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“In	the	history	of	controlled	
thermonuclear	fusion,	there	have	
been	no	ideas	comparable	in	
beauty	and	conceptual	significance	
with	that	of	the	stellarator.”

(V.D.	Shafranov)



Other resources
Review	papers:
• “An	introduction	to	Stellarators”,	Lise-Marie	Imbert-Gerard,	Elizabeth	Paul,	Adelle	

Wright,	arXiv:1908.05360
• “Theory	of	plasma	confinement	in	non-axisymmetric	magnetic	fields”,	Per	Helander,	

Rep.	Prog.	Phys.	77	(2014).

2019	&	2020	Simons	Foundation/PPPL	Summer	Schools:	lecture	notes	&	videos	
https://hiddensymmetries.princeton.edu/summer-school/summer-school-
2020/lecture-notes

PPPL	SULI	summer	course:	https://suli.pppl.gov/2021/course/ (or	replace	2021	
with	previous	years).	Lecture	notes	&	videos	on	fusion	energy,	particle	motion,	
stellarators,	etc.
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https://arxiv.org/abs/1908.05360v2
http://dx.doi.org/10.1088/0034-4885/77/8/087001
https://hiddensymmetries.princeton.edu/summer-school/summer-school-2020/lecture-notes
https://suli.pppl.gov/2021/course/


A stellarator is a configuration of magnets for confining plasma 
without continuous rotation symmetry
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Electromagnetic	
coils

Magnetic	surfaces,	plasma
Magnetic	field	lines

Where	did	these	wiggly	shapes	come	from?				Optimization!

The	W7-X	stellarator,	in	Germany



Outline
• Rotational	transform	&	flux	
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• Transport	&	quasisymmetry
• Optimization	approaches
• Recent	advances	in	!-particle	
confinement
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A purely toroidal field does not confine particles.

Magnetic	field	line

Particle	trajectory

Guiding	center	trajectory



A purely toroidal field does not confine particles.

Ions	drift	down:	
they	are	not	confined!

  
Ampere's Law:  B =

µ0I
2πR

 so  B  is larger on the inside

	←∇B

			
Particles	drift	in	the
qB×∇B 		direction



How can we resolve the problem of the cross-field drifts?

Picture	from
G	Hammett



How can we resolve the problem of the cross-field drifts?

By	making	the	field	lines	
helical	rather	than	
toroidal.

“Rotational	transform”	!:	If	you	follow	a	magnetic	field	line	
around	the	torus	once	toroidally	(i.e.	the	long	way	around),	
you	come	back	to	a	different	place	the	short	way	around.

B
B

	
ι = lim Δθ

Δϕ
φ

θ



B
B

Field lines must be helical: “rotational transform” !

Z

R

			↑B×∇B 		drift

			↑B×∇B 		drift
φ

The	upward	cross-field	drift	is	inward	half	the	time	and	
outward	half	the	time,	averaging	to	0.
Now	particles	are	confined!



B
B

To avoid needing a large current in the confinement region,
break continuous rotation symmetry.

+	axisymmetry ⇒		a large	current	J is	required	inside the	plasma.

J

		∇×B= µ0J

J
Z

R

			↑B×∇B 		drift

			↑B×∇B 		drift
φ

We	can	still	get	rotational	transform	
without	J by	breaking	axisymmetry:



One goal of stellarator optimization is having field lines lie on surfaces.
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Chaotic	(volume-filling)	B field	lines	would	allow	inside	&	outside	to	mix	even	
without	cross-B drift.

Hosoda,	PRE	(2009)

BAD

GOOD Magnetic	
surfaces

Magnetic	field	lines



Magnetic	surfaces	(a.k.a flux	
surfaces)	can	be	visualized	with	a	
“Poincare	plot”:

J	P	Kremer,
PhD	thesis,	Columbia

Good

Islands,	
where	ι is	
rational

Chaos

One goal of stellarator optimization is having field lines lie on surfaces.

Not	so	good



How much rotational transform do you want?

Z

R

			↑B×∇B 		drift

			↑B×∇B 		drift
φ

Islands Avoid	rationals like	ι =	1	or	½:	islands	form	there.	

So,	maybe	want	low	“magnetic	shear”	=	|∇ι|.
Or,	maybe	want	highmagnetic	shear	since	it	
makes	islands	thin.	(width	∝	|∇ι|-1/2)

Larger	ιmeans:
• Thinner	orbits,	so	better	confinement.
• B changes	less	due	to	plasma	pressure.	
(Higher	“equilibrium	β	limit”.)

• But,	more	wiggly	coils.
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“Transport” = fluxes of heat and particles
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Total	flux	=	Neoclassical	flux	+	turbulent	flux.

Turbulent	transport:	due	to	instabilities	that	saturate	
at	low	amplitude.	Expensive	to	compute.

