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D2c	
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D1a	
DD2	

1	 12	 		 		 		 		 		 		 		 		 		

D1b	
DD2	

12	 1	 		 		 		 		 		 		 		 		 		

D2a	
DD2	

628	 272	 1	 1362	 546	 		 		 		 		 		 		

D2b	
DD2	

67	 146	 >10000	 1	 17	 		 		 		 		 		 		

D2c	
DD2	

58	 48	 3800	 18	 1	 		 		 		 		 		 		

D3a	
DD2	

65	 42	 2200	 45	 6	 1	 7	 		 		 		 		

D3b	
DD4	

38	 46	 3160	 19	 5	 7	 1	 		 		 		 		

D4a	
DD4	

1097	 938	 2523	 1513	 274	 112	 201	 1	 723	 		 		

D4b	
DD2	

180	 188	 >10000	 85	 14	 13	 18	 >10000	 1	 		 		

D5a	
DD4	

192	 119	 4762	 133	 24	 13	 26	 1827	 7	 1	 6	

D5b	
DD4	

154	 124	 4148	 93	 15	 10	 16	 2121	 4	 7	 1	

Mul'grid	Methods	for	Dri8-Kine'c	Calcula'ons	in	Stellarators	and	Rippled	Tokamaks	
Matt	Landreman,	University	of	Maryland,				Håkan	Smith,	Max	Planck	Institute	for	Plasma	Physics	

Overview	 PDE	proper'es	PDEs	

Defect	correc'on	

Finite	difference	stencils	

Algebraic	Mul'grid	Results	

•  Several	important	phenomena	–	the	bootstrap	current	
and	collisional	transport	in	stellarators,	and	
neoclassical	toroidal	viscosity	(NTV)	in	tokamaks	–	
must	be	computed	by	numerical	solution	of	the	drift-
kinetic	equation	(DKE)	in	nonaxisymmetric	geometry.	

•  Need	time-independent	(steady)	solution:	like	an	
implicit	solve.	

•  High	resolution	is	required	in	at	least	3	dimensions	
(poloidal	angle	θ,	toroidal	angle	ζ,	pitch	angle	ξ)	due	to	
internal	boundary	layers.	

•  Existing	continuum	solvers	(e.g.	DKES	[1]	and		SFINCS	
[2])	have	used	a	direct	solver	for	at	least	these	3	
dimensions,	which	scales	poorly	with	resolution:	large	
memory	and	time	required	for	high	resolution.	

•  Multigrid	methods	[3,4,5]	are	state-of-the-art	for	
solving	PDEs	and	can	have	optimal	scaling.	However	
multigrid	is	not	straightforward	for	advection-
dominated	problems	like	the	DKE.	

•  Here	we	develop	a	multigrid	solver	for	the	DKE.	

[1]	van	Rij	&	Hirshman,	Phys	Fluids	B	1,	563	(1989).	

[2]	Landreman	et	al,	Phys	Plasmas	21,	042503	(2014).	

[3]	Trottenberg	et	al,	“Multigrid”,	Academic	Press	(2001).	
[4]	Briggs	et	al,	“A	Multigrid	Tutorial”,	2nd	ed.,	SIAM	
(2000).	

[5]	Brandt,	“The	Multigrid	Guide”,	http://
www.wisdom.weizmann.ac.il/~achi/classics.pdf	

Iterations	for	W7-X	example	without	defect	correction,	1	proc,	using	default	GAMG/
BoomerAMG/ML	options,	with	GMRES	acceleration:	only	D1a	works	well	

Multigrid	smoothing	tends	to	only	be	stable	for	low-order	upwinded	discretizations,	
like	D1a.	But	we	want	the	solution	accurate	to	high	order	(>=	4).	Therefore	we	will	
need	to	choose	a	pair	of	discretizations,	and	this	choice	strongly	affects	convergence.	

Example:	GMRES	preconditioned	with	direct	LU	factorization	of	preconditioner	(no	
multigrid	yet),	W7-X	geometry,		r/a=0.9,		monoenergetic,		Er=0,	collisionality	νqR/vth	=	
2e-4,		Nθ=47,		Nζ=139,		Nξ=85,	tolerance	=	1e-4.	

