Multigrid Methods for Drift-Kinetic Calculations in Stellarators and Rippled Tokamaks
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Overview PDEs varianss with differing complexity: | | PDE properties Multigrid methods | Finite difference stencils | Null space & solvability
+ Several important phenomena - the bootstrap current Eve“mal goal- (solved now in SFINCS code [2]) « Eventual goal includes nonlinear Geometric Multigrid: [3-5] We consider finite difference discretizations since: + The ‘minimal accurate’ PDE has a null space of dimension
and collisional transport in stellarators, and 22 f af terms, but all reduced forms of the | |+ Gauss-Seidel smoothing quickly reduces « Multigrid literature is most developed for finite differences. 2Ngyecie spanned by fiy,, vy,
neoclassical toroidal viscosity (NTV) in tokamaks - T +5 "’ +§ «‘ +oL 2 X WSy N . .
: : : PDE are linear. short-wavelength errors but is ineffective " e * The monoenergetic PDE has a null space of dimension 1
must be computed by numerical solution of the drift- o o do (my' 3 q@ \dinT for long-wavelength errors + Our coordinate grid is simply a tensor product. spanned by 1
kinetic equation (DKE) in nonaxisymmetric geometry. [(Vm”*v ) VW}/,," ay VTay'\ 2 277 Jay ||| ¢ Simplestversionsare 2D or 3D " + Conservation errors are no worse than other discretization v
+ Need time-Indspendent (steady) solution: Hke an . . (monoenergetic tokamak or « On coarser grids, long-wavelength errors ervors since the problem is time-independent, o no + For each null space dimension, there is a solvability
implicit solve. Sq,fa'(f+£,)=0 (Quisineutrality), £, =, exp(-q.2,/T)| | stellarator). Eventual goal is 5D. are more quickly corrected. advantage of finite volume. conditonofthe PDE, corresponding{ he drsicy or
+ High resolution is required in at least 3 dimensions € =C ([ S} () = linear Landau operator + Steady (time-independent). : :;Zﬁﬁfgiv ?;’h";"c‘g:;‘S“e"g"r{d‘;:gf‘fje'de1 There are many options for af(x.) i, the dieretined PO yields a radefcent matri
. N . = Can\JarrSoo ) ¥ CanlSaor S - differentiation stencils: . s, s s - 3
(poloidal angle 0, toroidal angle §, pitch angle £) due to o _ + Inh reduces all wavelengths in the error Herentiation stenclls i Ax and the algorithm must handle this property.
internal boundary layers. Unknowns:/, = £,(6,¢,§,v) and &, =@, (6,8). nhomogeneous. efficientl
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Existing continuum solvers (e.g. DKES [1] and SFINCS 6=poloidal angle, { = toroidal angle, =v, /v, a=species q ) R "
" I + Do the coarse-grid solve recursively: Dy 1 -1 1 constraints. For the monoenergetic case,
[2]) have used a direct solver for at least these 3 ; ; o ) f
- s N N - . * Advection-dominated. In fact, no cycle”. On coarsest level, a direct solve is D, 1 2y 2y 12y
dimensions, which scales poorly with resolution: large | | | Minimal accurate version: vsical diffust 2 ke joing & \ ke: (a4 B\ f)_(”
memory and time required for high resolution. 0 oF o, p yscllca i u;lon;ta in P o, 2 a2 o <J acri=0:l¢c ol s Lo
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+ Multigrid methods [3,4,5] are state-of-the-art for g o +&% % 0 2 €=V, V) W ( 0 == S e || 2 /2 g |Ed : .
solving PDEs and can have optimal scaling. However Unknown:f = f (9 ¢ ‘: u) 2 coordinates (6 and ¢) are SHOOTHER ﬁ I D 2 4 5/4 34 1/4 where A is the original DKE operator,
multigrid is not straightforward for advection- E e periodic on [0,21). mmmu% o, 3 e a4 12 1 B=vectorof 1's C:< [ ae ()>
dominated problems like the DKE. Monoenergetic, 1 species, E,=0: * In the 3" coordinate (pitch angle Sl L Since ’j‘ de (DKE)>=D then CA:‘G.
* Here we develop a multigrid solver for the DKE. o ; - 0, 4 vz 23 o 23 2 Ja g
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[1] van Rij & Hirshman, Phys Fluids B 1, 563 (1989). 1 3B 0B regularity is required. The PDE *  Abstracts ideas from geometric = The formal inverse of M= is
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[4] Briggs et al, “A Multigrid Tutorial”, 2" ed., SIAM : freedom and for restriction/ . . § (cB) ‘¢ 0
(2000). Axisymmetry: * Solution has internal boundary interpolations operators. Coarse-grid For 2" derivative, we need only consider centered stencils.
[5] Brandt, “The Multigrid Guide”, http:// 5 af 1-8 0BAf v 2 of] 1+& 3B layers. matrixis then ) ) If LI vorme [orcer | 5. [, | by | b | 5 | CBissmall 2N x2N__)soapplying (cB) " is fast.
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] S 208 g Small divisor problem (rational () Well-established libraries exist: PETSc- i oo, 4 1 43 S 4 Taking 4 to be a multigrid cycle,
% Unknown: f=£(6,{) GAMG, Hypre-BoomerAMG, & ML. L then M is our final preconditioner.
PitCh angle coordinate Defect correction A|gebraic Mu'ﬁgrid Resu|ts All methods show strong Scaling with resolution is different in the different
] ) ) o scaling a it worse than ideal, coordinates, presumably due to anisotropy. D,, methods
Yo, - 0 Multigrid smoothing tends to only be stable for low-order upwinded discretizations, Iterations for W7-X example without defect correction, 1 proc, using default GAMG/  gaturating around ~ 64 procs. perform poorly at high N6.
