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Overview 4 Garren-Boozer Expansion [1, 2] N

In quasisymmetric designs to date (HSX,
NCSX, etc), optimization has been done using
“textbook” optimization algorithms to
minimize symmetry-breaking Fourier modes
in B. [t works, but:

* Many local minima, so result depends on initial
guess.

* Never sure you've found all the interesting
regions of parameter space.

* Little insight as to the amount of freedom in the
solution.

For a complementary approach without these Expand in <.y (r)=t,+0(r?),  G(r)=G,+0(r*). 1(r)=r’1,+0(r')

X(r,H,C):r[
)

shortcomings, here we extend work of Garren
& Boozer |1, 2].

e Usually cited as a proof that quasisymmetry
cannot be achieved to (a/R)3.

* Less well known that it contains a useful
constructive procedure.

* Provides insight & initial conditions for stellopt.

* Based on expansion in distance from the axis;
valid in the core of low-A stellarators.

With this approach we can now generate
quasisymmetric stellarator shapesin <1 ms

Setup: Frenet frame (t,n,b) for the magnetic axis:
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I, =magnetic axis,

t =tangent,

dn db
—=—-kt+7b, —=-7n
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K =curvature, Tt =torsion

n=normal,

b=binormal, /¢=arclength

r(r.6.5)=r,(¢)+X(r.0.0)n(¢)+Y(r.6.5)b(¢)+2(r.0.5 )t(¢)

Apply dual relations: Vy = (Vl// -V X Vé’)

Results, to O(r!):
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I, =current density,

L, = rotational transform,

Flux surface shape:

on a laptop! K

X, (¢)=1/
(&)=x(¢)/m

<(¢)

B:,BVI//+I(r)V9+G(r)V§ =VyxVO+1IV{xVy

& cyclic permutations.

XlS(C)sin0+ch(C)cos@]+0(r2). Same for Y, Z.

N =some constant

r(r,@,é’) = rO(C)+erc (é’)cos@n(@)+r[Ym (C)sin9+ch (C)cos@}b(§)+0(r2)

¥ (¢)=0(¢)x(¢) /7

current, axis torsion, & rotating elongation, but (2) elongation.
/ is valid even if the axis curvature vanishes. \

Cylindrical Coordinates 'Number of Solutions

A Convergence Tests

We repeated the analysis without the Frenet frame, To precisely count & parameterlze. quasisymmetric shapes, | | __Enorin olational ransform
” . . . . we have proved an existence & uniqueness theorem [4]: Solving (1) using Ricatti equation in Frenet-Serret frame (setion 2)
or cases in which the axis curvature vanishes, e.g. pseudo-spectral Direct solution in cylindrical coordinates (section 4.3)
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omnigenity with poloidally closed B contours. Given P( C) >0, Q( é,), and G(O), with P( 5) and Q( C) differentiation + |
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V= 1z [RO (Rlc +R +2z +7Z )+ R (le + Zlc) In the usual case of no current density on axis, then I, = 0. increases, VMEC - .
* This solution is quasi-axisymmetric or quasi-helically and the Garren- 1"
’,.7 72 2 2 E
_ZROZO(Rlczlc_Rlszls)+Z0 (R1C+Rls):| : : : 5 -
symmetric depending on whether n loops around the axis Boozer method _
Equivalent to [1,2]. Eq (2) is equivalent to poloidally when you follow the axis toroidally. converge to the |
Mercier’s result [5] that ¢ comes from toroidal + However many of these solutions have absurdly high same transform. o s *

10-5 - X  Section 4.3: QA w/o stellarator symmetry
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/Numerical Solutions

Quasi-axisymmetry
Inputs: Results:

axis shape:
R,(9)=1+0.045cos(3p),

Zo(q)): —0.04551n(3¢),
7=-09, o(0)=0
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Fourier harmonics By, , in Boozer coordinates

— m = 0, n = 0 (Quasiaxisymmetric)
—— m=20,n =0 (Mirror)
— m=#0,n#0 (Helical)
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Fourier harmonics By, , in Boozer coordinates
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Quasi-helical symmetry
Inputs: Results:

axis shape:

Ro(q)] =1+0.265cos( ¢),

4
Zo(q) )= —O.lein(4¢),

n=-225 o(0)=0 /\

R/a=40
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Fourier harmonics By, , in Boozer coordinates

— m# 0, n =0 (Toroidal)
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— m # 0, n # 0 (Other helical)
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Fourier harmonics B, , in Boozer coordinates
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Quasi-axisymmetry without stellarator symmetry

Inputs: Results:

axis shape:
R ((p) — 1+0.042cos(3¢),

Z,(¢)=—0.042sin(3¢)
—0.025c0s(3¢),

n=-11, o(0)=-06
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May have large intrinsic rotation?

Aspect ratio 10
Fourier harmonics By, , in Boozer coordinates

— m = 0, n = 0 (Quasiaxisymmetric)
— m =20, n =0 (Mirror)
— m#0,n =0 (Helical)
Solid = cos(m@ — n{) modes
Dashed = sin(m6 — n{) modes

rla=vs
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Fourier harmonics By, , in Boozer coordinates
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Outward extrapolation using coils \ Landsca pe of Solutions

* Using REGCOIL, compute coil shapes that produce
the R/a=160 Garren-Boozer QA solution.

* Good flux surfaces exist out to R/a=5

" Future Directions

Bl clongation=4 * Fully map the landscape of possible

E.g. Scan over (ROC,ZOS,ﬁ)

for magnetic axis shapes
R)(¢)=1+R, cos(4¢)
Z,(9)=2,sin(49) =

274,560 solutions generated
in <30s on a laptop.

Elongation is reasonably
small only in two regions:

15t-order quasisymmetric shapes by
considering more Fourier modes in
the axis shape. (How do I plot this?)

* Optimize in the space of axis shapes.

* Can we construct shapes with
quasisymmetry imposed at a mid-
radius surface?

* Expand about a nearly circular axis.
« 2" order in distance from the axis.

* Connect to analysis of the difficulty of

/Omnigenity 6]
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The same Garren-Boozer machinery

can be appliedtoa B (9,{ ) such that

Cﬁbounce Vd . Vl/j - 0 even
without quasisymmetry.

- Poincare plot using vacuum field from coils
—— VMEC boundary
— A=160 target surface

(f)  Fourier harmonics By, , in Boozer coordinates
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\\ producing various plasma shapes. /
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