For	2nd	derivative,	we	need	only	consider	centered	stencils.	

We	consider	ninite	difference	discretizations	since:	
•  Multigrid	literature	is	most	developed	for	ninite	differences.	
•  Our	coordinate	grid	is	simply	a	tensor	product.	
•  Conservation	errors	are	no	worse	than	other	discretization	
errors	since	the	problem	is	time-independent,	so	no	
advantage	of	ninite	volume.	
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•  The	‘minimal	accurate’	PDE	has	a	null	space	of	dimension	
2Nspecies,	spanned	by	fMa,	v2fMa.	

•  The	monoenergetic	PDE	has	a	null	space	of	dimension	1	
spanned	by	1.	

•  For	each	null	space	dimension,	there	is	a	solvability	
condition	of	the	PDE,	corresponding	to	the	density	or	
pressure	moment.	

•  Thus,	the	discretized	PDE	yields	a	rank-denicient	matrix,	
and	the	algorithm	must	handle	this	property.	

Augment	the	system	with	extra	unknowns	(sources	S)	and	
constraints.	For	the	monoenergetic	case,	

Null	space	&	solvability	
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where		A		is	the	original	DKE	operator,
														B = vector	of	1's,							C = dξ 	
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CB 	is	small	(2Nspecies ×2Nspecies )	so	applying	 CB( )−1 	is	fast.
Taking		A−1 	to	be	a	multigrid	cycle,	
								then	M−1 	is	our	final	preconditioner.

		

Since		 dξ 	
−1

1
∫ DKE( ) =0,		then	CA=0.

Since	 DKE( ) 1( ) =0,		then	AB =0.
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Name	 Order	 a-3	 a-2	 a-1	 a0	 a1	 a2	 a3	
D1a	 1	 -1	 1	

D1b	 1	 -1/2-y	 2y	 1/2-y	

D2a	 2	 -1/2	 0	 1/2	

D2b	 2	 1/2	 -2	 3/2	

D2c	 2	 1/4	 -5/4	 3/4	 1/4	

D3a	 3	 1/6	 -1	 1/2	 1/3	

D3b	 3	 1/12+y	 -2/3-4y	 6y	 2/3-4y	 -1/12+y	

D4a	 4	 1/12	 -2/3	 0	 2/3	 -1/12		

D4b	 4	 -1/12	 1/2	 -3/2	 5/6	 1/4	

D5a	 5	 -1/30	 1/4	 -1	 1/3	 1/2	 -1/20	

D5b	 5	 -1/60-y	 3/20+6y	 -3/4-15y	 20y	 3/4-15y	 -3/20+6y	 1/60-y	

Name	 Order	 b-2	 b-1	 b0	 b1	 b2	
DD2	 2	 1	 -2	 1	

DD4	 4	 -1/12	 4/3	 -5/2	 4/3	 -1/12	

Pitch	angle	coordinate		

•  Velocity-space	grid	in	(v,ξ)	or	(v,α)	is	much	better	than	grid	in	(v||,	
v⊥)	since	boundary	layer	is	independent	of	v.	

•  A	popular	choice	in	previous	codes	[1-2]	has	been	Legendre	
polynomials	in	ξ,	since	you	get	both	spectral	accuracy	and	sparsity.		
But	here	we	consider	ninite	differences	since	multigrid	is	most	
likely	to	work	for	this	choice,	and	upwinding	(needed	for	
smoothing)	is	tricky	in	Legendre	space.	

•  Without	Legendre	polynomials,	collision	operator	nield	term	is	
dense,	so	use	matrix-free	implementation	for	it.	

•  We	need	accurate	integrals.	A	uniform	grid	in	ξ	is	not	very	accurate	
for	integration.	But	a	uniform	grid	in	α	corresponds	to	a	Chebyshev	
grid	in	ξ,	allowing	very	accurate	Clenshaw-Curtis	integration.	

