoda, PRE (2009) Magnetic GOOD surfaces 12

One goal of stellarator optimization is having field lines lie on surfaces.

Magnetic surfaces (a.k.a flux surfaces) can be visualized with a "Poincare plot":

How much rotational transform do you want?

Larger *ι* means:

- Thinner orbits, so better confinement.
- B changes less due to plasma pressure. (Higher "equilibrium β limit".)
- But, more wiggly coils.

Avoid rationals like $\iota = 1$ or $\frac{1}{2}$: islands form there.

So, maybe want low "magnetic shear" = $|\nabla \iota|$.

Or, maybe want *high* magnetic shear since it makes islands thin. (width $\propto |\nabla \iota|^{-1/2}$)

Outline

- Rotational transform & flux surfaces
- Transport & quasisymmetry
- Optimization approaches
- Recent advances in *α*-particle confinement

"Transport" = fluxes of heat and particles

Total flux = Neoclassical flux + turbulent flux.

Turbulent transport: due to instabilities that saturate at low amplitude. Expensive to compute.

"Neoclassical" transport: due to guiding-center drifts + collisions. The minimum flux possible with no turbulence.

Both depend on geometry.

Neoclassical alone would be too large unless it is optimized.

Nunami 2017

Key to neoclassical transport: trapped particles

A few particles with very small $v_{||} = \mathbf{v} \cdot \mathbf{B}$ "bounce" and are "trapped" in low-|B| regions.

We're not done with confinement: *Trapped* particles are not confined without a further condition like "quasisymmetry"

In general: trapped particles do not sample the whole surface, so cross-field drift does not average to 0.

 \Rightarrow Large neoclassical transport.

A solution is quasisymmetry: make $B(r, \theta, \varphi) = B(r, M\theta - N\varphi)$ for special angles θ, φ .

- Symmetry direction
 - \Rightarrow Conserved quantity.
 - \Rightarrow Drift averages to 0.

For low neoclassical transport, recent stellarators have come in 3 flavors

- Trapped particles should drift toroidally, helically, or poloidally on a surface.
- *B* contours on a surface have the same topology as these drifts.

Toroidal:

E.g., particles with $v_{||}=0$ move along a constant-*B* contour: $(\nabla B \text{ drift}) \cdot \nabla B \propto \mathbf{B} \times \nabla B \cdot \nabla B = 0$

For low neoclassical transport, recent stellarators have come in 3 flavors

- Trapped particles should drift toroidally, helically, or poloidally on a surface.
- *B* contours on a surface have the same topology as these drifts.

Toroidal: "QA" = Quasi-axisymmetric

Field lines
|B| contours (slightly idealized)
Trapped particle

Helical: "QH"= Quasi-helically symmetric

Poloidal: "QI"= Quasi-isodynamic

Outline

- Rotational transform & flux surfaces
- Transport & quasisymmetry
- Optimization approaches
- Recent advances in *α*-particle confinement

In some stellarators, coil shapes are optimized to maximize the volume of good surfaces

Most transport-optimized stellarators have instead used 2 optimization stages

- Parameters = shape of boundary toroidal surface.
 Objective = physics (quasisymmetry, stability, etc.)
- 2. Parameters = coil shapes.Objective = error in **B** on boundary shape from stage 1.

Shape of a toroidal boundary surface (+ pressure & current vs *r* inside, & total **B** flux) determines **B** everywhere inside:

Consider a low-pressure plasma so $0 \approx \mathbf{J} = \nabla \times \mathbf{B} \implies \mathbf{B} = \nabla \Phi$.

$$\nabla \cdot \mathbf{B} = 0 \quad \Rightarrow \quad \nabla^2 \Phi = 0.$$

- $\mathbf{B} \cdot \mathbf{n} = 0 \text{ on boundary } \Rightarrow \mathbf{n} \cdot \nabla \Phi = 0.$
- \Rightarrow Laplace's eq with Neuman condition.
 - \Rightarrow Unique solution up to scale factor + constant.

