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• Expand to 3D MHD to 
reconstruct equilibria for 
stellarator optimization

Future Works

[1]	M.	Raissi	et	al.	Journal	of	Computational	Physics	
378:686-707	(2019).

[2]	A.	Cerfon	et	al.	Physics	of	Plasmas	17.3:032502	
(2010).

[3]	Lu,	Lu,	et	al.	SIAM	Review 63.1:208-228	(2021).

References

𝑒𝑟𝑟𝑜𝑟 = 𝜓!"## − 𝜓$%$&'()* / 𝜓$ where 𝜓$ = 𝜓!"## 𝑖𝑛 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑎𝑥𝑖𝑠
• Magnetohydrodynamic equilibrium calculations are a crucial tool for 

magnetic confinement. 

Motivation

• PINNs calculate residual of PDE and Boundary condition

Physics-informed Neural Network

• Grad-Shafranov Equation is a 2D ideal MHD equilibrium equation

Grad-Shafranov Equation 

Collocation Points

• Collocation points are where the 
PDE residuals are evaluated

• Possible to add data from numerical 
simulation or experiment

• We are looking at a particular set of analytic solutions: Solov’ev Profile

• The reason we use an analytic solution is not to train but to check

• A fast solver for MHD equilibria is needed for real-time reconstructions 
and incorporation in optimization loops such as those that occur in 
stellarator shape optimization.

• Here we explored physics-informed neural networks (PINNs) as a solver 
for producing 2D MHD equilibria.

• Optionally, we can add data(i.e. experimental or numerical solution)
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Deep	Neural	Network Loss	Terms
1.Governing	Equations
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2. Boundary	Condition	(Fixed	Boundary)
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Parametric PINN

Hard Constraints

Baseline Equilibria
• Parametric PINNs expand on regular PINNs to include more input 

parameters. 
• Allowing shape parameters  as inputs can enable shape optimization 

with  faster equilibrium reconstruction for various geometries. 

• Finetune parametric PINNs for better performance: adaptive sampling 
and hard constraints may be helpful as well.
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• For the result below, we used 409600 (i.e. (100)(8)4 ) for both boundary 
and domain collocation points.

• Training took about 4 hours, and the inference is like regular PINNs.

• The plot on the left shows the solid and dot-dashed curves that indicate 
the PINN and analytic solutions, respectively.

• PINNs shown here are implemented with DeepXDE by Lu, et al.

Training	a	()*)+,-*./	(011	with	5,7, 8, 9:;	<	
9=	>9?@	AB	C:>D@	>9?EF@F?=	

!"#$%
&''()!"*%+,

#ℎ.,!&*/
0$*"%!%!+,

G

5

H

8

I

<

J

5:	Inverse Aspect Ratio

H: Triangularity
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• Comparing side by side hard constraints show an order of magnitude better 
accuracy with lower training time. 
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• For some problems, it is shown that the hard constraints produce faster and 
more accurate solutions to a given PDE.

𝐺 𝑅, 𝑍 = 0 𝑜𝑛 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

H
ar

d 
Co

ns
tr

ai
nt

So
ft

 C
on

st
ra

in
t