•  There	is	no	boundary	condition	in	ξ;	only	regularity	is	required.	
For	a	grid	in	ξ,	close	to	the	boundaries	we	would	need	1-sided	
stencils,	spoiling	upwinding	there.	

•  But	for	a	grid	in	α,	you	can	extend	the	α	domain	and	use	f(-α)=f(α)	
to	evaluate	derivatives	near	the	boundaries	using	the	same	stencils	
as	in	the	interior,	preserving	upwinding.	Seems	more	elegant.	

•  For	a	grid	in	α	that	includes	points	at	the	boundaries,	the	pitch	
angle	scattering	operator	is	singular	there,	and	the	DKE	reduces	to	
df/dα=0:	

•  Therefore	we	use	a	uniform	grid	in	α	with	grid	points	at	element	
centers	instead	of	ends,	so	there	is	no	singularity.		

•  Most	of	the	structure	in	the	solution	is	at	small	ξ	(trapped	particles	
or	barely-passing	particles),	so	extra	resolution	there	would	be	
valuable.	It	is	straightforward	to	add	resolution	there	using	a	
coordinate	transformation.	Not	considered	here	for	simplicity.	
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•  Eventual	goal	includes	nonlinear	
terms,	but	all	reduced	forms	of	the	
PDE	are	linear.	

•  Simplest	versions	are	2D	or	3D	
(monoenergetic	tokamak	or	
stellarator).	Eventual	goal	is	5D.	

•  Steady	(time-independent).	
•  Inhomogeneous.	
•  Advection-diffusion	equation.	
•  Advection-dominated.	In	fact,	no	
physical	diffusion	at	all	in	2	
coordinates	(θ	and	ζ.)	

•  2	coordinates	(θ	and	ζ)	are	
periodic	on	[0,2π).	

•  In	the	3rd	coordinate	(pitch	angle	
ξ	),	domain	is	[-1,1],	and	there	is	no	
boundary	condition	–	only	
regularity	is	required.	The	PDE	
changes	order	at	the	boundaries.	

•  Recirculating	nlows	(closed	
characteristics).	

•  Solution	has	internal	boundary	
layers.	

•  Small	divisor	problem	(rational	ι)	

Mul'grid	methods	

There	are	many	options	for	
differentiation	stencils:	

(y	=	any	constant)	

	Iterations	required:	
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Eventual	goal:	(solved	now	in	SFINCS	code	[2])	

Variants	with	differing	complexity:	

Axisymmetry:	

		Unknown:		f = f θ ,ζ( )

		Specified:	B = B θ ,ζ( ) 	and	constants		ι , 	G , 	I ,ν .

Monoenergetic,	1	species,	Er=0:	
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		Unknowns:	fa = fa θ ,ζ ,ξ ,υ( ) 		and		Φ1 =Φ1 θ ,ζ( ).

Minimal	accurate	version:	

		Cab =Cab fa1 , fb0( )+Cab fa0 , fb1( ) = linear	Landau	operator

		θ = poloidal	angle,	ζ = toroidal	angle,	ξ=υ|| /υ , 	a= species
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		Unknown:	f = f θ ,ζ ,ξ( ).

Geometric	Multigrid:	
•  Gauss-Seidel	smoothing	quickly	reduces	

short-wavelength	errors	but	is	ineffective	
for	long-wavelength	errors.	

•  On	coarser	grids,	long-wavelength	errors	
are	more	quickly	corrected.	

•  Therefore,	a	combination	of	Gauss-Seidel	
smoothing	with	a	coarse-grid	solve	
reduces	all	wavelengths	in	the	error	
efniciently.	

•  Do	the	coarse-grid	solve	recursively:	“V	
cycle”.	On	coarsest	level,	a	direct	solve	is	
cheap.	

Algebraic	Multigrid:	
•  Abstracts	ideas	from	geometric	

multigrid	to	yield	a	‘black	box’	solver,	
based	on	only	matrix	elements.	

•  Heuristics	for	coarsening	the	degrees	of	
freedom	and	for	restriction/
interpolations	operators.	Coarse-grid	
matrix	is	then																														
(restriction)(Kine	matrix)(interpolation).	

