

Optimized stellarators without optimization Direct construction of stellarator shapes with good confinement

Overview

In quasisymmetric designs to date (HSX, NCSX, etc), optimization has been done using "textbook" optimization algorithms to minimize symmetry-breaking Fourier modes in *B*. It works, but:

- Many local minima, so result depends on initial guess.
- Never sure you've found all the interesting regions of parameter space.
- Little insight as to the amount of freedom in the solution

For a complementary approach without these shortcomings, here we extend work of Garren & Boozer [1, 2].

- Usually cited as a proof that quasisymmetry cannot be achieved to $(a/R)^3$.
- Less well known that it contains a useful constructive procedure.
- Provides insight & initial conditions for stellopt.
- Based on expansion in distance from the axis; valid in the core of low-*A* stellarators.

With this approach we can now generate quasisymmetric stellarator shapes in < 1 ms on a laptop!

<u>Setup:</u> Frenet frame $(\mathbf{t}, \mathbf{n}, \mathbf{b})$ for the magnetic axis: $\frac{\partial \mathbf{r}_0}{\partial \ell} = \mathbf{t}, \quad \frac{d\mathbf{t}}{d\ell} = \kappa \mathbf{n}, \quad \frac{d\mathbf{n}}{d\ell} = -\kappa \mathbf{t} + \tau \mathbf{b}, \quad \frac{d\mathbf{b}}{d\ell} = -\tau \mathbf{n}$ \mathbf{r}_{o} = magnetic axis, κ = curvature, $\tau = torsion$ $\mathbf{b} = \text{binormal},$ $\ell =$ arclength $\mathbf{n} = normal$ $\mathbf{t} = \text{tangent}$ $\mathbf{r}(r,\theta,\zeta) = \mathbf{r}_0(\zeta) + X(r,\theta,\zeta)\mathbf{n}(\zeta) + Y(r,\theta,\zeta)\mathbf{b}(\zeta) + Z(r,\theta,\zeta)\mathbf{t}(\zeta)$ $\mathbf{B} = \beta \nabla \psi + I(r) \nabla \theta + G(r) \nabla \zeta = \nabla \psi \times \nabla \theta + \iota \nabla \zeta \times \nabla \psi$ Apply dual relations: $\nabla \psi = \left(\nabla \psi \cdot \nabla \theta \times \nabla \zeta \right) \frac{\partial \mathbf{r}}{\partial \theta} \times \frac{\partial \mathbf{r}}{\partial \zeta}$ & cyclic permutations. Expand in $r \propto \sqrt{\psi}$: $\iota(r) = \iota_0 + O(r^2)$, $G(r) = G_0 + O(r^2)$, $I(r) = r^2 I_2 + O(r^4)$ $X(r,\theta,\zeta) = r \left[X_{1s}(\zeta) \sin \theta + X_{1c}(\zeta) \cos \theta \right] + O(r^2).$ Same for *Y*, *Z*. <u>Results, to $O(r^1)$:</u> $\frac{d\sigma}{d\zeta} + \iota_0 \left| \frac{\overline{\eta}^4}{\kappa^4} + 1 + \sigma^2 \right| - 2\frac{\overline{\eta}^2}{\kappa^2} \left[I_2 - \tau \right] = 0$ $\overline{\eta}$ = some constant $_{o}$ = rotational transform, $_{2}$ = current density, Flux surface shape: $\mathbf{r}(r,\theta,\zeta) = \mathbf{r}_0(\zeta) + rX_{1c}(\zeta)\cos\theta\mathbf{n}(\zeta) + r\left[Y_{1s}(\zeta)\sin\theta + Y_{1c}(\zeta)\cos\theta\right]\mathbf{b}(\zeta) + O(r^2)$ $X_{1c}(\zeta) = \overline{\eta} / \kappa(\zeta)$ $Y_{1c}(\zeta) = \sigma(\zeta) \kappa(\zeta) / \overline{\eta}$ $Y_{1s}(\zeta) = \kappa(\zeta) / \overline{\eta}$

Garren-Boozer Expansion [1, 2]

Cylindrical Coordinates

We repeated the analysis without the Frenet frame, for cases in which the axis curvature vanishes, e.g. omnigenity with poloidally closed B contours. $(D \phi \sigma)$ $d\phi$

