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Optimized stellarators without optimization
Direct	construction	of	stellarator shapes	with	good	confinement	

Matt	Landreman	(University	of	Maryland),	
Wrick Sengupta	(NYU),	Gabriel	Plunk	(IPP-Greifswald)
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In	quasisymmetric designs	to	date	(HSX,	
NCSX,	etc),	optimization	has	been	done	using	
“textbook”	optimization	algorithms	to	
minimize	symmetry-breaking	Fourier	modes	
in	B.	It	works,	but:
• Many	local	minima,	so	result	depends	on	initial	
guess.

• Never	sure	you’ve	found	all	the	interesting	
regions	of	parameter	space.

• Little	insight	as	to	the	amount	of	freedom	in	the	
solution.

For	a	complementary	approach	without	these	
shortcomings,	here	we	extend	work	of	Garren
&	Boozer	[1,	2].
• Usually	cited	as	a	proof	that	quasisymmetry
cannot	be	achieved	to	(a/R)3.

• Less	well	known	that	it	contains	a	useful	
constructive	procedure.

• Provides	insight	&	initial	conditions	for	stellopt.
• Based	on	expansion	in	distance	from	the	axis;	
valid	in	the	core	of	low-A stellarators.

With	this	approach	we can now	generate	
quasisymmetric stellarator shapes	in < 1 ms
on a laptop!

		B= β∇ψ + I r( )∇θ +G r( )∇ζ =∇ψ ×∇θ +ι∇ζ ×∇ψ

		
Apply	dual	relations:			∇ψ = ∇ψ ⋅∇θ ×∇ζ( ) ∂r∂θ × ∂r

∂ζ
			&	cyclic	permutations.

 			
∂r0
∂ℓ

= t , 					 dt
dℓ

=κn, 					 dn
dℓ

= −κ t +τb,						 db
dℓ

= −τn

			r r ,θ ,ζ( ) = r0 ζ( )+ X r ,θ ,ζ( )n ζ( )+Y r ,θ ,ζ( )b ζ( )+ Z r ,θ ,ζ( )t ζ( )

		X r ,θ ,ζ( ) = r X1s ζ( )sinθ + X1c ζ( )cosθ⎡⎣ ⎤⎦+O r2( ).					Same	for	Y ,	Z .

		r0 =magnetic	axis,						κ = curvature,							τ = torsion
 		t = tangent,								n= normal,								b= binormal,							ℓ = arclength

		
dσ
dζ

+ι0
η 4

κ 4 +1+σ 2⎡

⎣
⎢

⎤

⎦
⎥−2η

2

κ 2 I2 −τ⎡⎣ ⎤⎦ =0							 1( )

			r r ,θ ,ζ( ) = r0 ζ( )+ rX1c ζ( )cosθn ζ( )+ r Y1s ζ( )sinθ +Y1c ζ( )cosθ⎡⎣ ⎤⎦b ζ( )+O r2( )

		I2 = current	density,							ι0 = rotational	transform,							η = some	constant

		Y1c ζ( ) =σ ζ( )κ ζ( )/η

• Fully	map	the	landscape	of	possible	
1st-order	quasisymmetric shapes	by	
considering	more	Fourier	modes	in	
the	axis	shape.	(How	do	I	plot	this?)

• Optimize	in	the	space	of	axis	shapes.
• Can	we	construct	shapes	with	
quasisymmetry imposed	at	a	mid-
radius	surface?

• Expand	about	a	nearly	circular	axis.
• 2nd order	in	distance	from	the	axis.
• Connect	to	analysis	of	the	difficulty	of	
producing	various	plasma	shapes.

		

E.g.	Scan	over	 R0c ,Z0s ,η( )
for	magnetic	axis	shapes

		

R0 φ( ) =1+R0c cos 4φ( )
Z0 φ( ) = Z1s sin 4φ( )

274,560	solutions	generated	
in	<30s	on	a	laptop.

Quasi-axisymmetry

		
S = 1

B0,0
Bm,n
2

m/n≠M/N
∑
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Ricatti equation in Frenet-Serret frame (section 2)

Direct solution in cylindrical coordinates (section 4.3)

Convergence Tests

Quasi-helical	symmetry

Quasi-axisymmetry without	stellarator symmetry

Outward	extrapolation	using	coils

		

axis	shape:
R0 φ( ) =1+0.042cos 3φ( ) , 		
Z0 φ( ) = −0.042sin 3φ( )
															−0.025cos 3φ( ) ,
η = −1.1,								σ 0( ) = −0.6
R/a=10

		

axis	shape:
R0 φ( ) =1+0.045cos 3φ( ) , 		
Z0 φ( ) = −0.045sin 3φ( ) ,
η = −0.9,								σ 0( ) =0
R/a=10

		

axis	shape:	
R0 φ( ) =1+0.265cos 4φ( ) , 		
Z0 φ( ) = −0.21sin 4φ( ) ,
η = −2.25,								σ 0( ) =0
R/a= 40

Solving	(1)	using	
pseudo-spectral	
differentiation	+	
Newton’s	method,	
we	achieve	
spectral	
convergence.	