=E=—cosa, & e[f , ] a 6[ rﬂ) like D,,. But we want the solution accurate to high order (>= 4). Therefore we will BoomerAMG/ML options, with GMRES acceleration: only Dy, works well L a0 5 o 5
veloi i 42 or () 5 much btter than grd n need to choose a pair of discretizations, and this choice strongly affects convergence. § //' g 1° g 1° 2 °
« Velocity-space grid in (v,£) or (v,«) is much better than grid in (v,, -l 2 £ 2
v size {';O",,ﬁary laer is independent of v. g I Example: GMRES preconditioned with direct LU factorization of preconditioner (no - e " H g RS
R multigrid yet), W7-X geometry, r/a=0.9, monoenergetic, E,=0, collisionality vaR/v,, = H b Rt
* A popular choice in previous codes [1-2] has been Legendre 2e-4, Ny=47, N;=139, N;=85, tolerance = 1e-4. NaN NaN >1000>1000 NaN 804 NaN >1000 NaN >1000 H H H
polynomials in , since you get both spectral accuracy and sparsity. , J 9 >1000 NaN >1000>1000>1000>1000 NaN >1000 >1000 >1000 . . .
But here we consider finite differences since multigrid is most Iterations required: Discretization for preconditioner * * *
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smoothing) is tricky in Legendre space oD, | 0D, | DD, | DD, | DD, | DD, | DD, | DD, | DD, | DD, | DD. Al 3 libraries have MANY tuning parameters/options. Best results so far, using 8 e P P s
+ Without Legendre polynomials, collision operator field term is o procs and D, for main matrix: DS 2 20
dense, 5o use matrix-free implementation for it. oo, | Y| 12 e H H H
. We net sccurate el o g 1 ot ey scurts P mm : : :
for integration. But a uniform grid in « corresponds to a Chebyshev DD, Dy, GAMG  Threshold=( o 2 ¢ g0 £ £
grid in € allowing very accurate Clenshaw-Curtis integration. O [ 68 [272| 1 |1362) 546 o, L = T o Y
. X AR . . DD, 0.15, modified Ruge-Stueben o K3 o e n ne
« There is no boundary condition in & only regularity is required. = e of ros
i i i £ Do gl 146 forooo| 1 | 17 D, BoomerAMG O HMEES ACEl 276 28 At fixed resoluti
For a grid in &, close to the boundaries we would need 1-sided 5 oo, i interpolation, relax in lexicographic order, Aufixed resolution, more
stencils, spoiling upwinding there. extendedi nterpolation iterations are needed at very low
poiling upy g 5 0| ss | s |300| 18 | 1 or high collisionality:
« But for a grid in @, you can extend the a domain and use f{-a)=f(a) £ DD, ;hresl;old:o.ls, relax_vweng:uu.zs, modified o
to evaluate derivatives near the boundaries using the same stencils T PR R FUUSN I R B b soomeng MEeSuebencomrering chnomerosper g 2 The new method has also been benchmarked against DKES [1]:
as in the interior, preserving upwinding. Seems more elegant. H 0D, e G et ] o
D g g 2 r/a=t z & R AN
+ Foragrid in « that includes points at the boundaries, the pitch E DS‘: 38 | 46 |3160| 19 | 5 7 1 Threshold=0.15, relax_weight=0.16, modified H - W08 g 0 e
angle scattering operator is singular there, and the DKE reduces to 2 Ruge-Stueben coarsening, <4 nonzeros per 50 g 10 g os
df/gda:o: 8op ¢ 8 Do l1007| 038 |2523|1513| 274 | 112 | 201 | 1 | 723 o BoomerAMS oy, of nterpolation, relax in lexicographic 196 z H H 2o
i[(lf‘?’)al} f cose Of 8 Db order, extended+ interpolation H £ e
9 % | oat sino,  dor gg’z 180 | 188 |>10000| 85 | 14 | 13 | 18 [>10000 1 ;:rge:I;‘olljt::l:.:i,u;erlsa:ﬁ:/geli:l:2.';51,:;1‘5(1 i 0 H -
eo at =0, = % 2 £ H
ava=or s [ 10y | 110 |a762| 133 | 24 | 13 | 26 |1827] 7 | 1 | 6 Dso(y=0:2)  BoomerAMS ., o interpolation, relax n lexicographic 108 1 o H 3 o0 )
« Therefore we use a uniform grid in @ with grid points at element DD, order, extended+i interpolation e Y ® o1 w
centers instead of ends, so there is no singularity. st [ o4 | 124 a1a8] 03 | 15 | 10 | 16 |2121| & | 7 | 1 M o o o™ o o
« Most of the structure in the solution is at small € (trapped particles DOx e _ o e
or barely-passing particles), so extra resolution there would be Red entries are the most i ing: high-order (+3) sations in the real matrix Memory usage for W7X example, Ng=59, N;=175, N:=200, 32 procs, GMRES(200): ¢ A Timings on IPP computer Draco for lowest collsionality (cmul=3e-5):
valuable, It is straightforward to add resolution there using a that are effectively preconditioned by low-order (<4) upwinded discretizations. GAMG: 14 GB, 4min;  SFINCS (not multigrid): 291 GB, 19 min oxa * DKES gets radial transport to +/- 12% in 58,160 seconds (1 proc).
coordinate transformation. Not considered here for simplicity. =015 o Dy o minimize # erations when precondioning el |+ Algebraic multigrid code gets it within 4% in 168 seconds (1 proc)
ooty v or 33 seconds (32 procs)

»=021for D, and y = 004 for D, to minimize # iterations when preconditioned by D,..