Most transport-optimized stellarators have instead used 2 optimization stages

- Parameters = shape of boundary toroidal surface.
 Objective = physics (quasisymmetry, stability, etc.)
- 2. Parameters = coil shapes.Objective = error in **B** on boundary shape from stage 1.

W7-X (Germany)

CFQS (China), under construction

Other design parameters are discrete

- Number of "field periods".
- Number of coils.

- Do coils link the plasma poloidally, helically, or not at all?
- Do *B* contours link the torus toroidally (QA), helically (QH), or poloidally (QI)?

Stellarator plasma & coil shapes must be optimized for several objectives

- Large volume of good magnetic surfaces (not islands & chaos)
- Enough rotational transform
- Plasma pressure doesn't modify **B** too much, i.e. pressure limit is not too low.
- Buildable coil shapes
- Magnetohydrodynamic stability
- Good confinement of particle trajectories
- Low neoclassical transport
- Low turbulent transport

Outline

- Rotational transform & flux surfaces
- Transport & quasisymmetry
- Optimization approaches
- Recent advances in *α*-particle confinement

Fraction of alpha particle energy lost before thermalization

Some of the new configurations with excellent alpha-particle confinement

Closing thoughts: There are many open questions for stellarator optimization

- How best to combine coil and plasma design?
- How to find designs that tolerate errors in coil shape/position?
- How to avoid getting stuck in little local minima? How to find global optima?
- How to optimize for expensive & noisy objectives (turbulence & fast-particle confinement)?
- How to balance multiple competing objectives?
- How to optimize coil topology?
- How to find configurations that are flexible?
 - Good confinement for different plasma pressures.
 - Ability to tune physics properties by changing coil currents.

Extra slides

Optimization problem

- 2 stage approach, as for W7-X: First optimize shape of boundary surface, then coils.
- Objective functions:

Boundary aspect ratio

Goal: $B = B(s, \theta - N \phi)$.

For quasi-axisymmetry, N = 0.

For quasi-helical symmetry, N is the number of field periods,

Optimization problem

- 2 stage approach, as for W7-X: First optimize shape of boundary surface, then coils.
- Objective functions:

• Parameter space: $R_{m,n} \& Z_{m,n}$ defining a toroidal boundary

$$R(\theta,\phi) = \sum_{m,n} R_{m,n} \cos(m\theta - n\phi), \quad Z(\theta,\phi) = \sum_{m,n} Z_{m,n} \sin(m\theta - n\phi)$$

- Codes used: SIMSOPT with VMEC
- Cold start: circular cross-section torus
- Vacuum fields at first, allowing precise checks
- Algorithm: default for least-squares in scipy (trust region reflective)
- 6 steps: increasing # of modes varied & VMEC resolution
- Run many optimizations, pick the best

Straight |B| contours are possible for quasi-axisymmetry

ML & Paul, PRL (2022). All input/output files and optimization scripts online at doi.org/10.5281/zenodo.5645412 35

Straight |B| contours are possible for quasi-helical symmetry

ML & Paul, PRL (2022).

All input/output files and optimization scripts online at doi.org/10.5281/zenodo.5645412 36

Controlled fusion would be a transformational energy source

- No CO₂ from operations.
- Generation could be near cities.
- Negligible land use.
- Not intermittent no storage needed.
- No risk of criticality accident.
- Product is inert helium.
- No weapons proliferation risks.
- Plentiful fuel: water + lithium.
- Isotopes produced are short-lived.

But, capital cost may be prohibitive, etc.

Fusion requires high temperatures and confinement

Electrons separate from nuclei: a plasma.→ Strong response to E and B fields.

Necessary temperature has been achieved!

Confining charged particles with a magnetic field is tricky.

Uniform straight **B**: confinement \perp to **B**, but end losses.

Magnetic fields are the best insulators we know – Can support 1000x the temperature gradient of spacecraft reentry tiles!

But, there is no confinement *along* the field...

Confining charged particles with a magnetic field is tricky.

Uniform straight **B**: confinement \perp to **B**, but end losses.

But if field lines are bent, particles drift off them due to *guiding-center drifts.*