As	aspect	ratio	
increases,	VMEC	
and	the	Garren-
Boozer	method	
converge	to	the	
same	transform.

VMEC	+	
BOOZ_XFORM	
shows	the	
symmetry-
breaking	
Boozer	
harmonics	
scale	as	
expected.

Setup:

Results,	to	O(r1):

		

X1c ζ( ) =η /κ ζ( )
Y1s ζ( ) =κ ζ( )/η

		Frenet	frame	 t ,n,b( ) 	for	the	magnetic	axis:

• Using	REGCOIL,	compute	coil	shapes	that	produce	
the	R/a=160	Garren-Boozer	QA	solution.

• Good	flux	surfaces	exist	out	to	R/a=5
Inputs:
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Results:

Results:
May	have	large	intrinsic	rotation?

Theorem: A	solution	exists	and	it	is	unique.

	2π-periodic,	bounded,	and	integrable,	a	solution	to	

		
dσ
dζ

+ι P +σ 2( )+Q =0															 3( )

		Given	P ζ( ) >0,	Q ζ( ) , 	and	σ 0( ) ,	with	P ζ( ) 	and	Q ζ( ) 	

	is	a	pair	 ι , 	σ ζ( ){ } 	solving	 3( ) 	where	σ ζ( ) 	is	2π -periodic.

To	precisely	count	&	parameterize	quasisymmetric shapes,	
we	have	proved	an	existence	&	uniqueness	theorem	[4]:	

We	can	now	precisely	state	the	amount	of	freedom	in	1st-
order-in-r quasisymmetry:

• For	every	magnetic	axis	shape	(2	functions	of	ϕ)	with	
nonvanishing curvature,	and	3	real	numbers	( ,	σ(0),	and	
I2),	there	is	precisely	1	way	to	shape	the	near-axis	surfaces	
consistent	with	quasisymmetry.	Also,
§ For	stellarator symmetry,	σ(0)	=	0.
§ In	the	usual	case	of	no	current	density	on	axis,	then	I2	=	0.

• This	solution	is	quasi-axisymmetric	or	quasi-helically	
symmetric	depending	on	whether	n loops	around	the	axis	
poloidally when	you	follow	the	axis	toroidally.

• However	many	of	these	solutions	have	absurdly	high	
elongation.

η

 			

R1sz1c −R1cz1s =
B ′ℓ
R0B0

B1s ,c
B0

= κn ⋅eR +
′R0 ′B0
′ℓ 2

⎛

⎝⎜
⎞

⎠⎟
R1s ,c + κn ⋅ez +

′z0 ′B0
′ℓ 2

⎛

⎝⎜
⎞

⎠⎟
z1s ,c

ι0 =T /V 										 2( )

We	repeated	the	analysis	without	the	Frenet frame,	
for	cases	in	which	the	axis	curvature	vanishes,	e.g.	
omnigenity with	poloidally closed	B	contours.	

 		

V = 1
′ℓ 2
R0
2 R1c

2 +R1s
2 + z1c

2 + z1s
2( )+ ′R0

2 z1s
2 + z1c

2( )⎡
⎣

																	−2 ′R0 ′z0 R1cz1c −R1sz1s( )+ ′z0
2 R1c

2 +R1s
2( )⎤⎦

 		

T =
G0
′ℓ 3B0

R0
2 R1c ′R1s − ′R1s ′R1c + z1c ′z1s − z1s ′z1c( )⎡⎣

																			+ R1cz1s −R1sz1c( ) ′R0 ′′z0 +2R0 ′z0 − ′z0 ′′R0( )
																			+ z1c ′z1s − z1s ′z1c( ) ′R0

2 + R1c ′R1s −R1s ′R1c( ) ′z0
2

																			+ R1s ′z1c − z1c ′R1s + z1s ′R1c −R1c ′z1s( ) ′R0 ′z0 ⎤⎦+
2G0I2
B0
2

		Results	in	cylindrical	coordinates	 R,φ ,z( ):

Equivalent	to	[1,2].	Eq (2)	is	equivalent	to	
Mercier’s	result	[5]	that	ι comes	from	toroidal
current,	axis	torsion,	&	rotating	elongation,	but	(2)	
is	valid	even	if	the	axis	curvature	vanishes.

 			

The	same	Garren-Boozer	machinery
can	be	applied	to	a	B θ ,ζ( ) 	such	that	

vd ⋅∇ψ =0
bounce!∫ 	even	
without	quasisymmetry.

		B 	on	outermost	VMEC	surface:
	ι =0.87

		Expand	in	r ∝ ψ : 			ι r( ) = ι0 +O r2( ) ,						G r( ) =G0 +O r2( ) ,						I r( ) = r2I2 +O r4( )

Flux	surface	shape:

Elongation	is	reasonably	
small	only	in	two	regions:	

		

R r ,θ ,φ( ) = R0 φ( )+ r R1s φ( )sinθ +R1c φ( )cosθ⎡⎣ ⎤⎦+O r2( )
z r ,θ ,φ( ) = z0 φ( )+ r z1s φ( )sinθ + z1c φ( )cosθ⎡⎣ ⎤⎦+O r2( )

		 ′	 = d /dφ