•  Well-established	libraries	exist:	PETSc-
GAMG,	Hypre-BoomerAMG,	&	ML.	

y	=	0.15	for	D1b	to	minimize	#	iterations	when	preconditioning	D5a.	

y	=	0.2	for	D3b	and		y	=	0.04	for	D5b,	to	minimize	#	iterations	when	preconditioned	by	D1a.		

Red	entries	are	the	most	interesting:	high-order	(>3)	discretizations	in	the	real	matrix	
that	are	effectively	preconditioned	by	low-order	(<4)	upwinded	discretizations.	

All	3	libraries	have	MANY	tuning	parameters/options.	Best	results	so	far,	using	8	
procs	and	D5a	for	main	matrix:	

Stencil	
D1a	
DD2	

D1b	
DD2	

D2a	
DD2	

D2b	
DD2	

D2c	
DD2	

D3a	
DD2	

D3b	
DD4	

D4a	
DD4	

D4b	
DD2	

D5a	
DD4	

D5b	
DD4	

Li
br
ar
y	 GAMG	 51	 NaN	 NaN	 >1000	>1000	 NaN	 804	 NaN	 >1000	 NaN	 >1000	

BoomerAMG	 9	 >1000	 NaN	 >1000	>1000	>1000	>1000	 NaN	 >1000	>1000	>1000	
ML	 54	 NaN	 NaN	 >1000	>1000	 NaN	 794	 NaN	 >1000	 NaN	 >1000	

devblogs.nvidia.com	

Memory	usage	for	W7X	example,	Nθ=59,		Nζ=175,		Nξ=200,	32	procs,	GMRES(200):	
		GAMG:	14	GB,	4	min;								SFINCS	(not	multigrid):	291	GB,	19	min	

All	methods	show	strong	
scaling	a	bit	worse	than	ideal,	
saturating	around	~	64	procs.	

[3-5]	

Scaling	with	resolution	is	different	in	the	different	
coordinates,	presumably	due	to	anisotropy.	D1a	methods	
perform	poorly	at	high	Nθ.	

At	nixed	resolution,	more	
iterations	are	needed	at	very	low	
or	high	collisionality:	

The	new	method	has	also	been	benchmarked	against	DKES	[1]:	

W7-X,	r/a=0.9	

Timings	on	IPP	computer	Draco	for	lowest	collisionality	(cmul=3e-5):	
•  DKES	gets	radial	transport	to	+/-	12%	in	58,160	seconds	(1	proc).	
•  Algebraic	multigrid	code	gets	it	within	4%	in	168	seconds	(1	proc)		
						or	33	seconds	(32	procs)	

		DKE :

Precondi'oner	
stencil	 Library	 Non-default	op'ons	 #	itera'ons	 Time	for	

solve	(s)	
D1a	 GAMG	 Threshold=0.2	 321	 25	
D1a	 ML	 Threshold=0.5	 312	 27	

D1a	 BoomerAMG	

Threshold=0.15,	modified	Ruge-Stueben	
coarsening,	<4	nonzeros	per	row	of	
interpolaTon,	relax	in	lexicographic	order,	
extended+i	interpolaTon	

276	 28	

D2c	 BoomerAMG	

Threshold=0.15,	relax_weight=0.35,	modified	
Ruge-Stueben	coarsening,	<4	nonzeros	per	
row	of	interpolaTon,	relax	in	lexicographic	
order,	extended+i	interpolaTon	

165	 22	

D3a	 BoomerAMG	

Threshold=0.15,	relax_weight=0.16,	modified	
Ruge-Stueben	coarsening,	<4	nonzeros	per	
row	of	interpolaTon,	relax	in	lexicographic	
order,	extended+i	interpolaTon	

196	 27	

D3b	(y=0.2)	 BoomerAMG	

Threshold=0.15,	relax_weight=0.9,	modified	
Ruge-Stueben	coarsening,	<4	nonzeros	per	
row	of	interpolaTon,	relax	in	lexicographic	
order,	extended+i	interpolaTon	

108	 16	
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