“Neoclassical”	transport:	due	to	guiding-center	drifts	
+	collisions.	The	minimum	flux	possible	with	no	
turbulence.

Nunami 2017
Both	depend	on	geometry.

Neoclassical	alone	would	be	too	
large	unless	it	is	optimized.



Key to neoclassical transport: trapped particles
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Ion	trajectory

v×B force	has	slight	è component

B field	lines

			
dυ||
dt

= −υ⊥
2

2B b⋅∇B

A	few	particles	with	very	small	v|| =	v⋅B “bounce”	and	are	“trapped”	in	low-|B|	regions.

	←∇B

|B|

Mirror	force:	particles	
are	pushed	away	from	
regions	of	high	B.



We’re not done with confinement: Trapped particles are not confined 
without a further condition like “quasisymmetry”

In	general:	trapped	particles	do	not	sample	
the	whole	surface,	so	cross-field	drift	does	
not	average	to	0.

A	solution	is	quasisymmetry:	make	B(r,	!,	")	=	B(r,	M!−N")		for	special	angles	!,	".

ϕ θ

B = B r , 	θ −4ϕ( )
B Symmetry	direction

⟹		Conserved	quantity.
⟹		Drift	averages	to	0.

⟹		Large	neoclassical	transport.



For low neoclassical transport, recent stellarators have come in 3 flavors
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• Trapped	particles	should	drift	toroidally,	helically,	or	poloidally	on	a	surface.
• B contours	on	a	surface	have	the	same	topology	as	these	drifts.

∇B 	drift( )⋅∇B 	∝ 	B×∇B ⋅∇B 	 = 	0

E.g.,	particles	with	v||=0	
move	along	a	constant-B contour:

Toroidal:

Helical: Poloidal:



For low neoclassical transport, recent stellarators have come in 3 flavors
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• Trapped	particles	should	drift	toroidally,	helically,	or	poloidally	on	a	surface.
• B contours	on	a	surface	have	the	same	topology	as	these	drifts.
Toroidal:	“QA”	=	Quasi-axisymmetric

Helical:	“QH”=	Quasi-helically	symmetric Poloidal:	“QI”=	Quasi-isodynamic

Field	lines
|B|	contours	(slightly	idealized)
Trapped	particle
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In some stellarators, coil shapes are optimized 
to maximize the volume of good surfaces

Cary	&	Hanson	(1986)

CTH	(Auburn)
CNT	(Columbia):
Optimize	expected volume	over	
possible	coil	position	errors

Pedersen	(2004),	Hammond	(2016)



Most transport-optimized stellarators have instead used 2 optimization stages

1. Parameters	=	shape	of	boundary	toroidal surface.	
Objective	=	physics	(quasisymmetry,	stability,	etc.)

2. Parameters	=	coil	shapes.																																																							
Objective	=	error	in	B on	boundary	shape	from	stage	1.

Shape of	a	toroidal	boundary	surface	(+	pressure	&	current	vs	r inside,	
&	total	B flux)	determines	B everywhere	inside:	

Consider	a	low-pressure	plasma	so	0≈ J=∇×B				⇒ 			B=∇Φ.
∇⋅B=0				⇒ 			∇2Φ =0.

B⋅n=0		on	boundary				⇒ 			n ⋅∇Φ =0.
⇒ 			Laplace's	eq	with	Neuman	condition.			
				⇒ 			Unique	solution	up	to	scale	factor	+	constant.



Most transport-optimized stellarators have instead used 2 optimization stages

W7-X	(Germany) CFQS	(China),	under	construction
NCSX	(Princeton)

1. Parameters	=	shape	of	boundary	toroidal	surface.	
Objective	=	physics	(quasisymmetry,	stability,	etc.)

2. Parameters	=	coil	shapes.																																																							
Objective	=	error	in	B on	boundary	shape	from	stage	1.



Other design parameters are discrete
• Number	of	“field	periods”.
• Number	of	coils.
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NFP=3 NFP=4 NFP=5

• Do	coils	link	the	plasma	poloidally,	
helically,	or	not	at	all?

• Do	B contours	link	the	torus	toroidally
(QA),	helically	(QH),	or	poloidally (QI)?



Stellarator plasma & coil shapes must be optimized for several objectives

• Large	volume	of	good	magnetic	surfaces							
(not	islands	&	chaos)

• Enough	rotational	transform
• Plasma	pressure	doesn’t	modify	B too	much,	
i.e.	pressure	limit	is	not	too	low.

• Buildable	coil	shapes
• Magnetohydrodynamic	stability
• Good	confinement	of	particle	trajectories
• Low	neoclassical	transport
• Low	turbulent	transport
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Remarkable progress in stellarator 
confinement in the last year

All configurations scaled to same minor radius and |B|.
See also Bader et al, Nuclear Fusion (2021). 