Results in cylindrical coordinates
$$(R, \varphi, z)$$
:
 $R(r, \theta, \phi) = R_0(\phi) + r \Big[R_{1s}(\phi) \sin \theta + R_{1c}(\phi) \cos \theta \Big] + O(r^2)$
 $z(r, \theta, \phi) = z_0(\phi) + r \Big[z_{1s}(\phi) \sin \theta + z_{1c}(\phi) \cos \theta \Big] + O(r^2)$
 $R_{1s} z_{1c} - R_{1c} z_{1s} = \frac{\overline{B}\ell'}{R_0 B_0}$ '= d/d
 $\frac{B_{1s,c}}{B_0} = \left(\kappa \mathbf{n} \cdot \mathbf{e}_R + \frac{R'_0 B'_0}{\ell'^2} \right) R_{1s,c} + \left(\kappa \mathbf{n} \cdot \mathbf{e}_z + \frac{z'_0 B'_0}{\ell'^2} \right) z_{1s,c}$
 $i_0 = T/V$ (2)
 $T = \frac{|G_0|}{\ell'^3 B_0} \Big[R_0^2 (R_{1c} R'_{1s} - R'_{1s} R'_{1c} + z_{1c} z'_{1s} - z_{1s} z'_{1c}) + (R_{1c} z_{1s} - R_{1s} z_{1c}) (R'_0 z''_0 + 2R_0 z'_0 - z'_0 R''_0) + (z_{1c} z'_{1s} - z_{1s} z'_{1c}) R'_0^2 + (R_{1c} R'_{1s} - R_{1s} R'_{1c}) z'_0^2 + (R_{1s} z'_{1c} - z_{1c} R'_{1s} + z_{1s} R'_{1c} - R_{1c} z'_{1s}) R'_0 z'_0 \Big] + \frac{2G_0}{B}$
 $V = \frac{1}{\ell'^2} \Big[R_0^2 (R_{1c}^2 + R_{1s}^2 + z_{1c}^2 + z_{1s}^2) + R'_0^2 (z_{1s}^2 + z_{1c}^2) - 2R'_0 z'_0 (R_{1c} z_{1c} - R_{1s} z_{1s}) + z'_0^2 (R_{1c}^2 + R_{1s}^2) \Big]$

is valid even if the axis curvature vanishes.

Matt Landreman (University of Maryland), Wrick Sengupta (NYU), Gabriel Plunk (IPP-Greifswald)

Equivalent to [1,2]. Eq (2) is equivalent to Mercier's result [5] that ι comes from toroidal current, axis torsion, & rotating elongation, but (2)

Number of Solutions

To precisely count & parameterize quasisymmetric shapes, we have proved an existence & uniqueness theorem [4]:

Given $P(\zeta) > 0$, $Q(\zeta)$, and $\sigma(0)$, with $P(\zeta)$ and $Q(\zeta)$ 2π -periodic, bounded, and integrable, a solution to da

$$\frac{d\sigma}{d\zeta} + \iota \left(P + \sigma^2 \right) + Q = 0$$

is a pair $\{\iota, \sigma(\zeta)\}$ solving (3) where $\sigma(\zeta)$ is 2π -periodic.

<u>Theorem</u>: A solution exists and it is unique.

We can now precisely state the amount of freedom in 1storder-in-*r* quasisymmetry:

- For every magnetic axis shape (2 functions of ϕ) with nonvanishing curvature, and 3 real numbers ($\overline{\eta}$, $\sigma(0)$, and I_2), there is precisely 1 way to shape the near-axis surfaces consistent with quasisymmetry. Also,
 - For stellarator symmetry, $\sigma(0) = 0$.
 - In the usual case of no current density on axis, then $I_2 = 0$.
- This solution is quasi-axisymmetric or quasi-helically symmetric depending on whether **n** loops around the axis poloidally when you follow the axis toroidally.
- However many of these solutions have absurdly high elongation.

$$R_0(\phi) = 1 + R_{0c} \cos(4\phi)$$
$$Z_0(\phi) = Z_{1s} \sin(4\phi)$$

 $\mathbf{v}_{d} \cdot \nabla \boldsymbol{\psi} = 0$ even **J** bounce

(3)

Future Directions

- Fully map the landscape of possible 1st-order quasisymmetric shapes by considering more Fourier modes in the axis shape. (How do I plot this?)
- Optimize in the space of axis shapes.
- Can we construct shapes with quasisymmetry imposed at a midradius surface?
- Expand about a nearly circular axis.
- 2nd order in distance from the axis.
- Connect to analysis of the difficulty of producing various plasma shapes.

References

[1] D A Garren & A H Boozer, *Phys Fluids B* **3**, 2805 (1991).

[2] D A Garren & A H Boozer, *Phys Fluids B* **3**, 2822 (1991).

[3] M Landreman & W Sengupta, arXiv:1809.10233 (2018).

[4] M Landreman, W Sengupta, & G G Plunk, arXiv:1809.10246 (2018).

[5] C Mercier, *Nuclear Fusion* **4**, 213 (1964). [6] G G Plunk & M Landreman, *in*

preparation.

Supported by DE-FG02-93ER54197, DE-FG02-86ER53223, & the Simons Foundation