Since 2021

ML & Paul,
Phys Rev Lett (2022)

Wechsung et al,
PNAS (2022)

Giuliani et al,
1-stage, arXiv (2022)

Nies & Paul
Adjoint method

5% !, Self-consistent 
plasma current

Near-axis 
expansion

Goal: B = B(s, " − N #)



Some of the new configurations with excellent alpha-particle confinement

Wechsung et al, PNAS (2022).            



Closing thoughts:
There are many open questions for stellarator optimization
• How	best	to	combine	coil	and	plasma	design?
• How	to	find	designs	that	tolerate	errors	in	coil	shape/position?
• How	to	avoid	getting	stuck	in	little	local	minima?	How	to	find	global	optima?
• How	to	optimize	for	expensive	&	noisy	objectives	(turbulence	&	fast-particle	

confinement)?
• How	to	balance	multiple	competing	objectives?
• How	to	optimize	coil	topology?
• How	to	find	configurations	that	are	flexible?

– Good	confinement	for	different	plasma	pressures.
– Ability	to	tune	physics	properties	by	changing	coil	currents.
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Extra slides
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Optimization problem
• 2	stage	approach,	as	for	W7-X:	First	optimize	shape	of	boundary	surface,	then	coils.
• Objective	functions:
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fQH = A− A*( )2 + fQS fQA = A− A*( )2 + ι* − ιds
0

1
∫⎛

⎝
⎞
⎠

2
+ fQS

			
fQS = d3x∫ 	 1

B3 N −ι( )B×∇B ⋅∇ψ − G+NI( )B⋅∇B⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

2

Boundary aspect ratio

For quasi-axisymmetry,
N = 0.

For quasi-helical symmetry, 
N is the number of field periods, e.g. N = 4

here

Goal: B = B(s, ! − N ").



Optimization problem
• 2	stage	approach,	as	for	W7-X:	First	optimize	shape	of	boundary	surface,	then	coils.
• Objective	functions:

• Parameter	space:	Rm,n &	Zm,n defining	a	toroidal	boundary

• Codes	used:	SIMSOPT	with	VMEC

• Cold	start:	circular	cross-section	torus

• Vacuum	fields	at	first,	allowing	precise	checks
• Algorithm:	default	for	least-squares	in	scipy (trust	region	reflective)

• 6	steps:	increasing	#	of	modes	varied	&	VMEC	resolution

• Run	many	optimizations,	pick	the	best
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fQH = A− A*( )2 + fQS fQA = A− A*( )2 + ι* − ιds
0

1
∫⎛

⎝
⎞
⎠

2
+ fQS

			
fQS = d3x∫ 	 1

B3 N −ι( )B×∇B ⋅∇ψ − G+NI( )B⋅∇B⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

2

R θ ,φ( )= Rm,n cos mθ −nφ( )
m,n
∑ ,						Z θ ,φ( )= Zm,n sin mθ −nφ( )

m,n
∑

Boundary aspect ratio



Straight |B| contours are possible for quasi-axisymmetry
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aspect = 6

ML & Paul, PRL (2022).        All input/output files and optimization scripts online at doi.org/10.5281/zenodo.5645412



Straight |B| contours are possible for quasi-helical symmetry
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aspect = 8

ML & Paul, PRL (2022).        All input/output files and optimization scripts online at doi.org/10.5281/zenodo.5645412



Controlled fusion would be a transformational energy source 
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• No	CO2 from	operations.
• Generation	could	be	near	cities.
• Negligible	land	use.
• Not	intermittent	– no	storage	needed.
• No	risk	of	criticality	accident.
• Product	is	inert	helium.
• No	weapons	proliferation	risks.
• Plentiful	fuel:	water	+	lithium.
• Isotopes	produced	are	short-lived.
But,	capital	cost	may	be	prohibitive,	etc.



Fusion requires high temperatures and confinement
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Must	overcome	electrostatic	repulsion

Need	high	velocity.
è Need	high	temperature,	~108	C.

Electrons	separate	from	nuclei:	a	plasma.
è Strong	response	to	E and	B fields.

Ion	temperature	(°C)
107 108 109106De
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Necessary	temperature	has	been	achieved!
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n

Pedersen	(2019)



Confining charged particles with a magnetic field is tricky.
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Uniform	straight	B:	confinement	⊥ to	B,	but	end	losses.

Magnetic	field	line Charged	particle

Magnetic	fields	are	the	best	insulators	we	know	–
Can	support	1000x	the	temperature	gradient	of	spacecraft	reentry	tiles!

But,	there	is	no	confinement	along	the	field…



Confining charged particles with a magnetic field is tricky.
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Uniform	straight	B:	confinement	⊥ to	B,	but	end	losses.

But	if	field	lines	are	bent,
particles	drift	off	them	due	to	
guiding-center	drifts.

Magnetic	field	line Charged	particle

Magnetic	field	line

Particle	trajectory

Guiding	center	trajectory


